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Motivation

• Procedures in thorax/abdomen benefit from respiratory motion
compensation (radiation therapy, cardiac interventions, . . . )
• Intraprocedural tracking of dense internal motion is not feasible

Approach:

• Employ external surrogate for
internal motion prediction
• E.g. phase/amplitude information

from spirometry or point tracking
⇒ typically low-dim. surrogates

Figure: Respiratory surrogate acquired with
a spirometer, from [Hughes et al., 2009].
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Motivation (cont.)

Challenges:

• Intra-cycle variation – in-/exhalation (“hysteresis”)
• Inter-cycle variation – abdominal/thoracic breathing (“reproducibility”)
• Inter-subject variation

⇒ More sophisticated, higher-dimensional surrogates

Idea: Use the whole body surface

• Increasing affordability of real-time range imaging (RI)
• Markerless and non-intrusive acquisition
• Better correlation [Fayad et al., 2012, Hughes et al., 2009]
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Contributions

Statistical prediction framework making use of the whole surface

• Dense 3-D motion fields both internally and externally
• Comprehensive study of several parameters (smoothness, coverage, . . . )
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Nonrigid Volumetric Registration

Curvature-regularized framework [Fischer and Modersitzki, 2004],
deformation field D∗ minimizes the functional

J [D] = U [R,T ; D] + αScurv[D]. (1)
R,T Reference and template volumes
U Distance measure, in our case implied by Demons [Thirion, 1995]
αScurv Penalizes high curvatures, α controls degree of regularization

Figure: Respiratory motion field cropped to an internal ROI.
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Model Intrinsics

Perform invertible dimensionality reduction on data matrix:

Y = [d̃ int
0 , . . . , d̃

int
tref−1, d̃

int
tref+1, . . . , d̃

int
N ]> ∈ RN×3M (2)

d̃ int
t Mean-centered internal deformation fields (vectorized)

N Number of deformation fields
M Number of vectors per field

• Compute first r principal components vi ,

Q = [v0, v1, . . . , vr−1] ∈ R3M×r , (3)

• and projections onto them (mapped, r -dim. points) as features,

Ym = YQ (4)
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Surface Extraction

• Acquisition using RI system combined with MRI is difficult
(limited room inside scanner, electromagnetic interference, . . . )

⇒ Extract surface and its motion directly from volumetric data

• Ray-casting based approach to extraction
• Cylindrical sensor avoids shortcomings of pinhole camera model

Figure: Virtual sensor geometries. Left and middle images adapted from [Wasza et al., 2013].
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Model Intrinsics

Perform extensible dimensionality reduction on data matrix:

X = [d̃ext
0 , . . . , d̃ext

tref−1, d̃
ext
tref+1, . . . , d̃

ext
N ]> ∈ RN×3V (5)

d̃ext
t Mean-centered external deformation fields (vectorized)

N Number of deformation fields
V Number of surface vertices / motion vectors

• Generate features Xm ∈ RN×l as before with PCA, or. . .
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Model Intrinsics (cont.)

• . . . alternatively, use a nonlinear method, such as:

Image source: [Saul et al., 2006]

Isomap
[Tenenbaum et al., 2000]
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External-Internal Correlation

• Correlate feature spaces with a simple regression,
complexity should be handled by individual models

• We use multivariate multilinear regression (cf. [Klinder et al., 2010]):

B = argmin
B′

tr
[(

Ym − XmB′>
)(

Ym − XmB′>
)>]

, (6)

where B ∈ Rr×l is the ordinary least squares estimator for Ym = XmB>.
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Experiments and Results



Data

Synthetic Data

Derived from XCAT phantom
[Segars et al., 2010,
Maier et al., 2014]

Volunteer Data

Time-resolved cardiac MRI
of 6 healthy volunteers
[Forman et al., 2013]
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Experimental Setup

• Test phase distant from reference, but not full ex-/inhale
• Exclude adjacent phases from training to reduce bias

• Error: Vector magnitudes of difference,

{‖Dpredicted(xi, yi, zi)− Dground truth(xi, yi, zi)‖2}i=1...M (7)

• Magnitudes of internal displacements in test phase:

ID Magnitude [mm] ID Magnitude [mm]

P1 3.53± 1.81 P2 3.87± 1.66
P3 3.26± 1.45 P4 4.56± 1.70
P5 1.99± 0.61 P6 0.43± 0.17

XCAT 3.51± 3.62
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Results – Surface Coverage
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equal or worse results

• With large coverage, uniformly distributed random
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Results – Smoothness of Registration
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• Motivation: “accuracy”↔ “anatomical plausibility”

• Weaker regularization results in more complex/noisy
motion fields that are harder to predict accurately
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Summary and Outlook

• Prediction framework with promising accuracy
• Dense internal displacements from dense external surface motion

• Evaluated effects of feature dim., coverage, smoothness
• Validated on synthetic 4-D phantom and cardiac MRI of volunteers

• Future work will need to focus on a clinical setting with actual RI

Any questions?

