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Abstract
In this article, we describe a semi-automatic calibration algo-
rithm for dereverberation by spectral subtraction. We verify the
method by a comparison to a manual calibration derived from
measured room impulse responses (RIR). We conduct extensive
experiments to understand the effect of all involved parameters
and to verify values suggested in the literature. The experiments
are performed on a text read by 31 speakers and recorded by a
headset and three far-field microphones. Results are measured in
terms of automatic speech recognition (ASR) performance using
a 1-gram model to emphasize acoustic recognition performance.
To accommodate for the acoustic change by dereverberation we
apply supervised MAP adaptation to the hidden Markov model
output probabilities. The combination of dereverberation and
adaptation yields a relative improvement of about 35% in terms
of word error rate (WER) compared to the original signal.

1 Introduction
Current state-of-the-art automatic speech recognition (ASR) sys-
tems work with remarkable accuracy. However, this usually only
holds if close talking microphones like headsets are used as au-
dio source. The use of far-field microphones, e.g., microphones
mounted to a table, wall or ceiling, severely degrades the recogni-
tion performance as the observed acoustic signal is significantly
different to the one captured by close talking microphones. Be-
side the so-called direct sound, i.e., the speech signal uttered and
directly received at the microphone, far-field microphones also
capture ambient noise and reverberation effects caused by reflec-
tions of the acoustic signal from walls and objects.

Though human speech perception is almost not affected by
reverberation effects, already little reverberation within a small
room, often not even noticed by humans, can cause ASR systems
to fail. Given the common design of an ASR system, this can
easily be explained. Most systems are based on spectral analysis
and on the change of the spectrum over the time given a certain
spoken word or utterance. The system is then trained on recorded
speech data which is usually recordings by close talking micro-
phones. In the presence of reverberation, the observed signal is
significantly altered, thus spectral analysis and the resulting fea-
tures computed on clean and reverberated speech signals lead to
different results, depending on the actual room acoustics.

To ease the effects of reverberation, ASR systems can be
modified at three stages. Top-down, dereverberation can be in-
tegrated into the acoustic decoding of the feature sequence as in
[1], where the authors use spectral features in combination with
hidden Markov models (HMM) for continuous digit recognition.
Using HMMs trained on clean speech and a statistical model for
reverberation, the feature sequence is dereverberated using recog-
nition scores computed in the decoding process, leading to a sig-
nificant improvement in terms of recognition performance.

In [2], the acoustic front-end processing is augmented in a
way that a voiced/unvoiced detector is used to modify the ob-
served spectrum according to that decision. For voiced segments,
the spectrum is re-synthesized according to the estimated funda-
mental frequency, for unvoiced segments, the lower part of the
spectrum is faded out.

Finally, one can try to remove reverberation effects before the
feature extraction by filtering the audio data, leaving the ASR sys-

tem as such unmodified. The idea of spectral subtraction has been
around for quite some time, however, mainly used for the denois-
ing of acoustic signals. In [3], the authors propose a simplified
reverberation model that can be integrated with spectral subtrac-
tion. The idea is to split the acoustic process in two parts, early
and late reverberation. Assuming the effects of the early rever-
beration to be non-critical to intelligibility as the direct sound is
very prominent, the late reverberation is estimated and subtracted
from the spectrum.

In this work, we describe in detail how to automatically es-
timate the decay coefficient from the acquired signal containing
clapping events and verify the automatically determined parame-
ters with parameters extracted from RIRs measured in the target
room. The adaptation of the HMM output probabilities is per-
formed here to match the resulting new acoustic condition with-
out over-fitting to the spoken text. A systematic parameter ex-
ploration and optimization is performed here in terms of ASR
for an ambient living assistant scenario and evaluate on real data
recorded as part of a large scale usability study. The acoustic
conditions like room reverberation time T60, speaker microphone
distance (SMD) and speaking direction are both unknown.

This article is structured as follows. After a detailed descrip-
tion of the data in Section 2, the dereverberation algorithm fol-
lowing [3] and its required parameters are briefly introduced in
Section 3. Section 4 explains the automatic calibration procedure
used to determine the required decay coefficient. Section 5 and
6 describe the speech recognition system and analyze the experi-
ments using different dereverberation parameters and adaptation
techniques. Section 7 presents the conclusions of this work.

