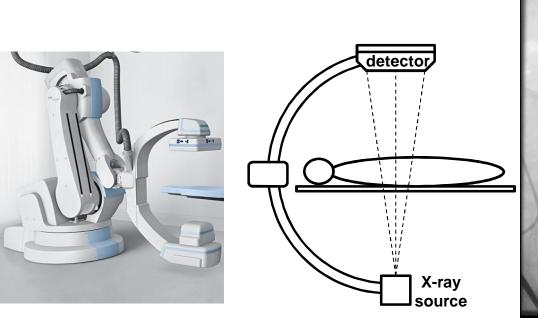
Gradient-Based Differential Approach for Patient Motion Compensation in 2D/3D Overlay

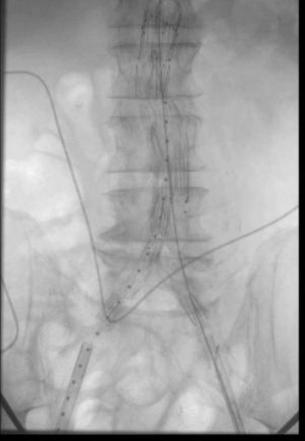
3D 2014

Jian Wang^{*†}, Anja Borsdorf[†], Benno Heigl[†], Thomas Köhler^{*‡}, Joachim Hornegger^{*‡}

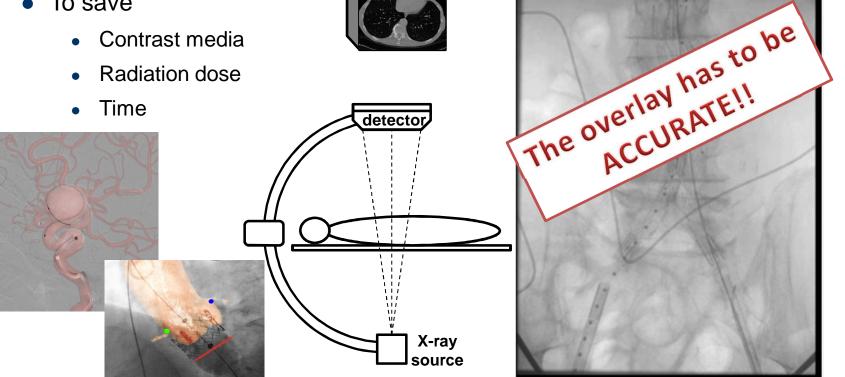
*Pattern Recognition Lab, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany † Siemens Healthcare, Forchheim, Germany ‡Erlangen Graduate School in Advanced Optical Technologies (SAOT), Erlangen, Germany

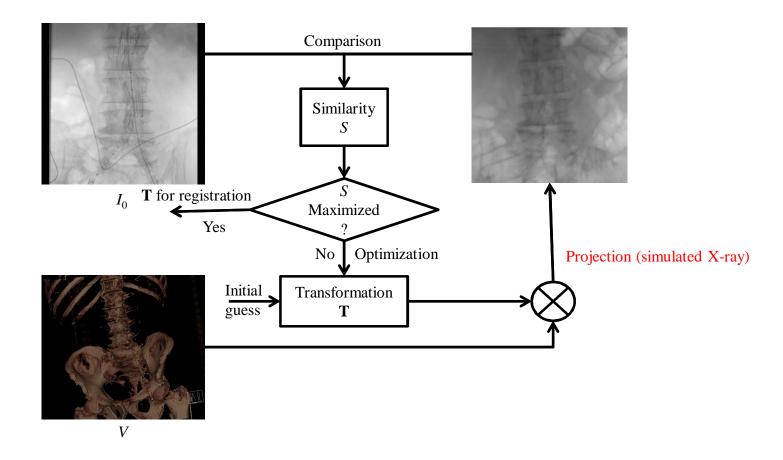
Jian Wang 12/10/2014


International Conference on 3D Vision The University of Tokyo, Tokyo, Japan December 8th - 11th, 2014

