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Abstract. Computational models of cardiac electrophysiology are be-
ing investigated for improved patient selection and planning of therapies
like cardiac resynchronization therapy (CRT). However, their clinical
applicability is limited unless their parameters are fitted to the phys-
iology of an individual patient. In this paper, a method that estimates
spatially-varying electrical diffusivities from routine ECG data and dy-
namic cardiac images is presented. Contrary to current methods based
on invasive electrophysiology studies or body surface potential mapping,
our approach relies on widely available 12-lead ECG and motion infor-
mation obtained from clinical images. First, a map of mechanical activa-
tion time is derived from a cardiac strain map. Then, regional electrical
diffusivities are personalized such that the computed cardiac depolariza-
tion matches both the mechanical activation map and measured ECG
features. The fit between measured and computed electrocardiography
data after model personalization is evaluated on 14 dilated cardiomy-
opathy patients, exhibiting low mean errors in terms of the diagnostic
ECG features QRS duration (0.1 ms) and electrical axis (10.6◦). The pro-
posed regional approach outperforms global personalization when 12-lead
ECG is the only electrophysiology data available. Furthermore, promis-
ing results of a preliminary CRT study on one patient demonstrate the
predictive power of the personalized model.

1 Introduction

Heart failure (HF) is a major cause of death in the western world (4-year sur-
vival rate of 50% [1]). Approximately 25% of HF patients are affected by a
left bundle branch block, an obstruction in the cardiac conduction pathway,
which decreases the speed of the electrical wave in the left ventricle [2]. Irregular
mechanical activation of the myocardium is among its consequences. For pa-
tients with a prolonged QRS complex (QRS ≥ 120 ms) and low left ventricular
ejection fraction, cardiac resynchronization therapy (CRT) is a well-established
treatment [3]. CRT consists in implanting electrodes into the heart to pace the
myocardium artificially and ”resynchronize” cardiac contraction. However, 25-
30% of patients do not respond to CRT. Hence, more adequate patient selection
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and therapy planning is required [3]. Combining medical imaging with compu-
tational modeling of the heart could provide new tools towards this goal.

To that end, computational models of cardiac electrophysiology (EP) are
being investigated. Recent developments enable fast EP computation when cou-
pled with phenomenological models of the cardiac action potential [4, 5]. How-
ever, model personalization, i. e. adjusting model parameters so that the model
output fits clinical data of an individual patient, is a sine qua non for clinical
applicability. Comprehensive and spatially-dense EP information can be gath-
ered by invasive endocardial mapping or body surface potential mapping [6, 7].
However, these measurements are often not available for diagnosis or disease
monitoring purposes. Therefore, methods of personalizing EP models from rou-
tinely acquired 12-lead ECG have been proposed recently [8]. Due to the sparsity
of the data, these approaches focus on the estimation of global parameters (one
diffusion value per ventricle). As a consequence, complex pathologies like local-
ized bundle branch blocks cannot be captured precisely.

Evidence is growing that irregularities in mechanical activation are related
to abnormal electrical activation [9] and that indicators derived from such ir-
regularities may be predictive for CRT outcome [10]. In order to measure me-
chanical activation, methods for quantifying myocardial strain from magnetic
resonance images (MRI) have been developed [11]. The basic concept is to track
the myocardium over time and compute the strain tensor from the estimated
deformation field. This information can be used to estimate electrical activation
patterns non-invasively [12].

In this paper, a method that estimates spatially-varying electrical diffusivity
from ECG and strain maps is presented. While ECG provides global information
of cardiac electrophysiology, strain maps are used to identify regional abnormal-
ities. Mechanical myocardial activation is computed to identify the location of
a block in the conduction system. Then, electrical diffusivity is estimated such
that calculated ECG features match the measurements while the electrical de-
polarization pattern respects the block. The method is evaluated on 14 dilated
cardiomyopathy patients, showing a significant improvement over global fitting
in terms of goodness of fit between measured and simulated ECG features. Fur-
thermore, the predictive power of the model is evaluated on one patient who
underwent CRT, where better prediction accuracy is observed when using the
proposed regional personalization compared to the global method.

