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Abstract

Purpose Several cell detection approaches which deal

with bright-field microscope images utilize defocusing

to increase image contrast. The latter is related to the

physical light phase through the transport of intensity

equation (TIE). Recently, it was shown that it is pos-

sible to approximate the solution of the TIE using a

low-pass monogenic signal framework. The purpose of
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this paper is to show that using the local phase of the

aforementioned monogenic signal instead of the defo-

cused image improves the cell/background classification

accuracy.

Materials and methods The paper statement was tested
on an image database composed of three cell lines: adher-

ent CHO, adherent L929, and Sf21 in suspension. Local

phase and local energy images were generated using

the low-pass monogenic signal framework with axial-

derivative images as input. Machine learning was then

employed to investigate the discriminative power of the
local phase. Three classifier models were utilized: ran-

dom forest (RF), support vector machine (SVM) with

a linear kernel, and SVM with a radial basis function

(RBF) kernel.

Results The improvement, averaged over cell lines, of

classifying 5 x 5 sized patches extracted from the local

phase image instead of the defocused image was 7.3%

using the RF, 11.6% using the linear SVM, and 10.2%

when a RBF kernel was employed instead of the linear

one. Furthermore, the feature images can be sorted

by increasing discriminative power as follows: at-focus

signal, local energy, defocused signal, local phase. The

only exception to this order was the superiority of local

energy over defocused signal for suspended cells.

Conclusions Local phase computed using the low-

pass monogenic signal framework considerably outper-

forms the defocused image for the purpose of pixel-patch

cell/background classification in bright-field microscopy.

Keywords Monogenic signal · Cell detection · Bright-

field microscopy · Transport of intensity equation ·
Local phase · Machine learning
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1 Introduction

Detecting cells in microscope images is a crucial step

in cell image analysis. Several approaches on different

image modalities tackle the problem as a classification

problem. A fixed-size square patch is sampled at each

pixel and used to train a cell/background classifier. The

features can be either the patches themselves as in [10] or

the patches after applying traditional feature extraction

schemes as in [12,13,17].

It is known that bright-field microscopy delivers

insufficient contrast at focus especially for adherent cells

[1, 2, 24]. More contrast can be obtained by defocusing

the microscope [1]. This fact was utilized in the literature

to improve cell-detection accuracy [2, 4, 16].

Moreover, in quantitative phase microscopy (QPM)

approaches [18], the physical light phase can be recon-

structed computationally from amplitude information

in order to get both more contrast and more object

details. A QPM approach in [3] suggests approximating

the TIE (Section 2.1) solution in the monogenic signal

(Section 2.2) domain. In fact, the obtained results ap-
proximate the local phase and the local energy of the

physical light phase.

It is expected that a defocused image delivers higher

discrimination between background and cells compared

to an at-focus image. In this paper, we show that using

the local phase, as obtained in the particular monogenic

framework of [3], instead of a defocused image yields

even higher discriminative power for the cell/background

classification problem. Section 2.3 discusses the details

of the used classifier models and features.

The experiments were performed on bright-field im-

ages of unstained cells from three cell lines: adherent

L929, adherent CHO, and Sf21 in suspension. Section 2.4

clarifies the details of the image acquisition and labeling.

Section 3 shows the results of these experiments which

are further discussed and summarized in Section 4.

2 Materials and methods

2.1 Transport of intensity equation

As mentioned in the introduction, defocusing a bright-

field microscope yields more contrast in the acquired
images. In fact, there is a relation between this con-

trast and the physical phase of light. The transport of

intensity equation (TIE) [23] models this relation:

−2π

λ

∂I(x, y)

∂z
= ∇ · (I(x, y)∇ϕ(x, y)) (1)

where λ is the wavelength of light, z is the axial distance

to the focus position, I is the intensity image at focus, ϕ

is the physical phase of light, ∇ is the gradient operator

in the two lateral dimensions x and y, i.e. inside the

image plane, and ∇· is the corresponding divergence

operator.