2 Data
The ASR system is trained on a subset of the German VERB-
MOBIL [4] corpus (11,714 utterances, 257,810 words, about 25
hours); the speakers were aged around 27± 8 years. For the
evaluation of the dereverberation algorithm, a subset of the FAU
IISAH Corpus [5] was used. 31 speakers (19m, 12f) aged 61
to 78 (65± 5) read the German version of “North Wind and the
Sun”, a phonetically rich fable from Aesop, resulting in about 22
minutes of speech. The data was synchronously acquired using
a head mounted SHURE WH20XLR and three T.BONE GZ400
far-field microphones mounted to the wall behind, opposite and
to the far right of the speakers in approx. 1.5 m height. Further
details of the data used in this paper can be found in [6]

3 Dereverberation Algorithm
The algorithm is based on modeling the RIR h(t) as an exponen-
tially decaying Gaussian white noise b(t) [3]

h(t) = b(t)e−ρt, t≥ 0 (1)

where ρ is the decay coefficient linked to the room reverberation
time as

ρ=
3ln10
T60

. (2)
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The reverberated signal x(t) can now be obtained by a convolu-
tion of the ideal anechoic signal s(t) with the RIR h(t) as

x(t) = e−ρt
∫ t

−∞
s(ν)b(t−ν)eρνdν . (3)

In [3], Lebart et al.split the reverberation process in an early part
containing mainly the direct signal and a few reflections, and a
late part containing mainly the reverberation by introducing a
Tmix as transition point. This late part is estimated and subtracted
from the spectrum, leading to an approximation of the original
signal. The subtraction is in practice realized by a short-term
spectral attenuation as

Ŝ(m,k) =G(m,k)X(m,k) (4)

where Ŝ is the estimated amplitude spectrum of the dereverber-
ated signal using m as time index and k as frequency index, X
the spectrum of the reverberant signal, and G is the gain defined
as

G(m,k) =

⎧⎨
⎩

1− 1√
SNRpri(m,k)

if Ŝ(m,k)≥ λ
√

γ̂rr(m,k)

λ
√

γ̂rr(m,k)
|X(m,k)| otherwise

(5)
where λ is a weighting factor controlling the spectral floor, en-
suring that there are no negative estimates in Ŝ(m,k). The rever-
beration power spectral density (PSD) γ̂rr can be estimated from
the PSD of the past reverberated signal as

γ̂rr(m,k) = e−2ρTmix γ̂xx(m−Tmix,k) . (6)

Both SNRpri and γ̂xx are estimated as a running average using the
update weight β in

SNRpri(m,k) = β SNRpri(m−1,k)

+(1−β) max[0,
X(m,k)2

γ̂rr
−1] (7)

and

γ̂xx(m,k) = β γ̂xx(m−1,k)+(1−β)X(m,k)2 . (8)

In summary, there are 5 parameters that need to be set. ρ is
linked to T60 and describes the room acoustics. Tmix is the offset
distinguishing between the early and late reverberation, where the
latter part is estimated. λ controls the spectral floor by control-
ling the comparison between Ŝ and

√
γ̂rr. β effects the running

average computations (a β close to one results in little variance
but long averaging duration). Last, the decimator controls how
fine-grained the steps of m are. In [3], the authors recommend
to set λ = 0.1 and Tmix = 0.050 s but give no hints on the other
parameters involved.

4 Decay Parameter Estimation
The decay coefficient is directly linked to the target room acous-
tics. However, the best way to estimate ρ is to extract it from at
least one measured RIR, as it requires a careful setup and defined
hardware.

The original calibration that was proposed in [3] alongside
the dereverberation algorithm was designed to work online using
continuous speech input, constantly measuring the decay and ac-
cepting a measure if the decay duration exceeded a certain length.
However the description is rather vague about the implementation
details, plus, the number of estimates and the resulting average
accuracy seem to be hard to control.

Furthermore, a static estimate of the dereverberation param-
eters is desired as the ASR system will be adapted once to the
resulting signal quality. For an always-on system like an ambient
living assistance system, a short initialization phase to determine

the parameters seems also more reasonable than a continuous es-
timate, as the amount of speech input will be rather small com-
pared to silence and other ambient noises.

If one plans to apply the algorithm in off-the-shelf consumer
products, the required parameter estimation needs to be fast and
easy. Traditionally, RIR measures are done using some sort of
clicking devices that can produce a somewhat unique impulse in
the signal. However, as the decay coefficient seems not very sen-
sitive to different RIR instances, anything producing a reasonable
sharp impulse, like clapping hands, should be sufficient.

We propose a somewhat semi-automatic approach. After ini-
tializing the system, the user moves freely in the target room and
claps his hands for several times with short times of silence in
between until notified by the system. In contrast to traditional
procedures, the clapping events are segmented automatically and
the decay coefficient is extracted. To consider false or bad esti-
mates, the median value is used to finalize the system setup. Once
a certain amount of estimates has been acquired, the system no-
tifies the user that the setup is complete. In detail, the algorithm
can be described in a six steps:
1. Initialize the system.
2. Identify the time tc of the next clapping event by determining

the next strong peak in the raw input signal x. x is acquired at
the microphone, has no unit and is normalized to [−1,1]. To
avoid the ill-posed problem of finding the derivative within
the signal, we compute a regularized derivation using a Gaus-
sian kernel g(t) in

