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Abstract. We propose a novel unstained cell detection algorithm based on un-
supervised learning. The algorithm utilizes the scale invariant feature transform
(SIFT), a self-labeling algorithm, and two clustering steps in order to achieve high
performance in terms of time and detection accuracy. Unstained cell imaging is
dominated by phase contrast and bright field microscopy. Therefore, the algorithm
was assessed on images acquired using these two modalities. Five cell lines hav-
ing in total 37 images and 7250 cells were considered for the evaluation: CHO,
L929, Sf21, HeLa, and Bovine cells. The obtained F-measures were between
85.1 and 89.5. Compared to the state-of-the-art, the algorithm achieves very close
F-measure to the supervised approaches in much less time.

1 Introduction

Cell detection plays a vital role in biomedical image analysis. Automatic image-based
cell detection approaches can be used for estimating the number of cells [1,2], initializing
cell segmentation algorithms [3], cell tracking [4], and for extracting features which can
be used for further analysis such as cell viability determination [5].

In fluorescence microscopy, cells are stained using a fluorescent dye. This reshapes
the cell detection problem as a relatively easy task due to the high contrast obtained by
staining. On the other hand, in some biological applications [6], it is desired to avoid
staining because of its side effects on cells. In this case, cell detection is more challenging
and sometimes very difficult [7, 8, 9].

We know from bioprocess engineers that, for unstained cell imaging, bright field and
phase contrast are the most widely used microscopic modalities. Therefore, they form
together a very appropriate choice for the evaluation of unstained cell detection.

Several machine learning approaches have been proposed in the literature in order to
cope with the difficulty of the problem. Some approaches follow a pixel-wise classifica-
tion strategy [5, 8, 10, 11]. Others perform the classification at the level of image interest
points [9, 12, 13, 14]. The latter have some useful properties. First, the problem is sparse
compared to the pixel-wise classification. Second, the interest points are characterized
by features and/or descriptors which can be utilized for detection as in [9, 12]. Third,
they can be employed to achieve scale- and orientation-invariant training as in [9].
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All the previous approaches are dependent on supervised learning. The latter trans-
fers part of its inductive bias to the training data which makes the approach adaptable by
simply changing the training set. This has the advantage that it can model very compli-
cated situations and provide reliable results as long as the training set is representative.
On the other hand, its drawback is that it requires labeled ground truth. In many cases,
the users of cell image analysis software would sacrifice some detection accuracy in
favor of having a labeling-free system. This preference becomes more serious when the
system has to be trained for each new cell line.

In this paper, we advocate an unsupervised machine learning approach for unstained
cell detection. Technically speaking, we also employ supervised learning, but with
ground truth learned automatically from the input image. The proposed approach was
tested on five cell lines with diverse visual appearance. Our results show that we are very
close in terms of detection rate to the state-of-the-art supervised learning approaches.
However, our approach has a much faster runtime and does not require manually-labeled
ground truth.

Related work In [12] and [14] on phase contrast microscopy and [9] on bright field
microscopy, the training was done at two levels: First, cells and background are separated
by machine learning techniques. Second, the difference between interest points belonging
to the same cell and interest points belonging to neighboring cells is learned. The support
vector machine (SVM) classifier and interest points detected by a set of Laplacian
filters were utilized in [12] and [14] while the random forest classifier and the scale
invariant feature transform (SIFT) keypoints were used in [9]. The previous approaches
require ground truth of segmented cells. In other words, cell borders should be delineated
and each cell should have a distinguishing identifier in the ground-truth mask. In [13],
maximally stable extremal regions (MSER) keypoints were utilized and a structured
SVM was used to learn a bijective mapping between the MSER regions and the ground-
truth cell centers. Compared to [9], [12], and [14], this approach has the advantage that
it is easier to train because only cell centers are required as ground truth. The closest to
our approach is [9], but ours uses unsupervised learning and it is thus labeling-free.

2 Methods

We make a heavy use of SIFT related concepts. Therefore, we introduce SIFT in Sec-
tion 2.1 and we then describe our method in Section 2.2.