2 Method

The workflow of our method is illustrated in Fig. 1. A mechanical activation map
of the left ventricular myocardium is derived from Cine MRI, from which a line of
block is localized (Sec. 2.1). The images are further used to create an anatomical
heart model. Cardiac EP is calculated and the electrical potential propagated to
the torso, where 12-lead ECG tracing is derived (Sec. 2.2). Eventually, the model
parameters are personalized within a non-linear inverse optimization framework
using clinically measured ECG data and the block information (Sec. 2.3).
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Fig. 1. Workflow of proposed cardiac electrophysiology personalization framework.

2.1 Computation of Mechanical Activation Time

Mechanical activation time maps of the left ventricle (LV) are computed from
short axis Cine MRI in four steps: i) left ventricular myocardium segmenta-
tion, ii) 2-D, slice-based myocardium tracking, iii) strain computation and iv)
mechanical activation map calculation, as described below.

Myocardium Segmentation The LV volume is automatically segmented on
the 2-D slices using a 2-D+time algorithm [13]. First, the LV blood pool is au-
tomatically localized using temporal Fourier transform and isoperimetric clus-
tering to find the most compact and circular bright moving object in the slices.
Then, the myocardium boundaries are extracted using a shortest path algorithm
in polar space. Temporal consistency is enforced by the backward and forward
fields of an inverse consistent deformable registration. For each slice, all frames
are registered to a reference frame at end-diastole. Contour sets are generated
by successively segmenting each frame and propagating the contours to all the
other frames. The best contour set is chosen as the final segmentation.

Myocardium Tracking Deformable image registration is performed using an
inverse consistent diffeomorphic algorithm [14]. The registration computes a
dense deformation field between any two frames in a slice without having to
register every possible pair of frames explicitly. To that end, the inverse consis-
tency of the registration is exploited. The deformation field between frames fj
and fk is obtained by compounding the deformation field between frame fk and
f1 at end-diastole and the inverse deformation field between frames fj and f1.
All frames fi are registered to f1 yielding the deformation fields Φi.

Strain Computation The Lagrangian strain tensor E is derived from Φi ac-
cording to E = 1/2(∇Φi+∇ΦT

i +∇Φi∇ΦT
i ). Computing the norm of the principal

strain (eigenvectors of E) with the largest eigenvalue for every myocardium pixel
in every frame yields a spatially and temporally resolved map of LV strain. Basal
and apical slices are excluded from the subsequent analysis due to insufficient
image quality.
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Mechanical Activation Map Afterwards, a polar map of mechanical activa-
tion is computed from the strain maps. More precisely, the LV is represented
as a circle divided into 120 circumferential segments (Fig. 3, right panel). For
each segment the strain is averaged across the myocardium. A polar strain map
is computed for each time frame. Then, the time to peak of principal strain
is identified per segment as the time of mechanical activation. Finally, median
filtering is applied to remove outliers due to noise.

In a subject without block in the conduction system, the mechanical acti-
vation propagates uniformly from the septum to the lateral wall, i. e. the latest
activated segment is at the lateral wall. However, if there is a block in the con-
duction system, the latest activated segment is shifted towards the septum, i. e.
the myocardium does not contract uniformly. As shown in Fig. 1 (”Block”), the
position of the line of block in the myocardium is described by an circumfer-
ential angle ξ (with respect to the long axis of the heart). The extent of the
block is defined by an angle β. A voxel is considered to be inside the block if its
circumferential angle is in a certain range Ω around ξ. In our experiments, we
set Ω = [ξ − 0.5β; ξ + 0.5β].

2.2 Forward Model of Cardiac Electrophysiology

A fast cardiac electrophysiology model based on the lattice Boltzmann method is
employed [4]. First, the heart is segmented automatically from MRI images by a
data-guided machine learning algorithm [15]. A rule-based model of myocardial
fiber architecture (fiber angles vary linearly from epi- to endocardium: from -40◦

to 65◦ [16]) is calculated in order to take anisotropy into account. This can be
advanced without any modification by using fiber atlases (a sensitivity analysis
is ongoing). Trans-membrane potentials are calculated according to the Mitchell-
Schaeffer model [17], which is solved efficiently using the LBM-EP method [4].