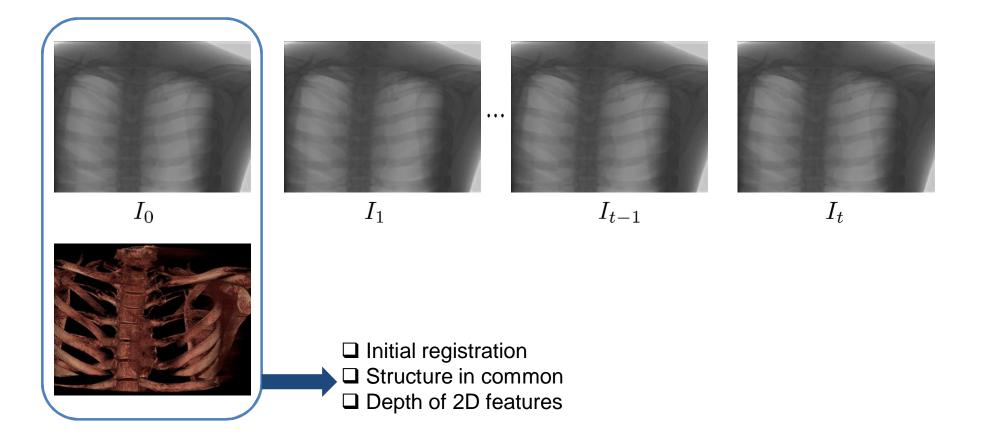


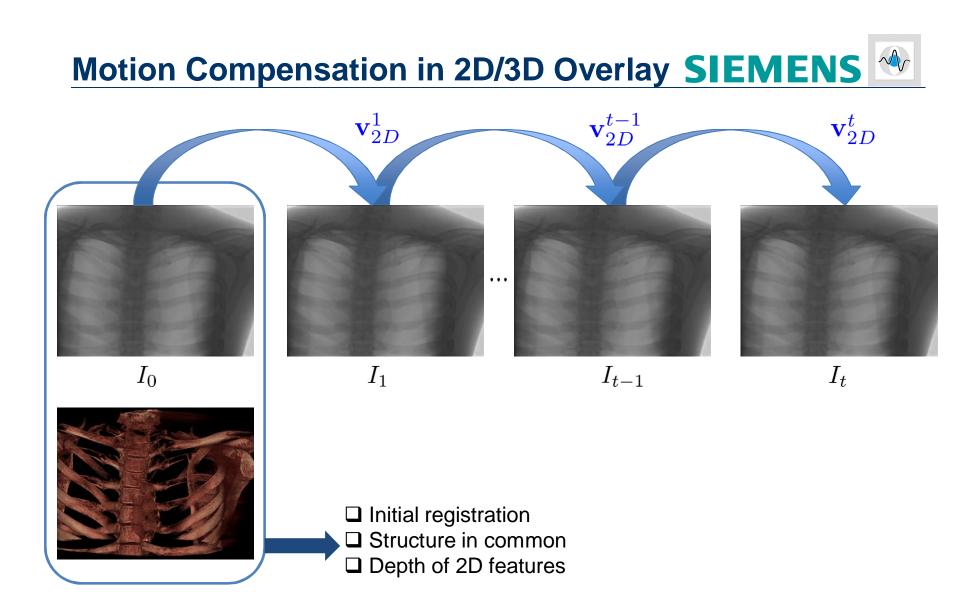
Vascular & interventional radiology

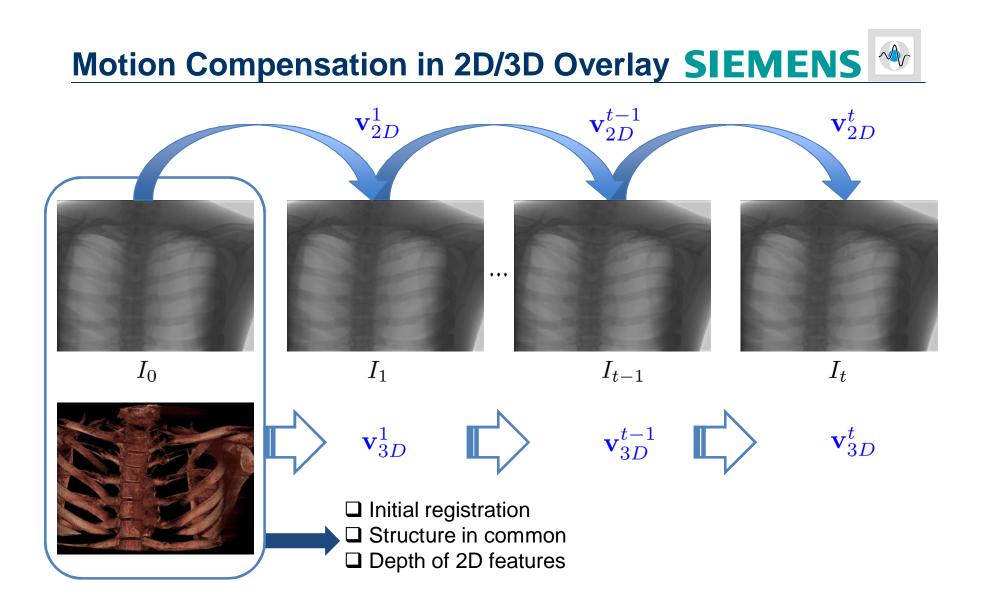

- Interventional C-arm system
 - Fluoroscopy: real-time guidance
 - Interventional devices
 - Vascular structure (contrast media)


