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ABSTRACT
Activity recognition is mandatory in order to provide feed-
back about the individual quality of life. Usually, activity
recognition algorithms are evaluated on one specific databa-
se which is limited in the number of subjects, sensors and
type of activities.

In this paper, a novel database fusion strategy was propo-
sed which fused three different publicly available databases
to one large database consisting of 42 subjects. The fusi-
on of databases addresses the two attributes high volume
and high variety of the term “big data“. Furthermore, an
algorithm was developed which can deal with multiple data-
bases varying in the number of sensors and activities. Nine
features were computed in sliding windows of inertial data
of several sensor positions. Decision-level fusion was perfor-
med in order to combine the information of different sensor
positions.

The proposed classification system achieved an overall
mean classification rate of 85.8 % and allows an easy in-
tegration of new databases. Using big data is necessary to
develop robust and stable activity recognition algorithms in
the future.

Categories and Subject Descriptors
I.5.4 [Pattern Recognition]: Applications

General Terms
Algorithms
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1. INTRODUCTION
According to the World Health Organization, physical in-

activity has been identified as the 4th leading risk factor for
global mortality [21]. Approximately 3.2 million people of
the world population decease each year due to a physical
inactive lifestyle [21]. Furthermore, physical inactive people
suffer from breast and colon cancer, diabetes and ischaemic
heart disease [21]. Compared to physically inactive people,
physically active people have higher levels of health-related
fitness and lower rates of various chronic diseases [12].

Methods for the assessment of the individual daily life
physical activity support the monitoring of the health status
and can be used for providing feedback about the individual
quality of life. An overview of methods for the assessment
of daily life activities is given for example in [20]. The most
widely used tools to assess physical activity are self-report
instruments including self or interviewer-administered ques-
tionnaires, recalls and activity diaries [16]. However, self-
reports induce problems with reliability, validity and sensi-
tivity [18]. In contrast to self-reports, small and light-weight
wearable sensors like inertial measurement units provide a
more reliable and objective assessment of physical activity.
One common application of these wearable sensors is activity
recognition. By recognizing daily life activities like walking,
running, vacuuming or climbing stairs, feedback about the
human’s behavior is provided.

In order to build up robust and stable activity recognition
systems, the algorithms should be trained on a large amount
of data. The training on a large database offers flexibility to
support new users without the need of collecting additional
training data [9].

Mobile computing clouds enables researchers for compu-
ting on collections of large-scale sensor data, coming from
embedded sensors in mobile devices, and support user feed-
back based on the analysis of big data [8]. The definition
of “big data“ focuses on the three Vs volume, variety, and
velocity [15].

The attribute volume refers to the quantitative characte-
ristics of big data. Regarding activity recognition, big data
might be quantified by the number of available datasets.

The attribute variety addresses the diversity in terms of
sources, data types, and entities. Regarding activity recogni-
tion, big data might include different sensor positions, sensor
orientations, sensor types, types of activities, and execution



of activities.
The attribute velocity refers to the frequency of data gene-

ration or the data delivery. Regarding activity recognition,
big data might refer to the real-time data streams coming
from any kind of device or sensor. In the following paragra-
phs, examples for big data are given.

In [5], an activity information gathering system was de-
veloped using mobile sensor devices with triaxial accelero-
meters. Inertial data of 170 people during five months were
acquired. The study protocol included daily life activities
like walking, taking a car, or changing clothes.

In [2], the challenge of different sensor orientations was ad-
dressed. A statistical analysis of acceleration features quan-
tified relative effects of ideal, self-placement of a user, and
mutual displacement deployments. The analysis was based
on 33 fitness activities, recorded in a cardio-fitness room
using nine inertial-magnetic measurement units from 17 par-
ticipants.

In [14], a large scale multimodal data set of naturalistic
human activities in a sensor rich environment was described.
The sensor setup included 72 sensors of 10 modalities, e.g.
microphone and inertial-magnetic measurement unit, inte-
grated in the environment, in objects, and on the body.