x′(t) ≈ ∫
ux

′(t−u)g(u)du
=

∫
ux(u)g

′(t−u)du (9)

which is valid for small σ > 0 where σ is the standard devi-
ation for the Gaussian kernel. Thus, the problem of finding
a relative maximum in x′ can be reduced to finding a relative
maximum in

x̄(t) = α
∫
ux(u)g

′(t−u)du
=

∫
ux(u)αg

′(t−u)du (10)

using suitable σ > 0. We set the normalization constant α =
σ
√
π√
2

to normalize the derived Gaussian kernel.
3. Accept candidate maximum at tc if it exceeds a certain thresh-

old θ, i.e., x̄(tc)> θ, otherwise repeat (2).
4. Fit a line y �→ 2ρt+2b to log(x) on the interval [tc+Tmix, tc+

Tmix +Tmax] where Tmax is the length of the time interval to
consider for the least square fit and Tmix is the delay after the
observed impulse.

5. Save the estimated ρ, repeat from (2) until enough estimates.
6. Use the median of the saved estimates to initialize the dere-

verberation algorithm; notify user.
For the experiments in this article, we set σ = 0.008, θ = 0.5 and
Tmax = 300 ms.

5 Recognition System and Adaptation
The ASR system used for this work is based on semi-continuous
HMMs sharing 500 Gaussian densities with full covariance ma-
trices. The acoustic models are polyphones, i.e., phones with
variable sized context. The first 12 mel-frequency cepstral co-
efficients and their first order derivatives were used as features.
For both training and experiments, cepstral mean subtraction was
applied. After training the system on the VERBMOBIL data, the
vocabulary was replaced by the words of the German version of
“North Wind and the Sun” (108 words, 71 disjoint) and supple-
mented with a few common reading errors. For the latter decod-
ing, we trained 1-gram and 2-gram models, however we will fo-
cus on 1-gram recognition results to emphasize the performance
of the acoustic decoding.

For acoustic adaptation, the speakers were split into two groups.
Supervised adaptation of the HMM output probabilities using
MAP [7] was performed on one group and the resulting models
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original best derev
mic 1-gram 2-gram 1-gram 2-gram
CT-0 18.0 3.6 —
CT 21.7 6.2 —
R1 73.4 53.8 53.0 23.4
R2 78.9 64.3 59.8 35.4
R3 77.1 62.3 54.9 24.8

Table 1: Baseline recognition results (WER) for the control (CT-
0) and target group (CT) close talking recordings and the far-field
microphones R1-3 using 1-gram and 2-gram language models.

# R1 R2 R3
Measure 1 12.40 12.29 12.65
Measure 2 11.97 12.51 12.41

Median Est. 12.27 10.97 12.23

Table 2: RIR measured from different microphone positions [6]

were tested on the other group and vice versa. The effect of adapt-
ing to a certain word sequence may still be present but is rather
unlikely as all HMMs share the same Gaussian densities and the
transition probabilities and mixture weights are not adapted.

6 Experiments

6.1 Baseline

Table 1 shows the results for a baseline experiment applying the
ASR system to the data set of the control group CT-0 that roughly
matches the training speaker age. The rather high word error
rate (WER) of 18.0% using the 1-gram language model and the
more reasonable WER of 3.6% using the 2-gram language model
confirms the well-known fact that ASR performance strongly de-
pends on a proper language model. For this article, we use a
1-gram language model, to see how much the dereverberation ac-
tually contributed to the recognition process. In the following,
WER results refer to the use of the 1-gram language model if not
otherwise stated.

The results on the CT data shows that due to the strong age
mismatch of training and test speakers, the WER drops about 4
percentage points to 21.7%. This similarly holds using the 2-
gram language model, however the language model can compen-
sate for some losses.

Applying the ASR system to the original far-field microphone
data R1-3 yields WER above 70%. Comparing the recognition
scores with the location of the microphones confirms the intu-
ition that a microphone placed opposite of the speaker produces
best results while placed right behind him is probably the worst
location.

6.2 Estimated vs. Measured RIR

Before dereverberating the acoustic signal, we analyze the per-
formance of the automatic calibration, that is the automatic es-
timation of the decay parameter ρ. Two RIR were measured at
the two speaker positions using the MLS technique [8]. For the
automatic estimation, the notification step was skipped but a test
person his clapped hands for 20 times, resulting in up to 18 es-
timates. Beside for R2 which results in many obviously wrong
estimates, the extracted median is close to the values extracted
from the measured RIR:

6.3 Parameter Exploration

Motivated by the observation that even “ideal” decay coefficients
vary and to verify the heuristically defined remaining parameters,
we conduct an extensive parameter sampling. Starting from the
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Figure 1: Recognition rates (WER) on dereverberated audio
data for variable β using 1-gram language models.
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Figure 2: Recognition rates (WER) on dereverberated audio
data for variable λ using 1-gram language models.

fixed parameter set β = 0.9, ρ = 12.5, λ = 0.1, Tmix = 0.05 and
a decimator (step size Δt) of 64 (resp. 4ms at a sampling rate of
16 kHz), for each parameter, four will be fixed and one sampled
to see its effect on the recognition performance.

