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ABSTRACT
A key requirement for recent advances in computational mod-
eling to be clinically applicable is the ability to fit models to
patient data. Various personalization techniques have been
proposed for isolated sub-components of complex models of
heart physiology. However, no work has been presented that
focuses on personalizing full electromechanical (EM) mod-
els in a streamlined, consistent and automatic fashion, which
has been evaluated on a large population. We present an in-
tegrated system for full EM personalization from routinely
acquired clinical data. The importance of mechanical param-
eters is analyzed in a comprehensive sensitivity study, reveal-
ing that myocyte contraction and Young’s modulus are the
main determinants of model output variation, what lead to the
proposed personalization strategy. On a large, physiologically
diverse set of 15 patients, we demonstrate the effectiveness
of our framework by comparing measured and calculated pa-
rameters, yielding left ventricular ejection fraction and stroke
volume errors of 6.6% and 9.2 mL, respectively.

1. INTRODUCTION

Heart failure, a common form of cardiovascular disease with
significant mortality and morbidity rates, is a major threat to
public health in the Western world [1]. Although its causes
are manifold, cardiomyopathies (diseases affecting the my-
ocardium) are prevailing, yet challenging to diagnose and
treat. Thus, complex models of heart function are being in-
vestigated for providing more information from clinical data
[2] and for predicting therapy outcome or disease course [3].

Over the last decades, personalization approaches using
inverse problem techniques such as filtering-based algorithms
[4], gradient-descent or more sophisticated gradient-free
methods [2] have been proposed for isolated sub-components
of complex cardiac models. For instance, [2, 5] propose ap-
proaches for electrophysiology (EP) personalization. [4, 6]
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focus on mechanics. However, only few authors (e.g. [3],
semi-automatic method evaluated on two patients) propose
methods for full EM personalization. To the best of our
knowledge, no comprehensive framework has been presented
to personalize full electromechanics in a streamlined, consis-
tent and automatic fashion on a large number of cases.

We propose a novel integrated system for full EM person-
alization. Our modular framework allows for fast generation
of reproducible patient-specific models by estimating model
parameters from routinely acquired clinical data. Volumet-
ric images are exploited to personalize anatomy and hemody-
namics. Clinical ECG features are used to automatically esti-
mate patient-specific parameters for a phenomenological EP
model [7], and active and passive biomechanical parameters
are personalized automatically. Finally, we show quantita-
tive results and discuss the importance of individual mechani-
cal model parameters in a comprehensive sensitivity analysis,
which we used to enhance our personalization strategy.

2. METHODOLOGY

Below, we describe the individual modules of the proposed
pipeline (Fig. 1). Clinical data is required for personalization,
including 12-lead ECG for patient-specific EP and dynamic
cardiac images to obtain ventricular volume and to create the
anatomical model. Furthermore, arterial and ventricular pres-
sure measured during cardiac catheterization are utilized. In
total, 17 parameters are personalized: 5 Windkessel parame-
ters each for both arteries, 3 regional diffusivity values and the
time during which the ion channels are closed for EP, and for
patient-specific biomechanics, tissue elasticity and left (LV)
and right (RV) ventricular myocyte contraction are estimated.

2.1. Anatomy Personalization

First, patient-specific heart morphology is obtained from vol-
umetric imaging data (e.g. MRI, 3D US, CT or C-arm CT).
To that end, we employ a robust, data-driven machine learn-
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Fig. 1. Personalization pipeline: from clinical data to patient-specific EM models (blue/red box: input data/model component).

ing approach [8] in order to estimate meshes of the endocar-
dia and epicardium automatically. Appending them yields a
closed surface of the biventricular myocardium. The closed
contour at end-diastasis is transformed into a tetrahedral vol-
ume using a mesher algorithm1. Next, myocardium fibers are
mapped onto the patient-specific anatomy using a rule-based
system [9]: Below the basal plane, fiber elevation angles vary
linearly from epi- to endocardium (typically from −70◦ to
+70◦, adjustable by user). An extrapolation of the angles up
to the valves is performed based on geodesic distances.

2.2. Hemodynamics Personalization

A lumped model of cardiac hemodynamics [9] is employed,
which mimics the four cardiac phases by alternating endocar-
dial boundary conditions. During filling and ejection, atrial
and arterial pressure is applied directly, while in between (iso-
volumetric contraction and relaxation), an isovolumetric con-
straint based on an efficient projection-prediction method [9]
is enabled to keep the ventricular volume constant. Arterial
and atrial pressures are calculated using a 3-element Wind-
kessel (WK) and an elastance model, respectively.