In [7], the Human Activity Sensing Consortium was intro-
duced. The aim was to collect a large scale human activity
corpus of different research groups. By the end of 2010, more
than 6700 accelerometer data of 540 subjects were available
including the activities walking, jogging, jumping, and clim-
bing stairs.

In [5, 2, 14], big data was generated using their own study
reaching a high number of subjects [5], a high variety of sen-
sor orientations [2], and a high variety of sensor types [14].
For future research, it is mandatory to further generate big
data by combining different databases. The database fusion
exploits the advantages of each study design. The Human
Activity Sensing Consortium collects inertial sensor data of
different research groups but the number of sensor positions
is restricted to one [7]. The optimal sensor position depends
on the type of activities to be classified [9]. Therefore, the
fusion of different sensor positions should be considered for
the recognition of a broad range of daily life activities.

Thus, the purpose of this paper was twofold. First, a novel
database fusion strategy is introduced addressing the two at-
tributes volume and variety of big data. The database fusion
strategy increased the amount of data containing different
sensor positions, sensor types, and types of activities. The
required and necessary steps were described which were nee-
ded to combine multiple databases. The strategy was applied
to three publicly available databases [13, 22, 10] containing
inertial sensor data. To the best of the authors’ knowledge,
the idea of fusing sensor-based activity recognition databa-
ses has not yet been considered by research groups.

Second, the large database was used for the evaluation of
an activity recognition algorithm based on decision-level fu-
sion combining the information of different sensor positions.
The proposed approach achieved an overall mean classifica-
tion rate of 85.8 %.

In the future, database fusion strategies are mandatory,
since the amount of data and the variety in the data can
be increased. This idea of big data offers the possibility to
further increase the performance of activity recognition al-
gorithms.

2. MATERIALS AND METHODS

2.1 Datasets
In this paper, three publicly available databases were com-

bined to one large database. In the following section, the
corresponding databases are introduced.

2.1.1 PAMAP2 Physical Activity Monitoring Data-
set

In the PAMAP2 dataset, three inertial-magnetic measure-
ment units consisting of two triaxial accelerometers, a triaxi-
al gyroscope and a triaxial magneto-resistive magnetic sen-
sor were used [13]. The range of the accelerometer, gyroscope
and magnetometer was ±16g / ±6g, ±1500◦/s and ±400μT ,
respectively. The sampling rate was 100 Hz. The sensors we-
re placed on the chest, wrist on dominant arm and ankle on
dominant side. Furthermore, a heart rate monitor was used.

The dataset included nine subjects (1 female and 8 male,
age 27.2 ± 3.3 years, BMI 25.1 ± 2.6 kgm−2). One sub-
ject was left-handed, all the others were right-handed. Each
subject had to perform 12 activities (lying, sitting, stan-
ding, walking, running, cycling, Nordic walking, watching
TV, computer work, car driving, ascending stairs, descen-
ding stairs, vacuuming, ironing, folding laundry, house clea-
ning, playing soccer, rope jumping). The dataset can be dow-
nloaded from http://www.pamap.org/demo.html.

2.1.2 University of Southern California Human Ac-
tivity Dataset (USC-HAD)

In the USC-HAD dataset, a single inertial measurement
unit consisting of a triaxial accelerometer and a triaxial gy-
roscope was used [22]. The range of the accelerometer and
gyroscope was ±6g and ±500◦/s, respectively. The sampling
rate was 100 Hz. The sensor was placed on the right hip.

The dataset included 14 subjects (seven male and seven
female, age 30.1 ± 7.2 years, height 170 ± 6.8 cm, weight
64.6 ± 12.1 kg). Each subject had to perform 12 activi-
ties (walking forward, walking left, walking right, walking
upstairs, walking downstairs, running forward, jumping, sit-
ting, standing, sleeping, elevator up, elevator down). Day-
to-day activity variations were considered by performing fi-
ve trials for each activity on different days at various indoor
and outdoor locations. The dataset can be downloaded from
http://sipi.usc.edu/HAD/.