2.2 Monogenic signal

2.2.1 One-dimensional case:

The monogenic signal is a 2D generalization of a fun-

damental concept in signal processing called analytic

signal [8]. The latter is defined for a real-valued one-

dimensional signal f(x) by the following equation [19]:

fa(x) := f(x) + ifh(x) (2)

where i2 = −1 and fh(x) is the Hilbert transform of

f(x):

fh(x) := H(f(x)) := f(x)∗ 1

πx
=

1

π
ρ

∫ +∞

−∞

f(ζ)

x− ζ
dζ (3)

where ρ stands for the Cauchy principal value of the

improper integral. In Fourier domain, it can be shown

that Eq. (3) is equivalent to:

Fh(ω) = −i sign(ω)F (ω) (4)

where

sign(ω) :=


+1 : ω > 0

0 : ω = 0

−1 : ω < 0

(5)

As can be seen in Eq. (4), the Hilbert transform of a
signal is a phase shift of its frequency components by

±π2 . Therefore, a signal and its Hilbert transform are

commonly termed quadrature pair. Combining Eq. (2)

and Eq. (4) yields:

Fa(ω) = F (ω) + iFh(ω)

= F (ω) + sign(ω)F (ω)

= (1 + sign (ω))F (ω) (6)

In other words, the analytic representation of f(x) can

be obtained by discarding its negative frequency compo-

nents. Moreover, due to the fact that Hilbert transform

of a real signal is also real, Eq. (2) can be written in

Euler form as:

fa(x) = A(x)eiφ(x) (7)

where A(x) =
√
f2(x) + f2h(x) is the local energy and

φ(x) = arctan fh(x)
f(x) is the local phase. In practice, the

analytic signal, and hence the local phase and energy, are

computed for a band-passed version of f(x) in order to



Title Suppressed Due to Excessive Length 3

improve the frequency localization and make the result

invariant to the signal energy (by removing the DC) [5].

In addition, the band-pass filter is usually designed as

an even filter e(x) because it has a constant phase, and

thus, it does not change the phase information of the

original signal f(x) [5]. Based on these justifications,

the analytic signal is computed in practical applications

by the following equation:

f̂a(x) = f(x) ∗ e(x) + iH(f(x) ∗ e(x)) (8)

According to the convolution property [19] of Hilbert

transform:

f̂a(x) = f(x) ∗ e(x) + if(x) ∗ H(e(x))

= f(x) ∗ (e(x) + ieh(x))

= f(x) ∗ ea(x) (9)

In other words, finding the analytic representation of

the signal filtered by e(x) is equivalent to convolving

this signal with a quadrature filter ea(x) which is the

analytic representation of e(x). Furthermore, the Hilbert

transform of a real even function is a real odd function

o(x). Accordingly, one can write:

f̂a(x) = f(x) ∗ (e(x) + io(x)) (10)

Consequently, the local energy and phase are computed

in practice as:

Â(x) =
√

(f(x) ∗ e(x))2 + (f(x) ∗ o(x))2 (11)

φ̂(x) = arctan
f(x) ∗ o(x)

f(x) ∗ e(x)
(12)

Several band-pass filters have been considered in the

literature: Gabor, Gaussian derivatives, difference of

Gaussians, and others. A thorough discussion about the

choice of the quadrature filters can be found in [5].

2.2.2 Two-dimensional case:

The Riesz transform generalizes the Hilbert transform

for n-dimensional signals [22]:

R(f(x)) := (R1(f(x)), . . . ,Rn(f(x)))T (13)

Rl(f(x)) := hl(x) ∗ f(x), l = 1, . . . , n (14)

hl(x) :=
Γ ((n+ 1)/2)

π(n+1)/2

xl

‖x‖n+1 (15)

where Γ is the Gamma function [19], and x = (x1, . . . , xn).

Eq. (15) can be written in Fourier domain as:

Hl(u) = i
ul
‖u‖

(16)

where u = (u1, . . . , un) is the n-dimensional frequency

vector. For n = 1, this transfer function expresses the

Hilbert transform1.

Without loss of generality, the monogenic signal is

defined for 2D signals f(x, y) as:

fm(x, y) = f(x, y) + ih1(x, y) ∗ f(x, y)

+jh2(x, y) ∗ f(x, y) (17)

The filters h1 and h2 are given by Eq. (15). fm(x, y)

is defined in a quaternion space [9] whose imaginary

units are i, j, and k (i2 = j2 = k2 = −1) and the k-

component is zero. One can see the monogenic signal of

the 2D function f(x, y) as a quaternion-valued function

whose real part is the signal itself and whose vector part

is the Riesz transform of the signal.

