3D+t Statistical Shape Model of the Heart for X-ray Projection Imaging

Mathias Unberath

Pattern Recognition Lab, FAU Erlangen Radiological Sciences Laboratory, Stanford University

October 22, 2014

Friedrich-Alexander-Universität Erlangen-Nürnberg Figure: Prevalence of cardiovascular disease in the US¹.

 $^1{\rm Go}$ et al., "Heart disease and stroke statistics–2013 update: a report from the American Heart Association."

Introduction

 $^2 {\rm Go}$ et al., "Heart disease and stroke statistics–2013 update: a report from the American Heart Association."

Introduction

C-arm CT dominant in interventional angiography \rightarrow Acquisition times of $\approx 5 \, s$ Motion compensation: Performance evaluation X-rays: somewhat "unhealthy"

C-arm CT dominant in Motion compensation: \rightarrow 4D reconstruction \rightarrow Improved guidance Performance evaluation X-rays: somewhat "unhealthy"

C-arm CT dominant in Motion compensation: Performance evaluation \rightarrow Exhaustive testing \rightarrow Normal and pathologic cases X-rays: somewhat "unhealthy"

C-arm CT dominant in Motion compensation: Performance evaluation X-rays: somewhat "unhealthy" \rightarrow No ground-truth for real data

Need for artificial data \rightarrow Simulation frameworks \rightarrow Numerical phantoms Enable comparison: XCAT

 \rightarrow Licensing fee

Need for artificial data \rightarrow Simulation frameworks \rightarrow Numerical phantoms Enable comparison: XCAT

 \rightarrow Licensing fee

Need for artificial data

 Simulation frameworks
 Numerical phantoms

 Enable comparison:

 Framework: CONRAD

 XCAT

 3D from Visible Human
 Motion from one CT s

- \rightarrow Developed for ET
- \rightarrow Licensing fee

Need for artificial data Enable comparison: \rightarrow Framework: CONRAD XCAT

End-diastole

End-systole

Need for artificial data

- ightarrow Simulation frameworks
- \rightarrow Numerical phantoms
- Enable comparison:
 - \rightarrow Framework: CONRAD
- XCAT
 - \rightarrow 3D from Visible Human
 - $\rightarrow~$ Motion from one CT set
 - $\rightarrow~$ Developed for ET
 - $\rightarrow\,$ Licensing fee

A new phantom should be:

- available
- dynamic (temporal variation)
- versatile (inter-subject variation)
- clinically relevant

Dynamic statistical shape model of the heart.

A new phantom should be:

- available
- dynamic (temporal variation)
- versatile (inter-subject variation)
- clinically relevant

Dynamic statistical shape model of the heart.

Training set generation

Registration Pipelines Results Conclusions

Model-building and simulation

Alignment and principal component analysis Results and conclusions

Summary

Training set generation

Registration Pipelines Results Conclusions

Model-building and simulation

Alignment and principal component analysis Results and conclusions

Summary

Learn valid behavior from training set Many shapes from diverse anatomies.³

Point correspondence **must** be established/preserved.

? Data-driven segmentation (incl. manual)

! Registration-based segmentation

Learn valid behavior from training set Many shapes from diverse anatomies.³

Point correspondence **must** be established/preserved.

- **?** Data-driven segmentation (incl. manual)
- ! Registration-based segmentation

³How "many" and how "diverse"?

Propagate landmarks from atlas to new images.^{4,5}

What is needed?

- Landmarked atlas segmentation
- Registration pipeline

What atlas? What pipeline?

⁴Frangi et al., "Automatic construction of multiple-object three-dimensional statistical shape models: Application to cardiac modeling".

 $^{^5 \}rm Ordas$ et al., "A statistical shape model of the heart and its application to model-based segmentation".

- 1. Manual segmentation in ITK Snap
- 2. Mesh generation (coarsening and smoothing)

Data set used:

- $512 \times 512 \times 241$ pixels
- $\blacksquare~0.29\times0.29\times0.5\,mm$ spacing

Atlas segmentation

Figure: Axial slice

Figure: Surface rendering

Comparison of two pipelines:

Demons-based

Rigid:

- similarity transform
 - mean-squares
- Non-rigid: multi-resolution
 - Thirion's Demons
 - optical flow

Spline-based

Rigid:

- similarity transform
- mutual information
- Non-rigid: multi-resolution
 - B-spline transforms
 - mutual information

- **Rotation** $R \in \mathbb{R}^{n \times n}$
- **Translation** $oldsymbol{t} \in \mathbb{R}^n$
- Isotropic scaling σ , such that $det(R) = \sigma^n$

