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Abstract. Today, quantitative analysis of 3-D dynamics of the left ventricle
(LV) cannot be performed directly in the catheter lab using a current angiographic
C-arm system, which is the workhorse imaging modality for cardiac interventions.
Therefore, myocardial wall analysis is completely based on the 2-D angiographic
images or pre-interventional 3-D/4-D imaging. In this paper, we present
a complete framework to study the ventricular wall motion in 4-D (3-D+t)
directly in the catheter lab. From the acquired 2-D projection images, a
dynamic 3-D surface model of the LV is generated, which is then used to
detect ventricular dyssynchrony. Different quantitative features to evaluate
LV dynamics known from other modalities (ultrasound, MR) are transferred
to the C-arm CT data. We use the ejection fraction (EF), the systolic
dyssynchrony index (SDI), a 3-D fractional shortening (3DFSi) and the phase
to maximal contraction (φi,max) to determine an indicator of LV dyssynchrony
and to discriminate regionally pathological from normal myocardium. The
proposed analysis tool was evaluated on simulated phantom LV data with and
without pathological wall dysfunctions. The used LV data is publicly available
online at https://conrad.stanford.edu/data/heart. In addition, the presented
framework was tested on eight clinical patient data sets. The first clinical results
demonstrate promising performance of the proposed analysis tool and encourage
the application of the presented framework to a larger study in clinical practice.
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1. Introduction

Today, interventional cardiac imaging is based on angiographic C-arm systems.
However, to date no quantitative 3-D/4-D analysis of the left ventricle (LV) has been
performed during the intervention using angiographic C-arm CT. Functional imaging
is usually performed pre-interventionally by other devices, mainly ultrasound (US)
(Kapetanakis et al. 2005, Jenkins et al. 2004), magnetic resonance imaging (MRI)
(Matthew et al. 2012, Ma et al. 2012) or cardiac computed tomography angiography
(CCTA) (Lee et al. 2012, Po et al. 2011). The CCTA and MRI have to be performed
before the cardiac intervention. The three-dimensional echocardiographic images are
also acquired before the intervention, since it interrupts the clinical workflow of the
cardiac procedure. Our goal is a one-step solution of functional cardiac imaging within
the catheter lab using the interventional C-arm system. In an interventional set-up,
C-arm systems are the main modality used for performing cardiac interventions under
fluoroscopic imaging. In addition, the same systems can be used to generate CT images
of the heart (Lauritsch et al. 2006). The major challenge to providing 3-D cardiac
images and hence functional parameters in the interventional suite is the low temporal
resolution of the C-arm system which limits the 3-D visualization of the moving heart
based on conventional reconstruction algorithms. Considerable progress has been
made in the field of motion-compensated tomographic reconstructions of the heart
chambers from C-arm CT data (Prümmer et al. 2009, Isola et al. 2010, Müller, Zheng,
Wang, Lauritsch, Rohkohl, Schwemmer, Maier, Schultz, Hornegger & Fahrig 2013).
These approaches provide several motion-compensated reconstructions of different
heart phases and hence 4-D (3-D+t) images of the heart.

A combination of the motion-compensated reconstruction with a quantitative
analysis of the dynamics of the left heart ventricle (LV) would provide valuable
diagnostic information. From the dynamic 3-D US images different parameters are
extracted to analyse LV synchrony. The systolic dyssynchrony index (SDI), as defined
in Kapetanakis et al. (Kapetanakis et al. 2005), is based on the analysis of the
time passed to reach the minimal volume for specific LV regions as percentage of the
cardiac cycle. The standard deviation of these timings defines the SDI. In Herz et al.
(Herz et al. 2005), the quantitative wall motion analysis is based on a finite element
model of the LV and the dynamics are studied using a three-dimensional fractional
shortening (3DFS), which is a generalisation of the fractional shortening from 2-D
US (Moynihan et al. 1981). Recently, an approach to detect LV dyssynchrony in
cardiac computed tomography angiography (CCTA) was proposed by Po et al. (Po
et al. 2011). They utilize the same model as in Herz et al. and differentiate synchronous
from dyssynchronous LVs by the time elapsed before each model point reaches its
maximal contraction point. If the LV contracts synchronously, the time to maximal
contraction is homogeneous over the LV. If not, regional wall motion abnormalities
can be detected. The extracted LV motion information could improve the outcome of
complex cardiac procedures, such as cardiac resynchronization therapy (CRT). The
LV model can guide a physician to an optimal position of the LV lead and hence,
increase the rate of success of these interventions (Ma et al. 2012).

In the literature, several approaches to recover the 3-D shape of the left ventricle
with biplane X-ray systems are described. When using a biplane system, the epipolar
constraint can be exploited in order to compute the 3-D LV shape from two orthogonal
simultaneously acquired projection images (Hartley & Zisserman 2004). In Backfrieder
et al. (Backfrieder et al. 2005), initial super ellipses are deformed until their projection
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profiles optimally fit to the measured projections. The generated model can be used
to perform an LV wall motion analysis (Swoboda et al. 2005). The results were
promising, but no quantitative analysis was performed. A similar approach is used in
Medina et al. and Mantilla et al. (Medina et al. 2006, Mantilla et al. 2008), where
ellipsoidal approximations derived from the input ventriculograms are deformed to
match the input projections. The mentioned approaches differ in the representation
of the LV geometry and their optimization procedure. Other approaches also make
use of multi-view cardiograms. Moriyama et al. (Moriyama et al. 2002) proposed an
iterative framework to recover LV meshes from multi views by fitting a 4-D surface
model defined by B-splines to the LV. All of the mentioned approaches make use of
the synchronously acquired orthogonal ventriculograms from a biplane system. Most
of the presented work utilizes ellipsoidal structures for the reconstruction of the LV.
More degrees of freedom for the surface generation can improve the reconstruction of
the dynamic LV surface.