Similar to the one-dimensional case, in practice, a

band-passed version of the signal is used:

f̂m(x, y) = e(x, y) ∗ f(x, y) + ih1(x, y) ∗ e(x, y) ∗ f(x, y)

+jh2(x, y) ∗ e(x, y) ∗ f(x, y) (18)

This can be reformulated as follows:

f̂m(x, y) = f(x, y) ∗ (e(x, y) + ih1(x, y) ∗ e(x, y)

+jh2(x, y) ∗ e(x, y))

= f(x, y) ∗ em(x, y) (19)

This equation is similar to Eq. (9) in the one-dimensional

case. It states that computing the monogenic represen-

tation of f(x, y) filtered with e(x, y) is equivalent to

convolving the signal with a 2D quadrature filter given

by the monogenic representation of e(x, y).

Local energy is defined as the magnitude of the

monogenic quaternion:

Â(x, y) =
√

(fe)2 + (fe ∗ h1)2 + (fe ∗ h2)2 (20)

where fe := f(x, y) ∗ e(x, y). The specification of the do-

main (x, y) was omitted in order to simplify the notation.

The local phase is defined as the angle between the vec-

tor part and the real part of the monogenic quaternion:

φ̂(x, y) = arctan

√
(fe ∗ h1)2 + (fe ∗ h2)2

fe
(21)

1 There is a minus sign difference due to the incompatibil-
ity of the definitions between different authors [8, 19]. This
incompatibility, however, is irrelevant for the discriminative
power.
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2.2.3 Solving the TIE using the monogenic signal:

In [3], a link between physical phase and local phase

was established using the monogenic signal. According

to [3], it is possible to use the monogenic signal frame-

work to approximate the solution of Eq. (1) under two

conditions: Firstly, the derivative image, i.e. the left side

of Eq. (1), is used as an input instead of the image itself.

Secondly, a low-pass filter is used in the monogenic sig-

nal framework instead of the typically-used band-pass

filter. The employed low-pass filter in [3] was a Mellor-

Brady filter [14] given by the following equation in the

spatial domain:

Ω(r, α, β) :=
1

rα+β
− 1

rα−β
(22)

where r =
√
x2 + y2, while α and β are the filter pa-

rameters. Depending on these parameters, Ω behaves

either as a low-pass or a band-pass filter. For solving the

TIE, a low-pass filter was employed corresponding to

α = β = 0.25. Therefore, e(x, y) in Section 2.2.2 was set

to Ω(r, 0.25, 0.25). More details about the justification

of the chosen parameter values can be found in [3].

2.3 Learning

We employ machine learning to investigate the discrimi-

native power of the local phase as defined in Section 2.2

in the cell/background separation problem. Obviously,

it is possible to measure the difference in the discrimi-

native power of two features by learning a classifier for

each of them and then comparing the test errors.

As classifier features, patches of size 5 x 5 pixels

are used. Cell areas in our data are considerably larger

than the area of the chosen patch. The advantage of

using a small patch-size is reducing the sensitivity of

the extracted feature vectors to the variability of cell

orientation. In Section 3.5, we conduct a patch-size

analysis.

As a classifier model, we use support vector machine

(SVM) [21] and random forest (RF) [6]. Two kernels

were utilized for the SVM: the radial basis function

(RBF) and the linear kernel. The SVM cost parameter

and the RBF parameter γ were set to the default values

of LibSVM [7]. The number of trees in the RF and the

number of the randomly selected variables at each node

were set after [11] to 500 and Nf/5, respectively, where

Nf is the feature number. The data was z-scored for the

SVM, while it was used without normalization for the

RF.

2.4 Materials

This study was performed on images acquired with

an inverted Nikon Eclipse TE2000U microscope using

Nikon USB camera. The used microscope’s objective

has a numerical aperture of 0.45, a working distance

of 7.4 mm, and 20x magnification. Image resolution is

1280 x 960 pixels with 0.49 µm/pixel.

Table 1 Cell lines used in the evaluation

Cell Description Image Cells
line pairs

L929 L929 adherent cells 5 1078
Sf21 Sf21 cells in suspension 5 1001
CHO CHO adherent cells 6 1431

Three cell lines were considered for the evaluation:

adherent CHO, adherent L929, and Sf21 in suspension.

The acquired data consists of 16 pairs of images. Each

pair consists of an image at focus (Figure 1(a)) and

another positively defocused image (Figure 1(b)) of the

same scene. The number of image pairs and the total

number of cells in each cell line can be seen in Table 1.