The hemodynamics personalization consists in estimating
the WK parameters of both arteries, namely artery compli-
ance, characteristic and peripheral resistance, remote pres-
sure and initial pressure. To that end, we rely on the arte-
rial pressure measured during cardiac catheterization and the
volume curve derived from MRI. First, we interactively se-
lect a cardiac cycle among the pressure trace and low-pass
filter the arterial and ventricular pressure. Next, the pressure
curve is automatically adjusted to match the heart rate at the
MRI acquisition. As a simple temporal scaling would not be
physiologically coherent, we apply the following algorithm.
First, we stretch the systolic portion of the pressure curve
such that the ejection time (ET) observed in the pressure mea-
surement (time during which ventricular pressure is higher or

1http://www.cgal.org - computational geometry algorithms library

equal than arterial pressure) matches the ET measured on the
volume curve (time during which the ventricular flow is neg-
ative). Then, we interactively shift the pressure curve such
that it is synchronized with the volume curve smoothed using
a low-pass filter. Finally, the parameters of the WK model
are estimated automatically using the simplex method. The
cost function writes 1

N

∑N
i=1 (pm[i] − pc[i])

2
+ω2

min +ω2
max,

where pm and pc are the time-sequence of measured and
computed artery pressure, respectively. N is the number of
samples and ωmin, ωmax are penalty terms (minpm−minpc),
(maxpm−maxpc). The simplex method is used to automat-
ically estimate all the parameters but the initial pressure. The
latter is obtained automatically from the computed pressure
curve over several cycles such that the first computed pres-
sure cycle is close to the steady state.

2.3. Electrophysiology Personalization

Cardiac EP models ranging from simplified Eikonal models
to highly detailed ionic models are available [9]. With its
parameters closely related to the shape of the action poten-
tial, we use the Mitchell-Schaeffer (MS) [7] phenomenologi-
cal model in this study as a good compromise between model
complexity and computational efficiency. It is solved using
LBM-EP [7], a near-real-time solver for patient-specific car-
diac EP based on an efficient GPU implementation of the
Lattice-Boltzmann method. Its main free parameters, which
need to be personalized in order to generate realistic EP, com-
prise tissue diffusivity c, determining the speed of the elec-
trical wave propagation throughout the heart, and the time
during which the ion channels are closed τcl. In this study,
we model fast regional diffusivity for the left cL and right cR
endocardium to mimic the Purkinje network, and slower dif-
fusivity cM ≤ cL, cM ≤ cR for the myocardium.

A major goal in the development of our framework was to
be usable without the need for specialized data such as con-
tact mapping catheters as in [2]. Hence, the EP parameter



estimation is solely based on routinely acquired 12-lead ECG
data. In order to calculate ECG signals from the simulated EP,
we follow a similar approach as in [5], where we (i) register
the anatomical heart model to a torso atlas, (ii) calculate the
mapping of potentials on the anatomical model to the atlas,
and (iii) compute signals on pre-defined torso lead positions.

Let calcQT, calcQRS and calcEA be procedures which
run an EP simulation on a patient-specific anatomical model
using the provided parameters and then calculate named ECG
feature. We deploy methods to automatically derive the dura-
tion of the QRS and QT complex (∆QRS, ∆QT), and electrical
axis (α) from the lead signals [5]. ∆QRS,m, ∆QT,m and αm are
measured values extracted from clinical ECG images. In Al-
gorithm 1, we outlined our proposed inverse framework for
the personalization of stated MS parameters. Standard values
from literature are used for initialization. The optimization
steps (lines 2 and 4) are performed using NEWUOA [10], a
robust gradient-free optimization technique.

Algorithm 1 EP Personalization Workflow
Require: Initial τ0cl and diffusivity c0M, c0L, c0R

1: τ1cl = τ0cl + ∆QT,m − calcQT(τ0cl, c
0
M, c

0
L, c

0
R)

2: κ∗ = argminκ (∆QRS,m − calcQRS(τ1cl, κ(c0M, c
0
L, c

0
R)))

3: (c∗M, c
1
L, c

1
R) = κ∗(c0M, c

0
L, c

0
R)

4: c∗L, c
∗
R = argmincL,cR

(αm − calcEA(τ1cl, c
∗
M, cL, cR))

5: τ∗cl = τ1cl + ∆QT,m − calcQT(τ1cl, c
∗
M, c
∗
L, c
∗
R)

6: return personalized EP parameters τ∗cl, c
∗
M, c
∗
L and c∗R

2.4. Biomechanics Personalization

The EP signal is coupled with myocardial tissue mechanics
through models of active and passive tissue behavior to com-
pute realistic cardiac motion. Therefore, the dynamics equa-
tion Mü + Cu̇ + Ku = fa + fp + f b needs to be solved
(e.g. using finite-element methods). ü, u̇ and u denote ac-
celerations, velocities and displacements of the mesh nodes,
and M, K and C are the mass, internal elastic stiffness and
Rayleigh damping matrix, respectively. fa, fp and f c model
active stress, ventricular pressure and boundary conditions.