2.1.3 Daily Life Activities (DaLiAc) Dataset
In the DaLiAc dataset, four inertial measurement units

each consisting of a triaxial accelerometer and a triaxial gy-
roscope were used [10]. The sensors were placed on the right
hip, chest, right wrist, and left ankle. The range of the ac-
celerometer was ±6g for all four sensor positions. The range
of the gyroscope was ±500◦/s for the wrist, chest and hip
position and ±2000◦/s for the ankle position. The sampling
rate was 204.8 Hz.

The dataset included 19 subjects (8 female and 11 ma-
le, age 26 ± 8 years, height 177 ± 11 cm, weight 75.2 ±
14.2 kg). Each subject had to perform 13 activities (sitting,
lying, standing, washing dishes, vacuuming, sweeping, wal-
king, ascending stairs, descending stairs, running on tread-
mill, bicycling on ergometer (50 and 100 watt), rope jum-
ping). The dataset can be downloaded from
http://www.activitynet.org.



Table 1: List of selected activities and the corresponding abbreviations. The availability of the activities regarding the three
databases is indicated by ’x’.

Activity Abbreviation USC-HAD DaLiAc PAMAP2

Static ST x x x
Walking WK x x x
Climbing stairs CS x x x
Running RU x - x
Jumping JP x - -
Vacuuming VC - x x
Bicycling BC - x x
Rope jumping RJ - x x

Table 2: Selected sensor positions and sensor types, the corresponding abbreviations and the corresponding number of available
subjects.

Sensor position Sensor type Abbreviation # Subjects

Wrist Accelerometer WR - ACC 28
Wrist Gyroscope WR - GYR 28
Chest Accelerometer CH - ACC 28
Chest Gyroscope CH - GYR 28
Hip Accelerometer HP - ACC 33
Hip Gyroscope HP - GYR 33
Ankle Accelerometer AK - ACC 28
Ankle Gyroscope AK - GYR 28

2.2 Database Fusion
For database fusion, six steps are required. They are des-

cribed in the following section.

2.2.1 Activity Selection
The first step was to select the desired activities that

should be classified. In this paper, eight activities were cho-
sen that typically appear in daily life. The selected activities
are described below.

• Static: sitting and standing were available in all three
databases. Lying was available in PAMAP2 and Da-
LiAc and sleeping in USC-HAD. These activities were
merged, since in many applications the posture of the
body is not important.

• Walking: this was available in all three databases.

• Climbing stairs: ascending and descending stairs we-
re available in all databases and were merged, since the
direction can straightforwardly be assessed for example
by integration of the up/down acceleration component.

• Running: running outside was only available in the
USC-HAD and PAMAP2 database.

• Jumping: this was only available in the USC-HAD
database.

• Vacuuming: this was only available in the DaLiAc
and PAMAP2 database.

• Bicycling: this was only available in the DaLiAc and
PAMAP2 database. In the DaLiAc database, two resi-
stance levels on a stationary bike, namely 50 and 100
watt, were available. In the PAMAP2 database, cy-
cling outside was available. In order to consider a high
variety of different bicycling conditions, all mentioned
activities were merged.

• Rope jumping: this was only available in the DaLiAc
and PAMAP2 database.

Table 1 shows the eight selected activities, the correspon-
ding abbreviations and the availability regarding the three
databases.

2.2.2 Sensor Position and Type Selection
The second step was to select the desired sensor position

that should be considered for activity recognition. In this
paper, all available sensor positions were used, in order to
acquire data of different body parts. Furthermore, the de-
sired sensor types (accelerometer, gyroscope, magnetometer
and heart rate monitor) had to be selected. In this paper,
accelerometer and gyroscope were used, since they were also
mostly used in literature [23, 10]. Table 2 shows the num-
ber of available subjects regarding each sensor position and
type.

2.2.3 Unit Adjustment
The third step was to adjust the unit of each sensor type.

Since all databases used g as unit for the accelerometer, it
remained unchanged. The PAMAP2 database used rad/s as
unit for the gyroscope. USC-HAD and DaLiAc used ◦/s as
unit for the gyroscope. Thus, the angular velocities in the
PAMAP2 database were converted to ◦/s.