The defocus distance was +30 µm for adherent cells

and +15 µm for suspended cells. The total number of

cells is more than 3500, all of which were labeled by

two bioprocess engineering experts. This was done by

manually delineating the cell borders in the defocused

images using an annotation software [20].

The software SePhaCe [2] was used to generate the

local phase (Figure 1(c)) and the local energy (Fig-

ure 1(d)) images for each image pair. As mentioned in

Section 2.2.3, the axial derivative should be used as

input for the monogenic signal framework. The differ-

ence between an at-focus image and its corresponding

defocused image can be considered as a finite-difference

approximation of this derivative. Therefore, it was used

as input for the monogenic framework in SePhaCe.

3 Evaluation

3.1 Patch extraction

One can extract a patch (Section 2.3) at each pixel from

all images. However, this is computationally expensive.

Therefore, only P patches are randomly sampled from

each training/testing image. Unless otherwise specified,

P was set to 100. In order to achieve balanced learning,

one-half of the P patches are sampled from background

while the other half sampled from cells. The class of each

patch is obtained from the labeled ground truth (Sec-

tion 2.4). The ground truth for inhomogeneous patches,
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(a) At-focus (b) Defocused

(c) Local phase (d) Local energy

Fig. 1 Examples extracted from the L929 cell line. The histograms of the shown image parts were linearly stretched for clarity.

i.e. patches which contain both labels (usually near cell

boundary), is not reliably known. Consequently, unless

otherwise stated, these patches are discarded.

3.2 Comparison between local phase, local energy,

at-focus signal, and defocused signal

One of the five defocused L929 images Iq was used to

train three classifiers: linear SVM, RBF SVM, and RF.

The learned models were then applied on the other de-
focused images in the same cell line and the average

classification rate Rq over these test images was com-

puted. This was repeated for each defocused L929 image,

i.e. for each q value, and the mean of the Rq values was

obtained.

The previous experiment was repeated 10 times with

one mean classification rate obtained from each repeti-

tion. The mean and the standard deviation of all these

mean classification rates can be seen in the first column

of Table 2. The second, third, and fourth column of the

same table show the results when the same process was

applied on the at-focus, local phase, and local energy im-

ages, respectively. Table 3 and Table 4 show the results

of the same procedure applied on Sf21 and CHO.

Tables 2, 3, and 4 reveal that the four features can be

sorted by increasing discriminative power as follows: at-

focus signal, local energy, defocused signal, local phase.

The only exception for this order is that local energy is

more discriminative than defocused signal for suspended

cells (Sf21).

3.3 Comparison between the input space and the

output space of the monogenic signal

In this section, we assess the use of the two monogenic

outputs together for cell/background classification and

compare it with the joint use of the two monogenic

inputs. In this case, at a given pixel, a patch from a

local phase image and another patch at the same pixel

position from its corresponding local energy image are

extracted. The values of the two patches are then con-

catenated. Therefore, the dimensionality of the resulting

feature space is 50. The discrimination power of this fea-

ture space was compared with another 50-dimensional

feature space: the monogenic input space. The latter is

formed by using an at-focus image and its corresponding

defocused image together for patch extraction instead

of the local phase and energy images.
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Table 2 L929: Comparison between local phase, local energy, at-focus signal, and defocused signal using the cell/background
classification rate.

Defocused At-focus Phase Energy

Linear SVM 67.7%±0.5% 51.2%±1.0% 82.4%±1.1% 64.2%±1.3%
RBF SVM 68.2%±1.5% 56.2%±1.5% 81.7%±0.9% 64.5%±1.9%

RF 68.1%±1.1% 54.9%±0.9% 80.3%±1.1% 60.6%±1.3%

Table 3 Sf21: Comparison between local phase, local energy, at-focus signal, and defocused signal using the cell/background
classification rate.

Defocused At-focus Phase Energy

Linear SVM 82.5%±1.2% 59.6%±1.2% 94.9%±0.7% 88.5%±0.5%
RBF SVM 84.1%±0.8% 73.8%±2.0% 94.9%±0.6% 88.8%±0.8%

RF 87.4%±1.3% 70.8%±2.9% 94.6%±0.7% 88.4%±1.1%

Table 4 CHO: Comparison between local phase, local energy, at-focus signal, and defocused signal using the cell/background
classification rate.