2.1 SIFT

SIFT [15] is a local image feature detector and descriptor. Each detected keypoint is
characterized by its spatial coordinates, a scale, an orientation, a difference of Gaussians
(DOG) value, and a principal curvatures ratio (PCR) value. The DOG value indicates the
keypoint strength and its range is proportional to the dynamic image range. Its sign is
positive for black-on-white blobs and negative for white-on-black blobs. The PCR value
is defined as [15]:

PCR =
Tr(HDOG)

2

Det(HDOG)
(1)
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where HDOG is the Hessian of DOG, Tr is the trace, and Det is the determinant. PCR
has a minimum of 4 for the isotropic blobs and its value increases theoretically until
+∞ by increased blob anisotropy.

2.2 Cell detection by keypoint clustering and self-labeling

2.2.1 Keypoint extraction Our algorithm starts by extracting SIFT keypoints of the
input image I. These keypoints are not thresholded using the PCR or the DOG values.
In other words, all detected SIFT keypoints of all strength and anisotropy values are
considered at this step.
2.2.2 Blob type detection The keypoint blob type is determined by the DOG sign. As
mentioned in Section 2.1, it is either black on white (+1), or white on black (-1). Based
on [9], the blob type is computed using the following equation:

β = sign

(∑N
i=1 ωi |DOG(pi)|H(DOG(pi))∑N

i=1 ωi |DOG(pi)|
− 1

2

)
(2)

ωi =
s(pi)

PCR(pi)
(3)

where pi, i = 1..N are the keypoints in the image as obtained in Step 2.2.1, N is their
number, s(pi) is the scale of pi, and H is the Heaviside step function. If β = +1, the
positive DOG keypoints are considered while the negative DOG keypoints are discarded,
and vice versa.
2.2.3 Scale adaptive smoothing The image I is smoothed with a Gaussian kernel whose
standard deviation is the mean keypoint scale. The latter is computed using the following
equation:

σ =

∑M
i=1 |DOG(pi)| s(pi)∑M

i=1 |DOG(pi)|
(4)

where M is the number of the keypoints resulting from Step 2.2.2, i.e. only one blob
type is considered.The smoothed image Iσ is saved for further processing.
2.2.4 Second keypoint extraction Step 2.2.1 is applied on the smoothed image Iσ and
the keypoints which conform to the previously computed β are considered while the
others are discarded.
2.2.5 Cell/background keypoint clustering At this step, the keypoints are clustered
into one of two categories: cells and background. K-medians clustering, i.e. intra-cluster
`1-norm minimization, is applied with K = 2. One-dimensional Otsu thresholding is
applied on the DOG values of the keypoints and the two resulting clusters are used
to initialize the Lloyd’s iteration. The features are modality-specific. For bright field
microscopy, at each keypoint pi, we employ DOG(pi) and smoothed image intensity
Iσ(pi) as features. For phase contrast microscopy, we use DOG(pi) and VAR(I,pi, σ).
The latter is the local variance of the original image I within a square neighborhood
centered at pi with a half side-length equal to σ (up to an integer approximation). The
features are normalized to [0, 1] so that they contribute equally to the `1-norm. After
termination, the keypoints which belong to the background cluster are discarded.



4

2.2.6 Cell/cell keypoint clustering The goal of this step is to cluster the cell keypoints
resulting from the previous step into Nc clusters where two keypoints belong to the
same cluster if and only if they belong to the same cell. Nc is not known a priori. In
order to achieve this goal, a classifier which ranks each pair of keypoints as belonging
to the same cell or not is required [9], [14]. We propose to learn this classifier from the
input image using a self-labeling algorithm instead of manually-labeled ground truth.
Informally speaking, the algorithm trains a keypoint-pair classifier on extreme cases
(for which ground truth labels can be assumed) and applies the resulting classifier on
intermediate cases. This is achieved as follows:
1) Consider Ψ to be a set of keypoint pairs defined as:

(pi,pj) ∈ Ψ⇔ ‖pi − pj‖2 ≥ ρ where ρ = α · σ and α is a constant. ρ must be
larger than the maximum cell length. Due to the use of SIFT, safe values for α can
be set easily regardless of the image resolution or cell type. We set it to 10 in our
experiments.