The conduction velocity is governed by electrical diffusion parameters. Three
domains with different diffusivities c are considered in the model, as pictured
in Fig. 2: the slow-conducting myocardium (cmyo) and the fast-conducting left
and right ventricular endocardia (cLV and cRV ). Afterwards, the potentials are
mapped to a torso atlas using the boundary element method [4], and the 12-
lead ECG is calculated. Therefrom, important clinical ECG features, namely
the duration of the QRS complex ∆QRS and the electrical axis αEA, are derived
automatically.

2.3 Electrical Diffusivity Estimation

If the mechanical activation map shows an irregular pattern, i. e. the location
of the latest contraction is significantly moved towards the septum, a block in
the conduction system is considered and defined as a new domain in the EP
model. Its position and extent are described by two angles ξ and β (Sec. 2.1).
The diffusivity of the endocardial tissue inside the block region is set to the
low myocardial diffusivity cmyo because the electrical wave propagates over the
myocytes if the conduction pathways are obstructed.
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Algorithm 1 Regional EP Personalization

Require: Initial diffusivity cinitmyo, c
init
LV , c

init
RV and block parameters ξinit, βinit

1: κ0 = arg minκ dQRS
(
κ · (cinitmyo, c

init
LV , c

init
RV )

)
2: (c0myo, c

0
LV , c

0
RV ) = κ0 · (cinitmyo, c

init
LV , c

init
RV )

3: for i = 1 to i = N do
4: (ci∗LV , c

i∗
RV , ξ

i) = arg mincLV ,cRV ,ξ
(λ · dQRS(cLV , cRV , ξ) + dEA(cLV , cRV , ξ))

5: βi = arg minβ (λ · dQRS(β) + dEA(β))

6: κi = arg minκ dQRS
(
ci−1
myo, c

i∗
LV , c

i∗
RV

)
7: (cimyo, c

i
LV , c

i
RV ) = κi · (ci−1

myo, c
i−1
LV , c

i−1
RV )

8: end for
9: return Personalized EP parameters cNmyo, c

N
LV , cNRV , ξN , βN

The block region enables regional manipulation of the electrical wave prop-
agation by targeted deceleration. The block position is estimated from the me-
chanical activation maps (Sec. 2.1). Then, the diffusivities cmyo, cLV and cRV

and the block parameters ξ and β are personalized such that the calculated ECG
features match the measurements ∆QRS,m and αEA,m. This is achieved by non-
linear inverse optimization using BOBYQA, a robust gradient-free optimization
technique [18]. First, a factor κ for the diffusivities c is optimized, as in [8].
Secondly, cLV , cRV and ξ are optimized. Thereby, ξ is refined inside a range
of ± 45◦ around the position estimated from the mechanical activation maps to
cope with inaccuracies in block localization. The diffusivity of the block region
stays equal to cmyo. In the next steps, β and κ are optimized. These three steps
are iterated (convergence typically after N = 3 iterations). The errors of the

calculated ECG features are described by dQRS(Ψ) = (∆QRS,m −∆QRS(Ψ))
2

and dEA(Ψ) = (αEA,m − αEA(Ψ))
2
, where Ψ denotes model input parameters.

The weighting factor λ is chosen to cope with distinct units. All optimization
steps (arg min) are initialized with the previously estimated parameters. The
personalization workflow is sketched in Algorithm 1.

3 Experiment and Results

Experimental Setup For experimentation, 14 dilated cardiomyopathy (DCM)
patients who showed irregular contraction patterns in the estimated mechanical
activation maps were selected. Tracked myocardium contours are presented in
Fig. 2, right panel. The temporal changes in principal strain of an example sector
of one patient are shown in Fig. 3, left panel. Fig. 3, right panel illustrates the
mechanical activation map computed from the Cine MRI for a patient with block
in the conduction system.

Personalization Performance EP model personalization with the proposed
regional approach was compared against a global state-of-the-art method that
relies on 12-lead ECG only, similar as in [8]. The proposed approach differs from
the global method only by the incorporation of the block (Algorithm 1, Lines 4
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Fig. 2. Left Panel: Electrophysiology domains. Right Panel: Tracked endo- and epicar-
dial contours (left ventricle) over time, showing good agreement to the image data.