Defocused At-focus Phase Energy

Linear SVM 60.9%±1.2% 49.8%±0.8% 68.5%±1.7% 57.4%±1.9%
RBF SVM 61.7%±0.9% 52.4%±0.6% 68.0%±2.4% 55.7%±1.3%

RF 61.1%±1.5% 52.5%±0.5% 63.7%±1.5% 54.8%±0.9%

The first column of Table 5 shows the cell/background

classification rate on L929 when both an at-focus image

and a defocused image are used together to train the

classifiers. The second column shows the classification

rate when both local phase and local energy are used to

train the classifiers. The same can be seen in Table 6 for

Sf21 and Table 7 for CHO. The classification rate was

estimated in a similar way to Section 3.2. However, com-

pared to Section 3.2, the dimensionality of the feature

space is 50 instead of 25. Tables 5, 6, and 7 reveal that

the compound signal of local phase and local energy is

more discriminative than the compound signal of an

at-focus image and a defocused image.

3.4 Comparison between local phase and the input

space of the monogenic signal

Figure 2 shows a comparison between the learning curve

of a RBF SVM trained using both a defocused image

and an at-focus image compared to the learning curve

of the same classifier model trained using a local phase

image. For each point in the curve, i.e. for each number

of patches PL = 100L2, L = 1..10, the classification

rate was estimated in a cross-validation loop similar to

the loop described in Section 3.2. The learning curve

shows that a local phase image is more discriminative

than the two images which were used to generate it

even when more training data is incorporated in order

to compensate for the increased dimensionality of the

feature space.

Table 5 L929: Comparison between the input space and
the output space of the monogenic signal using the
cell/background classification rate.

At-focus and defocused Phase and energy

Linear SVM 72.8%±1.2% 81.6%±1.1%
RBF SVM 71.4%±1.7% 81.5%±0.8%

RF 73.2%±1.5% 79.1%±1.9%

Table 6 Sf21: Comparison between the input space and
the output space of the monogenic signal using the
cell/background classification rate.

At-focus and defocused Phase and energy

Linear SVM 84.9%±1.0% 96.2%±0.6%
RBF SVM 86.1%±1.5% 97.1%±0.6%

RF 87.2%±2.4% 95.7%±0.6%

Table 7 CHO: Comparison between the input space and
the output space of the monogenic signal using the
cell/background classification rate.

At-focus and defocused Phase and energy

Linear SVM 58.0%±1.2% 67.6%±1.4%
RBF SVM 55.7%±0.6% 67.0%±1.7%

RF 57.1%±1.6% 65.0%±1.6%

3.5 Patch-size analysis

All experiments in our evaluation were performed so far

with 5 x 5 sized patches. In this section, we investigate

other patch sizes. Table 8 shows the classification rate
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Fig. 2 Comparison between learning curves of a RBF SVM on
L929 using two feature spaces: 1) local phase 2) the monogenic
input space.

of a RBF SVM classifier on L929 employing the same

evaluation scheme described in Section 3.2 but using 23

x 23, 33 x 33, and 43 x 43 sized patches. In order to give

the reader a feeling about the ratio between these patch

dimensions and cell dimensions, we point out that the

length of the minor axis of the L929 cells in our data is

32.95± 10.72 pixels.

Increasing the patch-size increases the dimensionality

of the corresponding feature space, and consequently,

the number of samples needed for training. Table 9

shows the same experiment reported in Table 8, but

with 900 random patches per training/testing image

instead of 100.

As stated in Section 3.1, only homogeneous patches

are used in training and testing. This is a plausible choice

when the patch’s area is small compared to cell’s area

(e.g. 5 x 5 sized patches). However, with larger patches,

this will exclude more cell pixels from the evaluation

scheme and hence degrade the generalizability of the

derived conclusions. Table 10 shows the results when no

patches are excluded from the evaluation. In this case,

the label of the patch’s center is considered.

Tables 8, 9, and 10 reveal that the superiority of lo-

cal phase over defocused signal holds for larger patches

even when more samples are employed in training. On

the other hand, unlike the discriminative power of local

phase, the discriminative power of defocused signal ben-

efits from employing near-boundary patches in training.

Table 8 The effect of the patch-size on the cell/background
classification rate. The cell line is L929, the classifier model is
RBF SVM, and the number of patches per training/testing
image is 100.