Similarity transform

$$\mathcal{T}(\boldsymbol{x}) = R\boldsymbol{x} + \boldsymbol{t}$$

x: a physical location

Homologous points map to similar intensity Calculate displacements using optical flow

Initialize $\boldsymbol{D}_0(\boldsymbol{x})$, then update:

Thirion's Demons

$$oldsymbol{D}_i(oldsymbol{x}) \propto -(m(oldsymbol{x}) - f(oldsymbol{x}))
abla f(oldsymbol{x})$$

f, m are the fixed and moving image $\label{eq:stars} \blacksquare \mbox{ Smooth } {\bm D}_i({\bm x}) \mbox{ between iterations with Gaussian}$

Reduce uncertainty in X by knowing Y No explicit form of dependency needed

Mutual information

$$\int \int p_{fm}\left(f(\boldsymbol{x}), m(\boldsymbol{y})\right) \log \left(\frac{p_{fm}\left(f(\boldsymbol{x}), m(\boldsymbol{y})\right)}{p_{f}\left(f(\boldsymbol{x})\right) p_{m}\left(m(\boldsymbol{y})\right)}\right) \, \mathrm{d}\boldsymbol{x} \mathrm{d}\boldsymbol{y}$$

 $f,\ m$ are the fixed and moving image p_f and $p_m,$ and p_{fm} are the marginal and joint histograms

MI: intuitive examples

Independence

$$p(X,Y) = p(X) \ p(Y) \ \rightarrow \ \log\left(\frac{p(X,Y)}{p(X) \ p(Y)}\right) = 0$$

Figure: No misalignment

Figure: 10° rotation

MI: intuitive examples

Independence

$$p(X,Y) = p(X) p(Y) \rightarrow \log\left(\frac{p(X,Y)}{p(X) p(Y)}\right) = 0$$

Figure: No misalignment

Figure: 10° rotation

Smooth transforms defined on control grid *Weighted sum of points in finite support region*

1D B-Spline

$$\mathcal{T}(\boldsymbol{x}) = \sum_{n=0}^{d} B_n(u) \Phi_{k+n},$$

$$\begin{split} u &= \frac{x}{n_x} - \lfloor \frac{x}{n_x} \rfloor \in [0, 1] \quad k = \lfloor \frac{x}{n_x} \rfloor - 1 \\ B_n(u) \text{: B-Spline basis function (:= weights)} \\ \Phi_i \text{: control points in grid} \end{split}$$

Registration: Reminder

Demons-based

Rigid:

- similarity transform
- mean-squares
- Non-rigid: multi-resolution
 - Thirion's Demons

Spline-based

Rigid:

- similarity transform
- mutual information

Non-rigid: *multi-resolution*

- B-spline transforms
- mutual information
- $\rightarrow 2h21min$

Procedure

- Fix registration parameters
- Register to data at all cardiac phases

Quality assessment

Representative female and male patient data

- Visual evaluation
- Expert ranking

Visual evaluation: End-Diastole

Figure: Female, B-splines: Coronal view

Figure: Female, Demons: Coronal view

Visual evaluation: End-Systole

Figure: Male, B-splines: Coronal view

Figure: Male, Demons: Coronal view

Visual evaluation: Discussion

Demons

- + Short computation time (GPU)
 - Marginally separated structures
 - Low-contrast boundaries
 - "Minimal regularization": Gaussian smoothing

Visual evaluation: Discussion

B-Spline

- + Support region: "regularization"
- + Better agreement with data
- $\pm\,$ Many tunable parameters
- \pm Marginally separated structures
- Complexity

Procedure

Comparison and rating of 20 images at all cardiac phases, each.

3 experts

• Grades
$$\in [0, 5]$$
, 5 := best

Expert ranking: Results

Figure: Average grade at different heart phases

Expert ranking: Discussion

- \blacksquare B-Spline: 3.33 ± 0.51
- **Demons:** 2.19 ± 0.45
- $\rightarrow\,$ B-Spline pipeline significantly better!
- Atlas segmentation is at 78% phase (end-diastole)
 Induces bias.

- **B-Spline:** 3.33 ± 0.51
- \blacksquare Demons: 2.19 ± 0.45
- $\rightarrow\,$ B-Spline pipeline significantly better!
- Atlas segmentation is at 78% phase (end-diastole)
 → Induces bias.

- Reduce bias: create atlas from "mean heart"
- Automatic registration: parameters fixed
- Stability w.r.t. global contrast variations?
- Regularization, local adaptation,...

Training set generation: not time-sensitive \rightarrow *Use of B-Spline pipeline favorable.*

- Reduce bias: create atlas from "mean heart"
- Automatic registration: parameters fixed
- Stability w.r.t. global contrast variations?
- Regularization, local adaptation,...