Thanks for your attention!
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Related Work

[Fayad et al., 2012] Heuristic partitioning of surface depth maps

[Hughes et al., 2009] Simulate 1-D surrogates,
e.g. the estimated lung volume

[Schaerer et al., 2012], Actual surface motion tracking,
[Bauer et al., 2012] but no internal prediction

[Klinder et al., 2010] Generic prediction framework,
not evaluated on surface surrogates

[He et al., 2010] External fiducials, simulate respiratory phases
from 3-D CT of unseen subject
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Nonrigid Volumetric Registration Details

• Symmetric Demons forces:

v =
2(R − TD)(∇R +∇TD)

‖∇R +∇TD‖2
2

(8)

• Cf. derivative of SSD: v = 2(R − TD)∇TD

• Curvature regularization:

Scurv[D] =
1
2

d∑
`=1

∫
Ω

(∆D`)
2dx (9)

• Gâteaux derivative of Eq. (9) is Acurv[D] = ∆2D
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Internal Model Details

• For faster convergence, initialize optimization with
result of nearest phase closer to reference

• Deformation fields are 2× downsampled and cropped to internal ROI

• The d̃ int
t are few, but high-dimensional:

Eigendecompose Gram matrix K = YY> instead of ΣY = Y>Y
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Surface Extraction (cont.)

• Find air-skin transition with heuristic thresholding

• Postprocessing (smoothing, closing holes) required
due to fat saturation in cardiac MRI sequence

• Interpolate deformation fields at vertex positions to obtain motion

Figure: Extracted body surface before (left) and after (middle, right with motion vectors) postprocessing.
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Multilinear Regression

• Closed form solution: B = Y>m Xm
(
X>m Xm

)−1

• Xm
(
X>m Xm

)−1
=
(
X>m
)†

is the Moore-Penrose pseudoinverse.

• Tikhonov regularization / ridge regression: If numerically unstable,

invert X>m Xm + γI instead of X>m Xm. (10)
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Internal Motion Prediction

• Elastic registration of instantaneous to reference surface
• Nonrigid ICP variant [Schaerer et al., 2012]
• Model-based ICP with 4-D shape priors [Wasza et al., 2012]
• Active Laser Triangulation [Bauer et al., 2012]

• Out-of-sample extension of external model
• Trivial for PCA: subtract mean and project onto eigenvectors
• Approximate solution needed for kernel methods

(Nyström method, [Williams and Seeger, 2001, Bengio et al., 2003])

• Perform regression, reconstruct with principal components
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Data Sizes

ID Phases Size [voxels] Spacing [mm] Int. ROI [voxels] Surface Vert.

P1 13 256× 288× 256 1.05 110× 170× 200 5,368
P2 18 256× 320× 256 1.00 110× 190× 160 4,321
P3 16 352× 320× 352 1.00 090× 185× 200 6,628
P4 13 352× 320× 352 1.00 120× 195× 200 3,759
P5 12 256× 256× 256 1.05 085× 155× 180 4,493
P6 8 256× 144× 256 1.05 105× 125× 190 2,521

XCAT 15 256× 256× 256 1.50 070× 100× 125 5,566
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Default Method Parameters

• l = r = 4

• Kernel PCA, σ = 40 for MRI and σ = 400 for XCAT data

• Isomap, k = 4 (k = 7 if graph not fully connected)

• α = 2500 (cf. Eq. (1)) and full surface coverage
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Cumulative Relative Eigenvalues

For P1 with α = 2500:
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Cumulative Relative Eigenvalues

For P1 with α = 500:
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Cumulative Relative Eigenvalues

For P1 with α = 50:
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Errors – Dimensionality Reduction Options
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Errors – Dimensionality Reduction Options
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Errors – Dimensionality Reduction Options
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Results – Dimensionality Reduction Options

• PCA outperforms nonlinear methods w. r. t. prediction error,
improves with increasing feature space dimensionality

• Isomap and Kernel PCA not quite as accurate,
only most significant feature dimension is meaningful

• Best result in MRI: max. error of 0.42 mm, given a median
magnitude of 3.91 mm in the ground truth deformation field

• Phantom is predicted almost perfectly in any configuration
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Results – Runtimes

• Training phase (not time-critical):
• Registration (C++, using ITK): ≈ one to several hours for a whole sequence

• Surface extraction (C++, using RITK): ≈ few ms (+ manual param. choice)

• Mesh processing (ParaView, Meshlab): ≈ few minutes (automatic + manual)

• Model training (MATLAB, using DR toolbox): ≈ few seconds

• Application phase (usually time-critical):
• Deformable mesh registration: e.g. ≈ 40 ms on GPU with [Wasza et al., 2013]

(untested as no RI data were used in our experiments)

• Prediction using PCA for both models (CUDA, using cuBLAS): 5-10 ms
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• Application phase (usually time-critical):
• Deformable mesh registration: e.g. ≈ 40 ms on GPU with [Wasza et al., 2013]

(untested as no RI data were used in our experiments)

• Prediction using PCA for both models (CUDA, using cuBLAS): 5-10 ms
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