In this paper, we present a complete framework towards an automatic
interventional wall motion analysis tool to study LV dynamics in 4-D (3-D+t). This
approach would provide a one-step solution without the need to switch to another
modality during the intervention. The previously described parameters are adapted
to dynamic C-arm CT in order to provide a quantitative 4-D analysis of the LV.

2. Dynamic Left Ventricle Imaging and Analysis

The individual steps required to compute a dynamic surface model of the LV are:
1) the image acquisition of the LV 2) fitting an initial mesh to the standard FDK
reconstruction (Feldkamp et al. 1984) using all projection images 3) segmentation of
the 2-D bloodpool 4) heart phase identification 5) adaptation of the surface mesh 6)
left ventricle representation and 7) motion analysis. The individual steps are explained
in more detail in the following subsections.

2.1. Image Acquisition

The image acquisition protocol for an LV scan with a C-arm system consists of a
few hundred projection images (≈ 200–300) over an angular range of 200◦ in 5 s–10 s
during a breath hold. A contrast agent is administered directly into the LV at 10ml/s
by a pigtail catheter inserted via the femoral artery in the leg or radial/brachial artery
in the arm. Imaging starts with a delay of ∼ 1 s, the time needed for the contrast to
fill the LV homogeneously. Detailed acquisition parameters used in the experiments
are given in Section 3.

2.2. Initial Surface Mesh

An initial 3-D mesh is generated from the standard FDK reconstruction (Feldkamp
et al. 1984) using all projection images. This reconstruction still exhibits artefacts
due to cardiac motion, but the reconstruction quality is sufficient for extraction of a
static and preliminary 3-D LV endocardium mesh using a marginal space learning and
steerable feature approach proposed by Zheng et al. (Zheng et al. 2008).
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2.3. 2-D Bloodpool Segmentation

For the heart phase identification and the generation of the dynamic surface model,
the 2-D segmented bloodpool of the LV is required. The bloodpool segmentation is
based on a boundary defined by a set of connected points. For each of these points,
the steerable features (Zheng et al. 2008) centred at this point location are extracted
to train a probabilistic boosting tree (PBT) classifier (Tu 2005). During the training
stage, the manually annotated LV bloodpool boundary is given as the input to extract
positive samples (on the true boundary) and negative samples (far away from the
boundary). During testing, the features along the normal direction of the initial 2-D
forward projected static mesh are extracted as the input to the trained classifier, and
the candidate location with the peak probability score is selected as detected contour
location (Chen et al. 2011).

2.4. Heart Phase Identification

The heart phase φ(t) ∈ [0%, . . . , 100%] of each projection at acquisition time t needs to
be identified. For patients with an irregular heart rhythm the cardiac phase cannot be
assigned from the electrocardiogram (ECG) signal by linear interpolation between two
R-R peaks in the same manner as with a regular heart beat (Lauritsch et al. 2006).
Therefore, the 2-D segmented bloodpool area is used for identification of the heart
phase. The 2-D bloodpool size π(t) ∈ Z at acquisition time t, given as the segmented
area in pixels in the 2-D projection images, is filtered with a 1-D Gaussian kernel in
order to obtain a smoothed bloodpool curve πf (t), c.f. Figure 1a. The minimum and
maximum points are then identified as candidate points for end-systole (ES) tES and
end-diastole (ED) tED (marked as green and red circles in Figure 1a). A pre-defined
threshold is used to exclude false local maxima and minima (c.f. Figure 1a, frames 102
and 110, red and green rings). The detected ED’s divide the signal πf (t) into multiple
cardiac cycles. In order to generate a reference time-size curve π(ξ), an intermediate
heart phase ξ ∈ [0%, . . . , 100%] is introduced

ξ =
t− tED1

tED2 − tED1

, (1)

where tED1 and tED2 are the first and last ED points of the current cycle. The
bloodpool curve of each cycle is temporally re-sampled to fit to an average length of a
cardiac cycle. The re-sampled curves are then averaged over all cycles to generate π(ξ).
An example of a reference curve π(ξ) is shown in Figure 1b. In order to eliminate the
size variation of the bloodpool due to the rotation of the C-arm system, a normalized
bloodpool size πn(t) is computed as follows:

πn(t) =

{
πf (t)−πf (tES)

πf (tED1)−πf (tES)
· (π(0)− π(ξES)) + π(ξES), t < tES

πf (t)−πf (tES)
πf (tED2)−πf (tES)

· (π(1)− π(ξES)) + π(ξES), t ≥ tES

(2)

where ξES is the ES time point of the reference curve π(ξ), with

ξES = arg min
ξ

π(ξ) (3)

and tES is the end-systolic point of the cardiac cycle containing the currently considered
frame. Finally, the cardiac phase φ(t) for each projection and time point can be
obtained based on a quasi-inverse mapping of π(ξ) at the systolic and diastolic period
separately,

φ(t) = π−1(πn(t)), (4)
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(a) (b)

(c)

Figure 1: Examples of (a) a smoothed bloodpool segmentation size πf (t) and (b) the
mean bloodpool signal π(ξ) by averaging multiple cardiac cycles. (c) shows the derived
cardiac phase φ(t) based on Equation 4. The candidate end-diastole (ED) time tED

and end-systole (ES) time tES are marked as red circles and green circles and the red
and green ring mark the additional smaller contraction in (a).

where a systolic period is present if t < tES and a diastolic period otherwise. The
continuous heart phase φ(t) is binned into a number of K heart phases by nearest-
neighbour classification and denoted with φk, with k = 1, . . . , K. The number of
heart phases K can be chosen according to the number of frames per heart cycle.
An example of a derived cardiac phase signal φ(t) is given in Figure 1c. If a local
maximum is detected which is not ED, as illustrated in Figure 1a at frame 102, the
phase labelling process based on Equation 4 is reset to the systolic period. At the
beginning and end of the scan, if no full cardiac cycle is detected, the local maximum
and minimum are used for fitting the half cycle to the average bloodpool signal and
the cardiac phase can be assigned as previously described. In the example in Figure
1a no local minimum is detected at the beginning and hence the heart phases at the
beginning of the scan are set to zero, see Figure 1c.