Defocused Phase

5 x 5 68.2 % ± 1.5 % 81.7 % ± 0.9 %
23 x 23 63.4 % ± 1.3 % 89.3 % ± 0.8 %
33 x 33 56.5 % ± 1.8 % 88.8 % ± 0.6 %
43 x 43 52.2 % ± 1.9 % 86.7 % ± 1.7 %

Table 9 The effect of the patch-size on the cell/background
classification rate. The cell line is L929, the classifier model is
RBF SVM, and the number of patches per training/testing
image is 900.

Defocused Phase

5 x 5 68.6 % ± 0.4 % 82.4 % ± 0.3 %
23 x 23 65.6 % ± 0.4 % 89.8 % ± 0.4 %
33 x 33 58.9 % ± 0.7 % 87.9 % ± 0.4 %
43 x 43 53.8 % ± 0.6 % 82.4 % ± 1.0 %

Table 10 The effect of the patch-size on the cell/background
classification rate. The cell line is L929, the classifier model is
RBF SVM, and the number of patches per training/testing
image is 100. Inhomogeneous patches are included in training
and testing.

Defocused Phase

5 x 5 65.2 % ± 1.5 % 76.9 % ± 0.7 %
23 x 23 66.2 % ± 1.3 % 77.3 % ± 1.0 %
33 x 33 65.5 % ± 1.9 % 76.9 % ± 0.8 %
43 x 43 67.7 % ± 1.3 % 76.1 % ± 1.3 %

4 Conclusion and discussion

We showed empirically that the pixelwise cell/background

classification yields considerably better results when the

local phase as obtained in [3] is used instead of the defo-

cused image. More generally, the feature images can be

sorted by increasing discriminative power as follows: at-

focus signal, local energy, defocused signal, local phase.

The only exception to this order was the superiority of

local energy over defocused signal for suspended cells.

In addition, we showed that the monogenic output

space is more discriminative than the monogenic input

space. This is probably due to the following reason: The

monogenic output delivers information about the phys-

ical light phase represented in a way which describes

signal features. In fact, there is a relation between the

signal features, e.g. edges and blobs, and the local phase

and energy of this signal. Local energy is high at dis-

tinctive signal features while local phase determines the

feature type [15].

In our experiments, a local phase image is an output

of the monogenic signal framework with an at-focus
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image and a defocused image used as inputs. The natural

question which arises here is whether using both input

images together could deliver the same discriminative

power obtained by the local phase image. Due to the

difference in the dimensionality between the two feature

spaces, more samples need to be provided for the higher

dimensional feature space in order to achieve a fair

comparison. For this reason, the learning curve was

utilized to compare the local phase with the input of

the monogenic signal framework. The results show that

by increasing the training data size, the local phase is
still more discriminative than the monogenic input.

The ground truth was defined by delineating cell
borders in the defocused images. The latter are blurred

compared to the at-focus images and defocused cells

tend to occupy larger area (cf. Figure 1(a) and Fig-

ure 1(b)). Therefore, comparing classification accuracy

between a defocused image and an at-focus image is

slightly biased. This bias is small because the random

sampling and the exclusion of inhomogeneous patches

make the probability of selecting a pixel which belongs

to a defocused cell but not to the corresponding at-focus

cell very low. In addition, as mentioned in the intro-

duction, the superiority of the defocused image over

the at-focus image in the cell/background separation is

already known in literature, and hence it is not a main

concern of our paper.

More than 3500 manually labeled cells were used

in the evaluation. This relatively large number of cells

supports the soundness of the paper statement. On the

other hand, one might criticize the evaluation as being

done using a fixed defocus distance, i.e. the distance

of 30 µm or 15 µm described in Section 2.4. In fact,

the selection of the defocus distance is not arbitrary.

The very short distances do not deliver sufficient con-

trast. On the other hand, very long distances smear

the image information due to the excessive blurring by

the point spread function of the optical system. There-

fore, there is an optimal distance which maximizes the

contrast. During the image acquisition, we tried to se-

lect this optimal distance experimentally. However, this
was judged subjectively. We are currently developing

automatic methods to choose this distance objectively.

Another critique might be that the improvement in

classification accuracy on the CHO cell line was con-

siderably less than the improvement on L929 although

both of them are adherent and have similar visual ap-
pearance. We noticed that the defocused CHO images

were over-blurred compared to the images of L929. We

thus anticipate that choosing a shorter defocus distance

for CHO will improve the classification rate. As men-

tioned above, we are developing methods for automatic

selection of the optimal defocus distance.
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