2.2.4 Normalization
The fourth step was to define the common range of am-

plitudes that should be used. In this paper, the minimum
range of all sensor types of all sensor positions was used as
common range. Thus, the common accelerometer range was
set to ±6g for all sensor positions. The common gyroscope
range was set to ±500◦/s for the sensor positions wrist, chest
and hip and ±1500◦/s for the ankle sensor. All amplitude
values above those ranges were set to the minimum range
value.
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Figure 1: Energy signals of the accelerometer of the hip sensor. Examples are given for running and rope jumping.
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Figure 2: Proposed classification system. WR, CH, HP and AK define the sensor positions wrist, chest, hip and ankle,
respectively. ACC and GYR define the sensor types accelerometer and gyroscope, respectively.

2.2.5 Sampling Rate
The fifth step was to define the common sampling rate. In

this paper, the minimum available sampling rate was chosen,
namely 100 Hz for all sensor types of all sensor positions.

2.2.6 Data-Level Fusion
The sixth step was to address the different orientations of

the sensors in all available databases. In this paper, data-
level fusion [4] was performed for each sensor type of each
sensor position. Therefore, the energy signal E[x] of the
three axes a1, a2, a3 of each sensor type was computed:

E[x] =
3∑

i=1

a2

i [x]. (1)

Fig. 1 shows the energy signals of the accelerometer of the
hip sensor for two example activities.

2.3 Proposed Classification System
The proposed classification system is depicted in Fig. 2.

For each available sensor type (accelerometer, gyroscope),
windowing, feature extraction and classification were perfor-
med separately. In the final step, the classifier decisions of all
sensor types were fused and a single activity was predicted.
The system architecture was similar to [17]. The main diffe-
rence was the additional splitting of the sensor position with
respect to the sensor types. In the following section, the de-
tails of windowing, feature extraction and classification are

described.

2.3.1 Windowing
Further processing of the acquired inertial data of the sen-

sor types was performed in sliding windows. The width of
the window was set to five seconds, which was also proposed
in [10] and [17].

2.3.2 Feature Extraction
Nine features were computed for each sliding window in

the energy signal. In order to extract information about the
range of the signal amplitudes, the minimum and maximum
of the amplitudes were computed. In order to extract in-
formation about the statistics of the signal amplitudes, the
mean, variance, skewness and kurtosis of the amplitudes we-
re computed. In order to extract information about the un-
certainty of the signal, the normalized information entropy
in the time domain was computed according to [11]. In order
to extract frequency information of the signal, the spectral
centroid and the bandwidth were computed according to [1].

2.3.3 Classification
For the classification of the eight selected daily life ac-

tivities the Support Vector Machine (SVM) was used with
a linear kernel [3]. For performance assessment, the mean
class-dependent classification rate and the overall mean clas-
sification rate were computed based on a leave-one-subject-
out cross-validation.



Table 3: Classification rates (in percent) regarding different sensor types. WR, CH, HP and AK define the sensor positions
wrist, chest, hip and ankle, respectively. ACC and GYR define the sensor types accelerometer and gyroscope, respectively. The
abbreviations for the activities are used according to Table 1. Classification rates are ranked in a descending order regarding
the overall mean classification rates.

Rank ID Sensor type ST WK CS RU JP VC BC RJ Mean

1 AK - GYR 96.3 93.3 67.0 72.4 - 85.9 91.3 70.3 82.4
2 HP - ACC 98.2 87.1 48.9 86.7 84.7 63.9 92.3 84.6 80.8
3 AK - ACC 96.3 88.3 45.1 68.9 - 86.1 97.1 76.0 79.7
4 WR - ACC 78.9 89.4 43.1 88.5 - 64.3 79.7 94.4 76.9
5 CH - ACC 96.2 90.8 54.7 86.5 - 32.0 81.7 95.1 76.7
6 HP - GYR 98.3 78.3 41.1 74.6 47.9 22.4 71.3 77.5 63.9
7 CH - GYR 90.6 80.3 31.3 65.3 - 29.1 27.8 85.1 58.5
8 WR - GYR 85.9 83.5 9.4 32.2 - 45.8 73.8 68.8 57.1

The cost parameter of the SVM C ∈ {0.0001, 0.001, 0.01,
0.1, 1, 10, 100, 1000} was optimized by grid search and an in-
ner leave-one-subject-out cross-validation loop. For the wrist,
chest and ankle positions 28 subjects and for the hip posi-
tion 33 subjects were available (Table 2). The sensor types
were ranked in descending order according to the achieved
overall mean classification rates.