2.5. Dynamic Surface Model Generation

A dynamic 3-D surface model of the LV is computed with an initial 3-D mesh which
is generated from the standard FDK reconstruction (Feldkamp et al. 1984) using all
projection images. The projections are assigned to certain heart phases corresponding
to the bloodpool size signal generated from the 2-D projection images described in
Subsection 2.4. Then, the initial triangle mesh is dynamically adapted so that the
forward projected silhouettes fit to the corresponding LV boundary in the projection
images of the same heart phase as proposed by Chen et al. (Chen et al. 2011). As
a next step, a 3-D triangulated mesh is generated for every heart phase φk with its
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(a) (b) (c)

Figure 2: (a) Septal view of one left ventricle surface model at end-diastole with
the local coordinate system (n1, n2, n3). n3 is pointing towards the reader. (b)
Circumferential polar plot of the 16 myocardial segments with the used coordinate
system (n1, n2, n3). n1 is pointing towards the reader. (c) Hammer projection
(Subsection 2.7.3) used to preserve the areas while mapping varying measures of
function from 3-D to 2-D.

control points pi(φk) ∈ R
3, with i = 1, ..., N where N is the number of control points.

2.6. Left Ventricle Representation

In order to analyse the contraction behaviour of the LV, an orthogonal local coordinate
system is introduced. The three orthogonal main axes of the end-diastolic LV surface
are computed by a modified principal component analysis (PCA) with a rotation and
an adjustment of the centroid. The coordinate system is then fixed for the whole
analysis. The 1st principal axis n1 ∈ R

3 points towards the long axis of the LV from
the middle point of the mitral valve to the apex point. The 2nd axis n2 ∈ R

3, points
into the anterior direction and the 3rd axis n3 ∈ R

3 in the septal direction. Initially, n1

does not necessarily pass through the apex, since the LV is not necessarily symmetric.
Therefore, the coordinate system (n1, n2, n3) is rotated to align n1 with the long
axis. The origin of the coordinate system is defined as the mid point between base
and apex. A schematic of the three coordinate axes is provided in Figure 2a.

The LV surface is divided into 16 segments according to the recommendation of
the American Heart Association (AHA) and each point pi is assigned to one of these
segments (Cerqueira et al. 2002). The 16 myocardial segments are illustrated in Figure
2b.

2.7. Motion Analysis

2.7.1. Volume Computation. For every heart phase the three-dimensional LV volume
Π ∈ R

+ is computed. The mapping between the heart phase and each acquisition
time point t is known (c.f. Subsection 2.4). The end-diastolic volume (EDV) and
end-systolic volume (ESV) are determined as maximum and minimum volume. The
ejection fraction (EF) is the difference between the end-diastolic volume and the end-
systolic volume compared to the end-diastolic volume. The EF is computed as

EF[%] =
EDV-ESV

EDV
. (5)
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A normal EF has a lower limit of ∼ 50%, below that value the contraction ability of
the LV is impaired (Pfisterer et al. 1985).

2.7.2. Wall Motion in 3-D. The ventricular wall motion can be analysed in 3-D using
different features adapted from other modalities (CCTA, US, MR):

Heart Phase to Maximal Contraction (φi,max): The minimal Euclidean distance
λi(φk) from every point pi(φk) to the long axis n1 can be computed. In order to
eliminate small outliers, the distance signal for each point is temporally filtered by
a 1-D mean filter with a kernel size of 5. Finally, for every surface point, the phase
until it reaches its maximum of contraction φi,max can be determined. For healthy,
synchronous LV motion, a uniform distribution over the entire LV surface can be
observed. A higher variability in the contraction times occurs for dyssynchronous
dynamics (Po et al. 2011).

Systolic Dyssynchrony Index (SDI): The systolic dyssynchrony index (SDI) known
from echocardiography (Gimenes et al. 2008, Kapetanakis et al. 2005, Sachpekidis
et al. 2011) can be estimated with the LV volumetric information for every heart
phase. For each surface point pi(φk) the associated myocardial segment is known
at all heart phases. Therefore, the subvolume of each segment can be determined
by dividing the LV surface into small triangle pyramids given by the surface mesh
and the origin of the coordinate system. In order to eliminate small outliers, the
subvolume signals are temporally filtered by a mean filter with a kernel size of 5. For
each segment, the phase φs,max of maximal contraction and the overall mean phase of
maximal contraction φmax for all segments are computed. The standard deviation of
the maximal contraction phases among the segments is an indicator for LV synchrony

SDI =

√√√√ 1

16

16∑

s=1

(φs,max − φmax)
2
. (6)

Since the SDI represents the standard deviation between contraction phases, a higher
SDI denotes increased ventricular dyssynchrony. For echocardiography, Kapetanakis
et al. stated an SDI ≤ 3.5±1.8% as normal, mild disease SDI of 5.4±0.8%,
moderate disease SDI of 10.0±2% and a severe disease SDI of 15.6±1% (Kapetanakis
et al. 2005). It should be mentioned that the SDI is a relatively new parameter
of dyssynchrony and it still varies between the methods of measurement (Sachpekidis
et al. 2011), but irrespective of the analysis software there is an agreement that healthy
individuals rarely have SDI values over 6%.