In this study, a phenomenological model is utilized for
the active myocyte contraction, which is—to a large extent—
governed by σ [9], the maximum asymptotic strength of the
active contraction. We rely on transverse isotropic linear
elasticity to model passive myocardial properties using co-
rotational linear tetrahedra to cope with large deformations
(mainly observed during systole). Young’s modulus E with
respect to the fiber architecture, and Poisson ratio ν = 0.48, a
measure of tissue incompressibility, are the main parameters.
Please note that σ is estimated independently for left and right
ventricular mechanics.

The procedures calcPr and calcPrVol (Algorithm 2) re-
turn time-sequences of computed pressure (and volume)
data from a forward simulation of the full EM model given
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Fig. 2. Selected results of sensitivity analysis, depicting vari-
ability in volume and pressure curves introduced by varying
model input parameters. Coloring is determined by the pa-
rameter value used to compute the simulation (left to right:
σ, E, pPV). Blue/green color means small/large values in the
range of ± 50% of standard values. A clear trend is observ-
able for σ around the minimum volume and maximum pres-
sure, implying that these two indicators are key features for
predicting σ. Similar conclusion can be drawn for E and pPV.

the provided parameters. pPV denotes the pulmonary vein
pressure. NEWUOA is used to optimize the cost function
ξ = λ · (εEF, εSV, εminv, εmaxv, εminp, εmaxp)>, which
determines the similarity between measured (pm,vm) and
calculated (pc,vc) pressure and volume curves by comparing
a weighted sum of features derived thereof: ejection frac-
tion (EF), stroke volume (SV), and min/max pressure/volume
(minv, etc.), εX = (Xm − Xc)

2. To cope with the distinct
units, we set λ = 10−4 · (104, 1, 1, 1, 1, 1). In order to min-
imize transient effects, two heart cycles are computed and
measurements derived from the second cycle.

Algorithm 2 Mechanics Personalization Workflow (LV)
Require: Initial σ0, E0 and p0PV

1: p∗PV = p0PV + min pm − min calcPr(σ0, E0, p0PV)
2: σ∗, E∗ = argminσ,E ξ((pm, vm), calcPrVol(σ,E, p∗PV))
3: return personalized parameters σ∗, E∗ and p∗PV

3. RESULTS

We utilized the proposed personalization pipeline on 15 con-
secutive patients, who suffer from dilated cardiomyopathy
with a large variety of disease severity. For instance, the max-
imum LV pressure ranges from 78 mmHg to 177 mmHg, and
measured LV EFs range from 10.5% to 59.8%. This makes
personalization a particularly challenging task and thus, ro-
bust estimation techniques are essential.
Model sensitivity: A comprehensive sensitivity analysis (in-
cluding Sobol indices computed using DAKOTA2) on both
passive and active biomechanical model parameters (Fig. 2)
revealed that maximum contraction σ and elasticity E are
most crucial for changes in ventricular volume and pressure.

2http://dakota.sandia.gov - multilevel framework for sensitivity analysis
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Fig. 3. Pressure (blue) and volume (red) curves (dotted: mea-
sured, line: calculated) after personalization for three cases.

Furthermore, pressure originating from the pulmonary vein
pPV (LV) or vena cava (RV) is dominating diastolic ventricu-
lar pressure. Fast GPU-based solvers [9, 7] enabled this large-
scale experiment, which was carried out using 800 model sim-
ulations and led to the proposed personalization strategy.
Quantitative results: Known clinical indicators and meth-
ods to estimate their complements from our simulations allow
for quantitative evaluation of our multi-step inverse optimiza-
tion algorithms for estimating the electrophysiological and
biomechanical model parameters as described in Algorithms
1 and 2. For instance, by comparing known and estimated EP
features after personalization, namely ∆QRS and ∆QT dura-
tions, we measured mean absolute errors of 9.5 ± 8.2 ms and
4.0±2.9 ms, respectively. In terms of the full patient-specific
electromechanical model simulation, our method yielded low
errors for clinical indicators such as stroke volume and ejec-
tion fraction of 9.2 ± 11.9 mL and 6.6 ± 6.9%, respectively,
indicating overall good convergence towards the correspond-
ing observed values. Plots of calculated pressure and volume
curves from three patients overlaid on top of the measured
curves (Fig. 3) further confirm the validity of our personal-
ization results. Likewise, Fig. 1 depicts a good match for one
patient between ECG lead signal from measured data versus
the signal computed from the personalized EP model.

4. CONCLUSION

Thanks to the modular architecture of our pipeline, we are
not limited to a single model. For instance, in this study,
linear elasticity is used. However, more sophisticated mod-
els of passive biomechanical properties, such as orthotropic
models [9], can be inherited with little effort. This will allow
for generating more realistic results in some cases (e.g. im-
prove match between volume curves). The next step will be
to further extend the dataset to validate our framework, and to
evaluate the predictive power of our model.
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