2.3.4 Decision-Level Fusion
The classifier decisions of the sensor types were fused and

a majority voting scheme was applied to obtain the final
activity. In the case of an equal distribution of the predicted
classes in the majority vote, the predicted class of the sensor
type was chosen which was ranked higher. The performance
of the decision-level fusion was determined for each database
separately.

3. RESULTS
Table 3 shows the mean class-dependent classification ra-

tes and the overall mean classification rates regarding each
sensor type. The best classification rate of 82.4 % was achie-
ved by the gyroscope of the ankle sensor.

Regarding the three databases PAMAP2, DaLiAc and
USC-HAD, the mean classification rates after decision-level
fusion were 87.6 %, 87.6 % and 82.2 %, respectively. Thus,
the overall mean classification rate averaged regarding all
databases was 85.8 %.

4. DISCUSSION
Using big data will provide an immense advantage in fu-

ture applications in activity recognition. This paper addres-
sed the two attributes volume and variety of big data. A
large database containing different sensor positions, sensor
types, types of activities and execution of activities is needed
in order to build up robust and stable activity recognition
systems. Combining multiple databases is a first step to en-
large the database that is used for evaluation of algorithms.
In this paper, the necessary steps were described which we-
re needed to perform database fusion. Furthermore, an algo-
rithm was developed which can deal with multiple databases
varying in different number of sensor types and activities. In
the following two sections, the proposed classification system
and the database fusion are discussed.

4.1 Proposed Classification System
The best classification rate and the worst classification ra-

te were achieved by the gyroscope of the ankle position and

the gyroscope of the wrist position, respectively (Table 3).
The reason might be that most of the considered activities
included rotational movements of the lower extremities. The
second best classification rate was achieved by the accelero-
meter of the hip position. The hip position is also preferred
in literature since sensors near the body’s center of mass
cover a wide range of basic activities [10].

As a proof of concept, only the SVM with the described
feature set was applied, since the main focus was the data-
base fusion strategy. Further classifiers (e.g. RandomForest,
Naive Bayes and kNN [19]) with additional features (e.g.
wavelet and correlation between axes) will be applied in the
future, which can easily be integrated in the proposed clas-
sification system.

Compared to the individual database classification results
of 89 % in [13], 96 % in [23] and 89 % in [10], the propo-
sed classification system achieved a lower classification ra-
te of 85.8 % averaged regarding all databases. The reason
might be the information loss due to the database fusion
steps normalization and data-level fusion in this paper. Ne-
vertheless, database fusion ensures more generalized results.
In this paper, three databases were combined resulting in a
total number of subjects of 42.

All in all, the findings in this paper showed the general
applicability of the proposed classification system for com-
bined databases.

4.2 Database Fusion
In the following section, the necessary steps for the com-

bination of multiple databases are discussed.
The performance of the proposed classification system is

dependent on the activities that should be classified. A fur-
ther distinction between sitting, lying and standing as well
as ascending and descending stairs requires additional infor-
mation of the orientation of the sensors.

The performance of the proposed classification system is
dependent on the used sensor types. In this paper, only acce-
lerometer and gyroscope were used. In order to improve the
performance of e.g. the distinction of walking and running,
an additional heart rate monitor might help. The heart rate
likely increases during high intensity running. The predicti-
on of the additional sensor type can easily be integrated in
the majority voting of the proposed classification system.

The unit adjustment and the normalization of the am-
plitudes were necessary because of the used feature types.
Many features (e.g., the mean, minimum and maximum) ha-
ve the same unit as the corresponding amplitudes. By using



features that do not have a unit (e.g., correlation between
two axes) these steps might be neglected.