Three-dimensional Fractional Shortening (3DFSi): In 2-D echocardiography, the
fractional shortening of the LV is used as an indicator to identify pathological
dynamics. Ischemic regions can be distinguished from normal areas of the LV.
Fractional shortening specifies the relationship between the LV radius in diastole and
its decrease in systole. Here, a three-dimensional fractional shortening (3DFSi) can
be computed similar to (Herz et al. 2005). The 3DFSi value for every point is defined
as

3DFSi =
λi,ED − λi,ES

λi,ED

, (7)
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where λi,ED and λi,ES denote the Euclidean distance of the mesh point pi(φk) to the
long axis n1 in end-diastole and end-systole, respectively. Herz et al. classified the
wall motion as normal (3DFSi > 0.25), hypokinetic (0.05 < 3DFSi ≤ 0.25), akinetic
(-0.05 < 3DFSi ≤ 0.05) or dyskinetic (3DFSi ≤ -0.05). The lower limit of normal
is based on the standards for 2-D fractional shortening of the American Society of
Echocardiography while the values to separate akinesis and dyskinesis are chosen
arbitrarily (Herz et al. 2005).

2.7.3. Hammer Projection. In order to provide the point-based indicators in an
overview map, a Hammer projection map is created (Hunter & Smaill 1988). The
maximal contraction phase φi,max and the fractional shortening 3DFSi are mapped
from the LV mesh surface to 2-D as a function of location from apex to base (0◦ ≤ µ ≤

120◦) and circumferential position (0◦ < θ ≤ 360◦). The Hammer projection maps
the surface motion information to 2-D while preserving relative surface areas (see also
Figure 2c) (Hunter & Smaill 1988). The LV surface is represented by a small number
of control points, therefore, the surface with its point-based motion information is re-
sampled. The surface is re-sampled with an angular increment of 0.25◦ in the µ and
θ directions. The scalar value at the sample point is computed by simple averaging of
the information given at the circumjacent triangle vertices (φi,max or 3DFSi).

3. Experiments

3.1. Phantom Data

The analysis presented here has been applied to LV surface models generated from
a cardiac phantom (Maier et al. 2012, Müller, Maier, Fischer, Bier, Lauritsch,
Schwemmer, Fahrig & Hornegger 2013, Maier et al. 2013), which is similarly designed
to the widely used 4-D XCAT phantom (Segars et al. 2008). The phantom is defined by
cubic B-splines and can be tessellated to generate a triangulated mesh for every time
point. The splines can be sampled at any number of points. In our experiments, we
sampled the spline at about ≈ 870 surface points. The simulated acquisition protocol
uses a total of 133 projection images with a size of 1240 × 960 pixels and a pixel
resolution of 0.3mm. The dynamic LV surface models were simulated over 5 s at a
heart rate of 60 bpm. Five different surface phantoms were generated with various
contraction dynamics and considered as ground truth (GT), denoted as p1,GT–p5,GT.
For the evaluation of the phantom data, dynamic phantom meshes were generated
using the initial mesh generation, described in Subsection 2.2. The 2-D segmentation
of the phantom data cannot be used to validate the bloodpool segmentation since the
segmentation of clinical LV acquisitions and the segmentation of phantom simulations
are not comparable. Therefore, the GT 2-D segmentations of the left ventricles were
used for the heart phase identification and to generate the dynamic LV meshes (c.f.
Subsections 2.4 and 2.5). The meshes had 545 control points uniformly distributed
over the left ventricle and are denoted as p1–p5.

Modelling of Pathological Motion Patterns. For every normalized time point t ∈ [0, 1]
of the whole scan there exists a 2-D spline surface s ∈ [0, 1]2. Each spline is defined
by control points c ∈ R

2 with a one-to-one mapping from 3-D coordinates C ∈ R
3 to

the 2-D control points c given by the 4-D XCAT phantom (Segars et al. 1999, Segars
et al. 2008). In order to incorporate a motion defect, a region in which the motion
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should be pathological has to be defined. Here, a box B is defined, within the
coordinate system of the heart, i.e. a local coordinate system where the z-axis is
aligned with the long axis of the LV. Each spline control point C is clipped against
the volume B, generating a list Cpath of control points inside the pathological volume,
where the complete set of all control points is denoted as C. During the tessellation
procedure T (s, t) : R

2 → R
3, the 2-D spline surface points s are assigned to a 3-D

coordinate x(t) = T (s, t). In order to allow for a smooth transition between B and the
healthy LV surface, a flexibility parameter σ is introduced. A larger value of σ results
in a smooth defect, while a small value yields sharp transitions between pathological
and normal tissue. The model incorporates two kinds of motion defects: akinetic
wall motion and delayed contraction behaviour. The akinetic motion defect prevents
contraction or inward motion of the heart in the affected area. A delayed motion is
a contradictory movement of the heart. The motion defects can be controlled by a
phase shift parameter δ ∈ [0, 1]. The deformed 3-D coordinate can then be computed
as

xpath(t) = (1− w(s, t)) · T (s, t) + w(s, t) · T (s, t− δ),

(8)

w(s, t) =

∑
c∈Cpath

w′(s, c, t)
∑

c∈C w
′(s, c, t)

, (9)

w′(s, c, t) = e−
1

2σ2
||s−c||2

2 . (10)

The Gaussian basis function w′(s, c, t) gives a small weight to control points far away
from the current spline surface point s and a higher weight to close control points.
Effectively, xpath(t) is a linear combination between the transformed spline point s

at the current time t and at a time point t − δ. An akinetic motion defect can be
realized by setting δ = t−t0. In our experiments, we set t0 = 0. Hence, the magnitude
of the motion in the pathological volume is minimal compared to the motion of the
remaining LV. A shift in the motion phase is achieved by setting δ to a fixed value,
given as percentage of the heart cycle. Consequently, xpath(t) is generated from the
transformed spline points at the current time and at an earlier time with a fixed phase
shift. As a result, the motion in the pathological volume is delayed compared to the
motion of the remaining LV.