Fig. 3. Left panel : Principal strain of an example segment over time. The time of the
peak is assumed to signify mechanical activation. Right panel : Polar map of mechanical
activation (LV) with irregular contraction pattern and identified block location.

and 5). The output of the personalized models was compared to clinical mea-
surements. Clinically plausible acceptance ranges were defined for both ECG
features: εQRS < 10 ms and εEA < 20◦. Both approaches captured ∆QRS well
with maximum errors of less than 1 ms. The average error of our method for αEA

was 10.6◦± 20.0◦, which is well within the acceptance range. Using the global
method, the average error was about twice as large: 21.9◦± 33.8◦. In Tab. 1,
the computed αEA of both methods are compared to the measurements for each
individual patient. According to the acceptance criteria defined above, αEA was
matched for 11 patients using our regional approach and only for 10 patients
using the global approach. As a conclusion, the proposed regional approach can
significantly improve EP model personalization over state-of-the-art global meth-
ods in terms of goodness of fit between measured and simulated ECG features.

Predictive Power After fitting the model to preoperative data using the pro-
posed regional approach on the one hand, and the global approach on the other
hand, CRT lead placement and programming were mimicked in silico for an LV
and an RV pacing scenario on the employed model in order to evaluate its pre-
dictive power. The experiments were conducted on one CRT patient (Patient 14,
Tab. 1), for whom pre- and postoperative ECG data were available. The out-
come was compared to the postoperative measurements (∆QRS,post, αEA,post):
(149 ms,−13◦) and (176 ms,−40◦) for LV and RV pacing, respectively. Results
show that while QRS prediction performs similarly well for both personaliza-
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Table 1. Measured and computed electrical axis (in degrees) using our approach (”Re-
gional”) and a state-of-the-art approach (”Global”), see text for details. Values that
are outside of the acceptance ranges are highlighted in bold print.

Patient Measured Regional Global Patient Measured Regional Global

1 -99 -63 -99 8 57 57 56
2 -3 -6 -3 9 90 89 -172
3 -40 -42 -40 10 -17 22 24
4 112 112 112 11 21 21 19
5 -15 -15 -15 12 45 45 26
6 32 -31 -39 13 60 60 -9
7 -12 -12 -12 14 -12 -16 -16

tion methods and both pacing scenarios, for LV pacing the regional method
(147 ms,−25◦) predicted the change in electrical axis better, meeting the de-
fined acceptance criteria, while the global method (149 ms,−54◦) failed. RV
pacing predictions were similar for both personalized models, as only the left
ventricle is affected by the block estimation with little impact in RV pacing
scenarios. The regional method predicted (177 ms,−52◦) and the global method
(175 ms,−50◦), both well within the defined acceptance ranges. This preliminary
CRT study suggests that our personalization framework could improve the abil-
ity of the model to predict CRT outcomes, which is an important result towards
clinical applicability of computational cardiac models.

4 Discussion and Conclusion

This work presents a novel method to estimate regional electrical diffusivity
from dynamic cardiac images and 12-lead ECG. The underlying assumption is
that abnormalities in mechanical activation time are related to conduction sys-
tem failure. Thus, we incorporated that knowledge in a gradient-free estimation
framework. It can be used with any electrophysiology model or solver. Further-
more, our approach relies on data that is acquired non-invasively and is widely
available, in contrast to other state-of-the-art methods. Results on 14 DCM
patients showed that our approach achieves promising goodness of fit between
measured and calculated ECG features. However, the personalization fails on 3
cases due to mismatched electrical axis. This could be caused by imprecise ECG
lead positioning or the presence of complex pathologies which the model is not
capable to capture. Hence, the next step will be to include further regionality in
the personalization to allow the model to adapt to a larger variety of patholo-
gies. Furthermore, the predictive power of the model will be evaluated more
extensively in the future as soon as additional CRT cases are at our disposal.
Moreover, fiber architecture can be modeled close to the real physiology once in
vivo diffusion tensor imaging (DTI) data are available.



8

References

1. Dickstein, K., Cohen-Solal, A., Filippatos, G., McMurray, J.J., Ponikowski, P.,
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