2) Randomly choose N1 elements, i.e. keypoint pairs, from Ψ. Label each of them as
cross which means that the two corresponding keypoints belong to two different
cells.

3) Randomly choose N2 keypoints from the set of cell keypoints and form the set Ω.
The probability of selecting a keypoint is proportional to its scale. Both N1 and N2

were set to 100 in our experiments.
4) Motivated by the intuition that short line segments are very unlikely to span two

cells: For each element pi in Ω, choose a random orientation θi and form the point
qi = pi + (s (pi) cos (θi) , s (pi) sin (θi)). Label each pair (pi, qi) as inner which
means that the two corresponding points belong to the same cell. The labels obtained
by this step and by Step 2 are illustrated in Figure 1 (b).

5) For each inner/cross pair (p∗
i ,p∗

j ), extract the following feature after [9]:
Fij = Iσ(p∗

i ) − 2 extremumij + Iσ(p∗
j ). extremumij is, by definition, either the

maximum (when β = +1) or the minimum (β = −1) intensity along the line
segment between p∗

i and p∗
j .

6) Estimate the two class conditional densities P(F |inner) and P(F |cross) assuming a
Gaussian distribution.

So far, a keypoint-pair classifier was trained using the input image. The posterior
probability P(cross|F ), assuming equal priors, is then used to rank each two nearby
keypoints (cf. Figure 1 (c)). This ranking expresses the probability that they belong to
two different cells. In order to reduce runtime, only the three nearest neighbors of each
keypoint are considered. The resulting ranks are then used as input for an agglomerative
hierarchical clustering with average linkage similar to [9]. The resulting clusters at a
cut-off equal to 0.5 (cf. Figure 1 (d)) represent the detected cells. Inside each cluster, the
arithmetic average of the keypoint coordinates identifies the center of a detected cell.

3 Evaluation

Table 1 contains a summary of the datasets used in the evaluation. The ground-truth type
of all datasets except [13] is cell border delineation, while in the dataset of [13] a dot is
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Fig. 1. Illustration of the cell/cell keypoint clustering. The circle inside each figure shows a
magnified view. a) Cell keypoints resulting from the cell/background K-medians clustering. b)
Point pairs chosen by the self-labeling algorithm for training a cell boundary potential. Each pair
is indicated by a line segment. c) The learned boundary potential is employed to rank nearby
keypoint pairs. The output is probabilistic, but only the binary classification result is shown. d)
Result of hierarchical clustering using the ranks obtained from the previous step. Each cluster
represents a detected cell.

marked at the center of each cell. This difference in ground-truth representation leads to
a difference in the evaluation procedure. In all datasets except [13], a cell is considered
detected if the hit point belongs to the cell mask and the centeredness error is used to
assess the deviation from the cell center. Centeredness error is defined after [9] as the
distance between the hit point and the cell’s center of mass normalized by the cell major
axis length and averaged over all correctly-detected cells in the considered image. In the
dataset of [13], cell masks are not available. Therefore, a cell is considered detected if
the distance to the ground-truth cell center is less than the minimum cell radius. The
latter was set after [13] to 5 pixels. Figure 2 exemplifies detection results of our approach
for all datasets. Quantitative evaluation and comparison with the state-of-the-art are
described in the next paragraph. The evaluation results of all approaches except ours are
given according to their corresponding papers: [9], [14], and [13].