Five different phantom datasets were simulated. The LV surface model p1,GT

exhibits normal dynamics, three LVs suffered from a temporal contraction shift on the
lateral wall of 10% (p2,GT, δ = 0.1, σ = 0.1), 20% (p3,GT, δ = 0.2, σ = 0.1) and 30%
(p4,GT, δ = 0.3, σ = 0.1) relative to the heart cycle, and the last (p5,GT, σ = 0.05) had
an induced wall defect on the lateral LV wall, i.e. no movement at the lateral wall.
All LV surface meshes and defined parameters are publicly available for download at
https://conrad.stanford.edu/data/heart. In Figure 3, the phantom meshes for p1,GT ,
p5,GT and p1 are illustrated for both end-diastolic and end-systolic phases.

The 3-D volumes of the different GT phantoms are plotted in Figure 4. The
different contraction shifts as well as the wall motion defect are clearly visible in the
curves. A more detailed analysis of the volume curves of the affected segments is given
in Table 1. For the affected segments (segments 5, 6, 11, 12 and 16) the mean phase
of maximal contraction φmax is computed. The phase shift for every phantom is given

https://conrad.stanford.edu/data/heart
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(a) (b) (c)

Figure 3: Wall motion of the LV surface models with the wire frame representing
the endocardial surface at end-diastole and the solid surface representing the surface
mesh at end-systole. (a) Anterior view of the phantom surfaces p1,GT.eps with normal
contraction behaviour and in (b) of the phantom surface p5,GT.eps with the lateral wall
defect. (c) Anterior view of the estimated surfaces p1.

Figure 4: 3-D LV volume curves of the different phantoms (p1,GT–p5,GT).

as δ̃ and the relation to the parameter δ is denoted as ǫ. The motion of the surface
points is influenced by the Gaussian function and the flexibility parameter σ. Hence,
the maximal phase shift (max δ̃) and its relation to the parameter δ is also given in
Table 1.

In Table 2, the motion parameters for the different GT phantom datasets are
given (p1,GT–p5,GT). It can be seen that the normal phantom has an SDI of 4.16%
which is in the upper normal range. In Figure 5a, the Hammer map of φi,max of
p1,GT is illustrated. It can be seen that the phase to maximal contraction is uniformly
distributed over the LV. The 3DFSi Hammer map is given in Figure 6a. On the
lateral wall of p1,GT, the 3DFSi is ≈ 0.4. In comparison, p3,GT and p4,GT with the
induced lateral phase shift are classified to have a mild or even severe dysfunction
with an SDI ≥ 6.0% (Sachpekidis et al. 2011). The phantom p2,GT has a small phase
shift and hence only a slightly increased SDI value. In Figure 5b–5d, the Hammer
maps of φi,max of (p2,GT–p4,GT) are illustrated. The increase in the phase to maximal
contraction is visible on the lateral wall. The 3DFSi decreases compared to p1,GT,
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Table 1: Contraction times of affected segments φmax and standard deviation, resulting
phase shifts (δ̃), the relation of δ̃ to the parameter δ denoted as ǫ. The maximal phase

shift (max δ̃) is also given for the phantom GT datasets.

Dataset φmax for affected segments δ̃ ǫ to parameter δ max δ̃ ǫ to parameter δ

p1,GT 0.52 ± 0.00 - - - -

p2,GT 0.60 ± 0.02 0.08 0.02 0.11 0.01

p3,GT 0.67 ± 0.03 0.15 0.05 0.18 0.02

p4,GT 0.79 ± 0.02 0.27 0.03 0.29 0.01

p5,GT n.a. n.a. n.a. n.a. n.a.

Table 2: Heart rate (HR), ejection fraction (EF), and the systolic dyssynchrony index
(SDI) of the GT phantom datasets.

Dataset phase shift HR [bpm] EF [%] SDI [%]
p1,GT 0% [lateral] 60 62.37 4.16
p2,GT 10% [lateral] 60 62.97 5.22
p3,GT 20% [lateral] 60 60.40 6.47
p4,GT 30% [lateral] 60 53.65 12.74
p5,GT 0% [defect lateral] 60 38.70 5.05

c.f. Figure 6b–6d. It can be seen that the phase shifts affect the whole ventricle
since the time point of the end-diastole and end-systole differs compared to p1,GT.
From Figure 4, it can be observed that the systolic phase is shifted towards the end
of one cardiac cycle, therefore, the “normal/healthy” wall part is measured too early
and the “impaired” wall motion is measured too late. For phantom p5,GT, the defect
on the lateral wall is visible in the Hammer maps at the lateral wall (c.f. Figure 5e
and 6e). The 3DFSi drops to ≈ 0.0 at the lateral wall for the wall defect. The small
EF of ≈ 39% is additionally an indicator for a wall dysfunction. The SDI shows no
abnormal behaviour due to its dependence on averaged volumetric information inside
the individual segments. The affected segments still contract slightly and show a
contraction φs,max. However, the Hammer map of φi,max identifies the wall motion
defect.