In this paper, the lowest sampling rate regarding all three
databases was used. Thus, the sampling rate was one bott-
leneck of the proposed classification system since the higher
sampling rate in the DaLiAc database was not exploited. In
the future, further research should focus on the influence of
the sampling rate on the classification performance.

The performance of the proposed classification is depen-
dent on the data-level fusion that was performed in this pa-
per. By using the energy signal of each sensor type (Eq. 1),
information about the orientation of the sensor axes was re-
moved. In the future, further algorithms for data-level fusion
should be considered, e.g. Kalman filtering [6].

In [5, 2, 14], big data was generated using their own study
reaching a high number of subjects [5], a high variety of
sensor orientations [2], and a high variety of sensor types
[14]. Besides using only the own acquired data, researchers
should consider database fusion strategies to further increase
the amount of data and to exploit the advantages of different
databases.

All in all, the paper listed the main steps that are required
for database fusion. Database fusion is one strategy in order
to generate a large amount of diverse data. High volume and
high variety are two important attributes for big data. Using
big data in the training of pattern recognition techniques will
result in robust and stable activity recognition algorithms.

5. CONCLUSION
Activity recognition provides important feedback about

the human’s behavior. For the development of robust and
stable activity recognition algorithms, there is a major need
for databases that contain a large number of subjects, acti-
vities and sensors. In this paper, the strategy of database fu-
sion was introduced, which is an important step towards big
data for activity recognition. Furthermore, a classification
system was proposed, which can deal with multiple databa-
ses varying in the number of sensors and activities. The pro-
posed approach performed decision-level fusion and achieved
an overall classification rate of 85.8 %.

In the future, it is possible to add physiological sensors
to the system, e.g. heart rate monitor, to consider the axis
orientation and to integrate additional databases. Pattern
recognition systems, trained on big data, will provide reliable
feedback about the individual quality of life, which results
in motivating physically inactive people to be more active.
This can lead to higher levels of health-related fitness, which
should be one major goal for the future.
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Collecting complex activity datasets in highly rich
networked sensor environments. In Proc INSS 2010,
pages 233–240, 2010.

[15] P. Russom. Big data analytics. In TDWI Best
Practices Report, Fourth Quarter, 2011, Accessed on
May 30th 2014, http://tdwi.org/bdr-rpt.aspx.

[16] J. F. Sallis and B. E. Saelens. Assessment of physical
activity by self-report: status, limitations, and future
directions. Res Q Exerc Sport, 71 (supplement 2):1–14,
2000.

[17] D. Schuldhaus, H. Leutheuser, and B. M. Eskofier.
Classification of daily life activities by decision level
fusion of inertial sensor data. In Proc BodyNets 2013,
pages 77–82, 2013.



[18] R. J. Shephard. Limits to the measurement of
habitual physical activity by questionnaires. Br J
Sports Med, 37(3):197–206, 2003.

[19] S. Theodoridis and K. Koutroumbas. Pattern
Recognition (4th Edition). Academic Press, San Diego,
2008.

[20] J. M. Warren, U. Ekelund, H. Besson, A. Mezzani,
N. Geladas, and L. Vanhees. Assessment of physical
activity - a review of methodologies with reference to
epidemiological research: a report of the exercise
physiology section of the european association of
cardiovascular prevention and rehabilitation. Eur J
Cardiovasc Prev Rehabil, 17(2):127–139, 2010.

[21] World Health Organization. Prevalence of insufficient
physical activity. Accessed on May 30th 2014,
http://www.who.int.

[22] M. Zhang and A. A. Sawchuk. Usc-had: A daily
activity dataset for ubiquitous activity recognition
using wearable sensors. In Proc UbiComp 2012, pages
1036–1043, 2012.

[23] M. Zhang and A. A. Sawchuk. Human daily activity
recognition with sparse representation using wearable
sensors. IEEE J Biomed Health Inform, 17(3):553–560,
2013.