The update parameter β controls the variance and accuracy of
the running averages. A higher value leads to a higher contribu-
tion of the following samples. In terms of WER, a value around
β = 0.88 yields best results (cf. Figure 1). Any larger value
than β = 0.9 severely degrades the performance. Surprisingly,
the variation of the most intuitive and room dependent parameter
ρ modeling the exponential decay of the RIR has only little effect
on the recognition performance. However, WER scores converge
to an optimum in the area of the expected real decay coefficient.

The parameter λ controls the spectral floor. A lower value
leads to less subtraction and a higher value enforces the reduction
of reverberation. As illustrated in Figure 2, WER scores converge
for values around λ= 0.11.

The Tmix parameter directly controls the dereverberation pro-
cess in terms of reverberation estimation and thus when potential
reverberation is removed. In general, a higher value, i.e., post-
poning the time where the late reverberation is supposed to start,
seems to help (cf. Figure 3). However, the higher the value is, the
less reverberation will be captured.

The decimator (or step size Δt) controls how fine-grained
the dereverberation process is. While a larger value increases
processing speed, it also noticeably affects the recognition per-
formance as shown in Figure 4. For 16 kHz, a decimator value
around 40 (or 2.5ms) yields the best WER. As ρ and λ intuitively
control the dereverberation process, we fully explored both pa-
rameters at the same time to see if they are linked some way. In
general, using low values for both parameters yields worst WER,
and choosing more appropriate values consistently yields better
WER. Although the above parameter sampling did not reveal any
new insights on how to choose parameters at the first glance, there
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Figure 3: Recognition rates (WER) on dereverberated audio
data for variable Tmix using 1-gram language models.
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Figure 4: Recognition rates (WER) on dereverberated audio
data for variable decimator values using 1-gram language models.

is one interesting fact. Given the numbers, the parameters with
the most effect on WER are β, the decimator Δt and Tmix. That
means on the other hand, if one can come up with any estimates
for ρ, λ and possibly Tmix, they all will do the job as long as they
are in the region of the ideal parameters.

The right side of Table 1 shows the recognition performance
of using the best parameters found in the experiments above. For
both 1-gram and 2-gram language models, WER could be re-
duced by an absolute value of around 20% and 30% respectively.
However, error rates above 50% are still not satisfactory.

6.4 Acoustic Adaptation

Dereverberated signals acquired by a far-field microphone sound
different than close-talking recordings altering the spectrum and
the extracted features. To accommodate that acoustic change,
adaptation of the acoustic models is the next step to do.

Table 3 shows the results of the different adaptation scenar-
ios. First, the system is adapted to elderly close-talking speech
using the CT data. The WER is improved by an absolute value of
1.5 percentage points for the CT data and by about 5 percentage

adaptation data
mic CT rev derev
CT 20.2 —
R1 67.2 62.0 47.6
R2 75.5 70.6 54.8
R3 72.2 66.9 49.8

Table 3: Recognition results (WER) using 1-gram language
models and the close talking, reverberated (far-field acquired) and
dereverberated audio data for acoustic model adaptation.

points when testing on the reverberated R1-3 data. In a second
step, the system is adapted to reverberated data to check if sole
adaptation does the job and dereverberation is not required. Note
that this is done for each microphone separately. This closely
links to training on reverberated speech which has shown to im-
prove recognition rates. However, that only works if the acoustic
conditions match. Compared to the unadapted system, the WER
for the R1-3 data could be improved by about 8 percentage points
showing that acoustic codebook adaptation indeed helps. In a last
step, the system is adapted to the data that is dereverberated with
the best parameter combination. The WER is improved by about
5 percentage points for each microphone compared to the per-
formance of the unaltered system. This confirms, that acoustic
adaptation to dereverberated data yields the best results.

7 Conclusion
According to the experiments conducted in this paper the decay
coefficient required for the dereverberation algorithm can be es-
timated in a fast, easy and robust way using the proposed algo-
rithm. The dereverberation algorithm helps speech recognition
performance, even if the parameters are not ideal. Unfortunately,
parameters that cannot be directly extracted from the RIR have
more effect on the performance than the parameter that can be
estimated. Acoustic model adaptation to accommodate for the
differences between the training signal acoustics and the dere-
verberated data is required and yields good results. Though the
combination of dereverberation and adaptation leads to a rela-
tive improvement of roughly 35% for far-distant microphones,
the current WER are still not satisfactory. The use of further tech-
nologies seems required.
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