3.2. Clinical Data

Patient datasets were acquired on two clinical C-arm systems (Universitätsklinikum
Erlangen and Thoraxcenter, Erasmus MC). The acquisition protocol is based on the
description in Subsection 2.1. Two different protocols were used: the first protocol
provided 133 projection images with a size of 960 × 960 pixels and a pixel resolution
of 0.3mm; the second protocol provided 248 projection images with a size of 480 ×

480 pixels with a pixel resolution of 0.6mm. Both protocols have a scan time of ∼ 5 s.
The generated surface models consisted of a different number of heart phases 26.5 ±

6.70 depending on the frames per cardiac cycle and hence the patient’s heart rate.
The meshes had 545 control points uniformly distributed over the left ventricle. The
examining cardiologists diagnosed no pathological LV dynamics on all eight patient
data sets.
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(a) (b) (c)

(d) (e)

Figure 5: Ground truth Hammer map of φi,max of the phantom dataset with (a)
normal, synchronous LV contraction (p1,GT), (b) relative phase shift of 10% on lateral
wall (p2,GT) (c) relative phase shift of 20% on lateral wall (p3,GT) and (d) relative
phase shift of 30% on lateral wall (p4,GT) (e) lateral wall defect (p5,GT).

(a) (b) (c)

(d) (e)

Figure 6: Ground truth Hammer map of 3DFSi of the phantom dataset with (a)
normal, synchronous LV contraction (p1,GT), (b) relative phase shift of 10% on lateral
wall (p2,GT) (c) relative phase shift of 20% on lateral wall (p3,GT) and (d) relative
phase shift of 30% on lateral wall (p4,GT) (e) lateral wall defect (p5,GT).
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Table 3: Mean point-to-mesh error ǫ, the median (Q0.5) and the maximal error (max
ǫ) for the five different phantom datasets averaged over the mesh points and all time
steps with respective standard deviations.

Dataset ǫ [mm] Q0.5 [mm] max ǫ [mm]
p1 1.11 ± 0.18 1.05 1.76
p2 2.12 ± 1.18 1.72 4.91
p3 1.25 ± 0.30 1.19 1.99
p4 1.31 ± 0.29 1.25 2.01
p5 1.21 ± 0.25 1.12 1.83

1.40 ± 0.41 1.27 ± 0.26 2.5 ± 1.35

4. Results and Discussion

4.1. Phantom Data

4.1.1. Mesh Error Analysis. In Table 3, an average point-to-mesh error ǫ is used
for measuring the difference between the estimated meshes (p1–p5) and the ground
truth meshes (p1,GT–p5,GT) over all time points. A final point-to-mesh error of 1.40
± 0.41mm over all phantom datasets is achieved. It can be seen that the phase shift
of 10% of p2 results in the highest maximal point-to-mesh error. A reason for this
may be that the small deviation in the lateral wall is not visible in a large number
of 2-D projection images which are used to built the dynamic model. Overall, when
setting the point-to-mesh error in relation to the ventricle size, defined as twice the
distance to the long axis, the percentage error is ≈ 3%. A small mismatch between
the estimated mesh p1 and the ground truth p1,GT is due to the smoother appearance
and the different mesh topology of the generated meshes (c.f. Figure 3).

4.1.2. Heart Phase Identification Analysis. In order to evaluate the accuracy of the
heart phase identification, the five phantom datasets are used. In Table 4, the error
between the ground truth heart phase and the estimated heart phases of p1–p5 is
given. For the phantom experiments a number of K = 27 bins was chosen. The mean
error is denoted with ǫφ given in relative heart phases between [0, 1]. The overall mean
error ǫφ of all phantom datasets is 0.06 ± 0.02. Furthermore, the mean error ǫφk

of
the binned heart phase is also given. The overall mean ǫφk

is less than one heart phase
bin and results in 0.78 ± 0.28. A scatter plot of the ground truth heart phase number
and the estimated heart phase is illustrated in Figure 7a. A small number of outliers
can be seen of maximum 2 bins at diastolic heart phases. The small mismatch may be
due to the longer lasting diastole where the 3-D volume is almost constant and hence
the detection of the ED phase can vary slightly.

In order to evaluate if the bloodpool size variation due to cardiac phase variation
can be distinguished from perspective size variations due to the rotation of the C-arm,
a correlation coefficient ̺π between the original segmented 2-D bloodpool signal π(t)
and the 3-D volume signal Π(t) is computed. The mean correlation ̺π for all five
phantom datasets is 0.74 ± 0.07. However, in order to identify the respective heart
phase, the bloodpool signal is normalized as described in Section 2.4. Therefore, the
correlation coefficient ̺πn

is also given for the normalized bloodpool signal πn(t) and
the 3-D volume signal Π(t). Here, the mean correlation coefficient results in 0.98 ±

0.02 for p1–p5. Thus, the change in the bloodpool size due to the cardiac phase can
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Table 4: Accuracy and correlation of the heart phase identification for the phantom
datasets. The mean relative heart phase error ǫφ and the mean error of the binned
heart phase ǫφk

and their standard deviations are given. The correlation coefficients
between the original segmented 2-D bloodpool signal π(t) and the 3-D volume Π(t)
are given as ̺π. And the correlation coefficient between the normalized 2-D bloodpool
signal πn(t) and Π(t) is given as ̺πn

.