Training set generation: not time-sensitive \rightarrow *Use of B-Spline pipeline favorable.*

Best case scenario

Figure: Atlas segmentation

Figure: Female, end-diastole

Training set generation

Registration Pipelines Results Conclusions

Model-building and simulation

Alignment and principal component analysis Results and conclusions

Summary

Statistical shape model generation Four step process:

- 1. Obtain training shapes
- 2. Establish point correspondence
- 3. Align shapes
- 4. Extract principal modes of variation

20 ten phase CTA data sets

9 male patients: 23-92 y/o $(59.56 \pm 25.10 \text{ years})$ 11 female patients: 51-81 y/o $(70.45 \pm 12.89 \text{ years})$

Ejection fractions: $52.13 \pm 9.11\%$

Generalized Procrustes Analysis *Pose and scale is not part of shape.*

- Analytic solution for two shapes
- Iterative procedure, else

- 1. Center and scale input samples X_i
- 2. Rotate all n shapes X_i to fit X_1
- 3. Calculate consensus shape Y
- 4. Until convergence:
 - Rotate and scale X_i to consensus Y
 - Reassure proper scaling
 - Calculate residual change

- Considerable amount of computation requiredConverges well
- \blacksquare 0.1% of initial residual \rightarrow 6 iterations

Goals of Principal Component Analysis

- Extract most important information from the data
- Reduce dimensionality of the data
- Simplify description of shapes

Procedure

- 1. Compute mean shape \bar{X}
- 2. Covariance matrix: $S = \sum_{i=1}^{n} (X_i \bar{X}) (X_i \bar{X})^T$

3. Solve:
$$S \Phi_k = \lambda_k \Phi_k$$

4. Pick largest c principal components Φ_k e.g. cumulative variance $r > 75, \cdots, 99\%$

Statistical shape model: $\{\bar{X}, \Phi\}$

Statistical shape model: $\{ \bar{X}, \Phi \}$

Shape description

$$X_i \approx \bar{X} + \sum_{k=1}^c \beta_{i,k} \Phi_k$$

 $\Phi_k: c < n$ principal modes of variation $\beta_k:$ principal components

Inter-subject and temporal variation. *Valid dynamic shapes from multi-phase data.*

- 1. Shape models at phase $p{:}~\{\bar{X}, {\bf \Phi}\}^{(p)}$
- 2. Principal components of shapes: $\boldsymbol{\beta}_i^{(p)}$
- 3. Build component vector: $\boldsymbol{\beta}_i = (\boldsymbol{\beta}_i^{(1)}, \cdots, \boldsymbol{\beta}_i^{(p)})$

PCA on component vectors: $\{\bar{\beta}, \rho\}$ Compact interface for dynamic model generation

Dynamic model

$$(\boldsymbol{\varkappa}^{(1)},\cdots,\boldsymbol{\varkappa}^{(p)})=(\bar{X}^{(1)},\cdots,\bar{X}^{(p)})+(\boldsymbol{\Phi}^{(1)},\cdots,\boldsymbol{\Phi}^{(p)})(\bar{\boldsymbol{\beta}}+\boldsymbol{\rho}\,\boldsymbol{\delta})$$

Interpolation for continuous representation.

Cross validation: leave-one-out test *Capability to represent unseen instances.*

- Exclude shape from model
- Fit model to shape
- Compute error

90% variation: $5.00 \pm 0.93 \, mm$ 95% variation: $4.89 \pm 0.90 \, mm$ **Random shape sampling** *Validity of new instances.*

Generate random component vectors

Compute distance to nearest training shape

Static:1000 samples $7.18 \pm 0.45 mm$ Dynamic:100 samples $7.30 \pm 0.97 mm$

Results: Variability at diastole

Figure: Decreasing variance μ from left to right: $\delta_b = -\mu_b/2$ top, $\delta_b = \mu_b/2$ bottom, and $\delta_b = 0$ mid.

Model-building and simulation

Mathias Unberath

Results: Projection imaging

Figure: Volume rendering

Figure: Projection image

- Large variation among few samples
- Deteriorates specificity
- $\rightarrow\,$ Revisit training set generation
 - Currently: anatomy at rest determines contraction
- \rightarrow Multi-linear PCA

To our knowledge the first open-source, dynamic statistical shape model of the heart.⁶

⁶Available at: http://www5.cs.fau.de/conrad/

Training set generation

Registration Pipelines Results Conclusions

Model-building and simulation

Alignment and principal component analysis Results and conclusions

Summary

We...

 compared two registration-based segmentation pipelines.
 MI-driven B-Splines superior

developed a dynamic SSM of the heart.
 Open-source, freely available

All algorithms and sample projections are available.⁷

⁷http://www5.cs.fau.de/conrad/

Questions? Comments?