A comparison with [9] on bright field microscopy is shown in Table 2. The figures
of [9] in Table 2 were obtained by image-wise cross-validation in each cell line: One
image per cell line is used for training and the other images of the same cell line are
used for testing. The results of our approach were obtained by averaging each of the F-
measure, time, and centeredness error over images per cell line. A comparison with [13]
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Table 1. Datasets used in the evaluation

Cell line Modality Resolution #Images #Cells Ground truth Source
CHO bright field 1280× 960 6 1431 border delineation [9]
L929 bright field 1280× 960 5 1078 border delineation [9]
Sf21 bright field 1280× 960 5 1001 border delineation [9]
HeLa phase contrast 400× 400 11 1156 center dots [13]
Bovine phase contrast 680× 512 10 2584 border delineation [14]

and [14] on phase contrast microscopy is shown in Table 3. The shown results of the
approaches [13] and [14] in Table 3 were generated by the hold-out method: [13] was
trained using 11 images and tested on other 11 images. Similarly, [14] was trained using
10 images and tested on other 10 images. We evaluated our approach on the same images
which were used for testing each of them (the images described in Table 1). Tables 2 and
3 show that the proposed approach is very close in terms of F-measure and centeredness
error (when available) to the supervised approaches. However, our approach is much
faster especially when compared with the phase contrast approaches where it is one or
two orders of magnitude faster.

The blob type was correctly picked for all images by Eq. 2. As can be seen in Eq. 2,
this blob type is decided by the sign function. Therefore, the reliability of the decision is
proportional to the absolute value of the sign operand. We observed a little improvement
(data not shown) of this reliability when both PCR and scale are used for weighting (as
in Eq. 3) compared to the case when only the scale is used.

(a) CHO (b) L929 (c) Sf21

(d) HeLa (e) Bovine

Fig. 2. Samples of the detection results. Each plus sign marks a detected cell.
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Table 2. Comparison with the state-of-the-art on bright field microscopy

F-measure (%) Time (seconds) Centeredness error
CHO L929 Sf21 CHO L929 Sf21 CHO L929 Sf21

Supervised Mualla et al. [9] 84.2 86.5 97.0 45.9 36.7 40.7 0.48 0.38 0.16
Proposed approach 85.1 88.3 89.5 10.5 10.9 14.4 0.40 0.42 0.23

Table 3. Comparison with the state-of-the-art on phase contrast microscopy

F-measure (%) Time (seconds) Centeredness error
HeLa Bovine HeLa Bovine HeLa Bovine

Supervised Pan et al. [14] - 94.6 - 900.0 - -
Supervised Arteta et al. [13] 88.0 - 30.0 - - -
Proposed approach 88.7 86.0 1.5 3.5 - 0.11

4 Discussion and conclusion

Both blob type detection and scale adaptive smoothing were proposed in the supervised
approach of [9]. In contrast to [9], where only keypoints which belong to cells (known
from ground truth) are considered, we compute the blob type β in an unsupervised
manner by considering all keypoints. In addition, we use both scale and PCR to weigh
the keypoint contribution to β whereas only scale is used in [9]. For the scale adaptive
smoothing, we use a weighted average instead of the simple arithmetic average used in [9].
In general, we can conclude that SIFT can be successfully employed for unsupervised
structure-of-interest measurements such as mean scale and dominant curvature direction.

In the cell/cell clustering step, a self-labeling algorithm was employed to train a
ranking classifier. This classifier learns from extreme cases and applies the learned model
on intermediate ones. In other words, training and testing feature vectors are drawn from
different distributions. Therefore, the features should be chosen carefully so that they
do not overfit the training samples. With this in mind, we confined ourselves to use
a one-dimensional feature space and a simple generative model. In future, we plan to
improve the cell/cell clustering by applying transductive transfer learning techniques.
On the other hand, for the possibly less-reliable cell/background clustering, we think
that applying transductive learning methods may alleviate the limitations of K-medians.
In the self-labeling algorithm, due to the use of SIFT, it was possible to define a scale-
invariant notion of the extreme cases. Consequently, the algorithm could successfully
detect cells in images of different resolutions and/or cell types without any change in the
parameter values.

The proposed approach achieves detection accuracy which is very close to three
state-of-the-art supervised cell detection approaches in much less time, without training
data, and without manual parameter-tuning. We thus believe that the cell detection
problem is, to a large extent, solvable by self-supervised techniques which learn from
the input image itself.
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