Dataset K ǫφ [%] ǫφk
[bins] ̺π ̺πn

p1 27 0.06 ± 0.16 0.60 ± 0.59 0.82 0.99
p2 27 0.05 ± 0.14 0.51 ± 0.60 0.80 0.99
p3 27 0.04 ± 0.14 0.74 ± 0.79 0.74 0.98
p4 27 0.07 ± 0.16 1.24 ± 1.26 0.67 0.94
p5 27 0.08 ± 0.18 0.80 ± 0.78 0.69 0.99

27 0.06 ± 0.02 0.78 ± 0.28 0.74 ± 0.07 0.98 ± 0.02

(a) (b)

Figure 7: (a) Correlation between heart phases identified by 2-D bloodpool size and
the ground truth heart phase of phantom p1. (b) 3-D volume signal Π(t), the 2-D
segmented bloodpool signal π(t) and the normalized bloodpool signal πn(t) of phantom
dataset p1.

be distinguished from the perspective size variations due to the normalization step.
The bloodpool signal π(t), the normalized bloodpool πn(t) and the 3-D volume signal
Π(t) of phantom p1 are illustrated in Figure 7b.

4.1.3. Motion Analysis. In Table 5, the quantitative results for the estimated phase
shifts of (p1–p5) are given. The deviation between (p1–p5) and (p1,GT–p5,GT) is stated
in column three. The overall deviation of the mean phase shift is ≈ 9% of a cardiac
cycle and for the maximal phase shift ≈ 7% of a cardiac cycle.

The results for the motion analysis parameter for the phantom meshes compared
to the GT meshes are given in Table 6. In general it can be seen that the estimated
meshes underestimate the EF and the SDI values in most datasets. However, the
tendency between the estimated and the ground truth values are similar and show
the same noticeable pathologies as the GT values. In Figure 8, the Hammer maps
with φi,max for p1–p5 are shown. For dataset p1, the Hammer map (Figure 8a) shows
a homogeneous distribution as in the GT map of p1,GT in Figure 5a. For p2–p4, the
increase of the motion deficit is visible on the lateral wall. For p2 and p3 a smaller
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Table 5: Contraction times of affected segments φmax, the error compared to the GT
φmax given in Table 1 and the error between the maximal phase shifts (max δ̃) and
standard deviations.

Dataset φmax for affected segments φmax error to GT max δ̃ error to GT
p1 0.45 ± 0.03 0.07 0.02
p2 0.48 ± 0.03 0.12 0.13
p3 0.58 ± 0.03 0.09 0.08
p4 0.70 ± 0.05 0.09 0.04
p5 n.a. n.a. n.a.

0.09 ± 0.02 0.07 ± 0.05

Table 6: Ejection fraction (EF), systolic dyssynchrony index (SDI) of the phantom
datasets and the deviation σ to the ground truth phantom datasets and the standard
deviation.

Dataset EF [%] σ to GT SDI [%] σ to GT

p1 62.39 0.02 3.68 -0.61
p2 59.63 -3.34 3.50 -1.72
p3 54.11 -6.29 5.08 -1.39
p4 49.16 -4.49 9.42 -3.32
p5 41.49 2.79 6.16 1.11

3.39 ± 2.31 1.60 ± 1.03

band on the lateral wall is delayed compared to the GT LV meshes. The phantom
p3 with 30% phase shift in Figure 8d shows a high correlation with the GT Hammer
map in Figure 5d. For the phantom with the lateral wall defect, a reduction of the
motionless band can be identified. A small overshoot is visible close to the lateral wall
(Figure 5e and Figure 8e). The small deviation of the GT meshes and the estimated
meshes are given in the difference φi,max Hammer maps in Figure 9. For p5 the slight
overshoots at the lateral wall are visible. The 3DFSi Hammer maps are illustrated in
Figure 10. In Figure 11, the corresponding difference maps are given. They show that
the highest deviation between the meshes occurs around the apex region.

4.2. Clinical Data

4.2.1. Motion Analysis. The results for the eight patient datasets are given in Table
7 (d1–d8). It can be observed that all patients are classified as healthy using the
SDI according to (Kapetanakis et al. 2005, Sachpekidis et al. 2011). An example of
the surface meshes of dataset d2 is shown in Figure 12a and the dynamic contraction
curves for each segment’s subvolume for dataset d2 are shown in Figure 12b. All
segments contract synchronously, hence the curves have almost the same φs,max and
a small SDI. In Figure 13a, φi,max of dataset d2 is shown. The maximal contraction
phase is homogeneously distributed over the whole LV. Small hypokinetic regions are
indicated by mesh points close to the apex point, as visible in the 3DFSi Hammer
map of dataset d2 in Figure 13b, as well as on the 3-D overlay in Figure 13c. The
motion close to the apex is small compared to the remaining mesh, hence this area is
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(a) (b) (c)

(d) (e)

Figure 8: Estimated Hammer map of φi,max of the phantom dataset with (a) normal,
synchronous LV contraction (p1), (b) relative phase shift of 10% on lateral wall (p2)
(c) relative phase shift of 20% on lateral wall (p3) and (d) relative phase shift of 30%
on lateral wall (p4) (e) lateral wall defect (p5).

(a) (b) (c)

(d) (e)

Figure 9: Difference Hammer map of φi,max of the ground truth and the estimated
phantom dataset with (a) normal, synchronous LV contraction (|p1-p1,GT|), (b)
relative phase shift of 10% on lateral wall (|p2-p2,GT|) (c) relative phase shift of 20% on
lateral wall (|p3-p3,GT|) and (d) relative phase shift of 30% on lateral wall (|p4-p4,GT|)
(e) lateral wall defect (|p5-p5,GT|).
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(a) (b) (c)

(d) (e)

Figure 10: Estimated Hammer map of 3DFSi of the phantom dataset with (a) normal,
synchronous LV contraction (p1), (b) relative phase shift of 10% on lateral wall (p2)
(c) relative phase shift of 20% on lateral wall (p3) and (d) relative phase shift of 30%
on lateral wall (p4) (e) lateral wall defect (p5).

(a) (b) (c)

(d) (e)

Figure 11: Difference Hammer map of 3DFSi of the ground truth and the estimated
phantom dataset with (a) normal, synchronous LV contraction (|p1-p1,GT|), (b)
relative phase shift of 10% on lateral wall (|p2-p2,GT|) (c) relative phase shift of 20% on
lateral wall (|p3-p3,GT|) and (d) relative phase shift of 30% on lateral wall (|p4-p4,GT|)
(e) lateral wall defect (|p5-p5,GT|).
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(a) (b)

Figure 12: (a) Anterior view of the estimated LV surface meshes of d2 with the
wire frame representing the endocardial surface at end-diastole and the solid surface
representing the surface mesh at end-systole. (b) 3-D LV volume curves for each
segment of dataset d2 over the different heart phases.

Table 7: Heart rate (HR), ejection fraction (EF), and the systolic dyssynchrony index
(SDI) of the clinical patient datasets.

Dataset HR [bpm] EF [%] SDI [%]

d1 73.4 ± 8.4 63.08 1.22
d2 63.9 ± 0.8 50.32 1.79
d3 52.7 ± 0.5 56.69 1.79
d4 62.9 ± 2.9 58.73 2.88
d5 55.3 ± 9.3 62.33 3.42
d6 59.9 ± 0.4 72.26 2.08
d7 58.3 ± 0.3 50.98 2.85
d8 88.6 ± 25.6 70.58 2.48

sensitive to errors introduced by the 2-D segmentation, position of the points to the
principal axis n1 and the consistency of data from different heart cycles.

4.2.2. Principle Axis Alignment. The PCA does not necessarily yield an axis n1

which passes through the apex, since the LV is not necessarily symmetric. For that
reason the local coordinate system is rotated in order to align n1 with the long axis
given by the mid point of the mitral valve and the apex. These points are detected
by the initial model-based surface mesh fitting on the non-gated C-arm CT volume
(Zheng et al. 2008). During deformation of the initial mesh to fit the 2-D angiographic
data, the topology of the 3-D mesh is preserved, and the apex and mitral valve points
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(a) (b) (c)

Figure 13: Hammer map of (a) φi,max of dataset d2, (b) 3DFSi of dataset d2 , (c)
Colour overlay of the 3DFSi onto the endocardial LV surface of dataset d2.

Table 8: Rotation angle variation of the clinical datasets.

Dataset d1 d2 d3 d4 d5 d6 d7 d8 ∠rot

∠rot 9.14 7.46 6.33 8.37 14.86 17.92 16.54 16.36 12.12 ± 4.73

(mitral valve annulus) are consistent over the whole cardiac cycle. The rotation of the
axis n1 to the long axis with the rotation angle ∠rot can be performed accurately. In
Table 8, the rotation angles for the clinical datasets are given.

4.3. Limitations and Challenges

Spatial resolution is limited by the number of projection images used for the dynamic
mesh fitting process. Here, the scan time was 5 s, resulting in total 5 projections per
heart phase with a heart rate of 60 bpm. By increasing the scan time to 8 s, a total
of 8 projection images might be used to regularize the dynamic LV mesh generation
and hence to increase the spatial resolution, but a longer scan time implies a higher
radiation dose and a higher contrast burden for the patient.

As previously mentioned, the motion close to the apex is small compared to
the remaining mesh, hence this area is sensitive to errors introduced by the 2-D
segmentation. In general, 2-D segmentation errors occur since the original LV surface
is quite structured due to the papillary muscles. However, a smooth boundary is
extracted from the 2-D projections for the surface mesh generation. It is known that
during the surface generation, the assumption of motion along the surface-normal is
reasonable for the middle and basal LV segments, but not good for the LV apex, since
many intersections in the trajectories of mesh points around the apex can occur. In a
first clinical prototype, the motion in the apex could be greyed out for the visualization
in order to avoid misleading the cardiologist. In the future, the issue can be mitigated
by using a learned prior mean motion trajectory from dynamic cardiac CT sequences
(Chen et al. 2013). Up to now, the evaluation of the presented wall motion analysis
framework is a feasibility study. The next step in the evaluation of the framework is a
validation of the extracted parameters compared to parameters estimated from MRI
or 3-D echocardiography.
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5. Conclusion and Outlook

In this paper, we presented the first framework which enables LV wall motion analysis
directly in the catheter lab during a cardiac intervention using intra-procedural C-arm
CT data. The feasibility study on simulated phantom LVs as well as on eight clinical
datasets indicate the capability of the presented framework. The simulation study
showed promising qualitative and quantitative preliminary results. The limited spatial
sampling due to the short scan time induces errors in the surface model. However,
the induced pathologies could all be identified by the wall motion parameters used
here. The dynamic surface model together with the colour overlay in 3-D may provide
additional value. Currently, the apex region should be greyed out since errors are
amplified in this region. Improvements regarding these issues are works in progress.
At the time of submission, no clinical cases with LV dyssynchrony were available for
evaluation, but a clinical study has been initiated. As a future step, the created LV
model together with the wall analysis can be overlayed onto 2-D fluoroscopic images
for guidance to the cardiologist.

Disclaimer: The concepts and information presented in this paper are based on
research and are not commercially available.
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