\sim 2D/3D overlay during the intervention **SIEMENS**

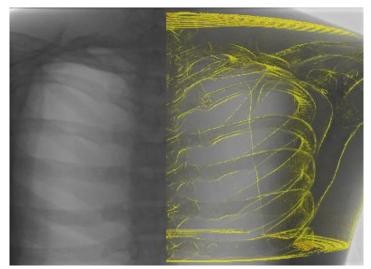
- 3D image (CT/MR ...) onto 2D fluoroscopy
 - Structures not visible in X-ray images
 - Planning information
- To save
 - Contrast media






- Iterative optimization based on digitally reconstructed radiograph (DRR)
 - Usually **not real-time capable** for motion correction

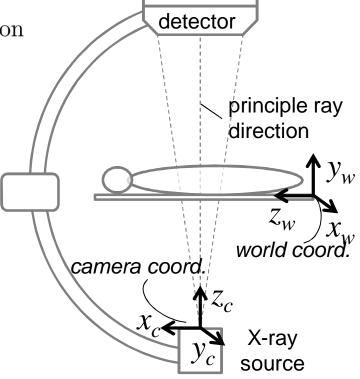
Motion Compensation in 2D/3D Overlay SIEMENS



3DV 2014 12/10/2014 | Jian Wang | Gradient-Based Differential Motion Compensation for 2-D/3-D Image Fusion

Gradient-Based Differential Approach SIEMENS

- Small motion assumption
 - Differential form of 3D rigid motion, i.e. rotation and translation
- Observed motion vs. image gradient
 - Motion observed along gradient direction (2D and 3D)
- Contours / edges are important for motion estimation
 - 2D: border of a region with remarkably different attenuation values
 - 3D: gradient perpendicular with viewing direction

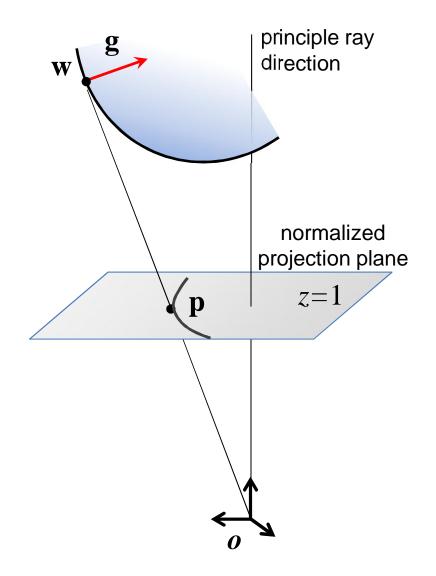

The Projection Model of C-Arm System SIEMENS

• Pinhole camera model

 $\mathbf{x} \doteq \mathbf{P}\mathbf{w}$, where \mathbf{w} is 3D point and \mathbf{x} is 2D projection

• The projection matrix in camera coordinate system

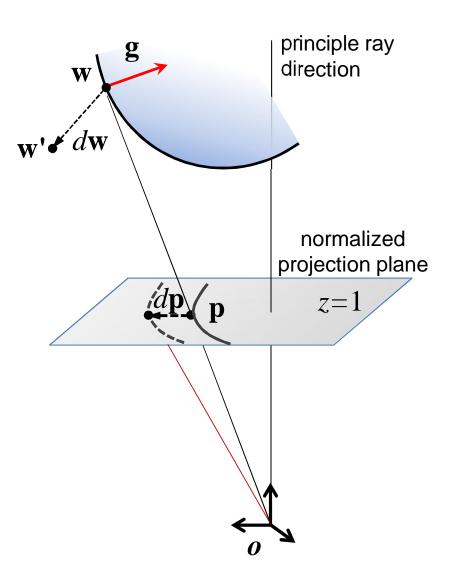
$$\mathbf{P}_e = \mathbf{K} \left[\mathbf{I} | \mathbf{0}
ight] \in \mathbb{R}^{3 imes 4}$$


The Geometric Setup

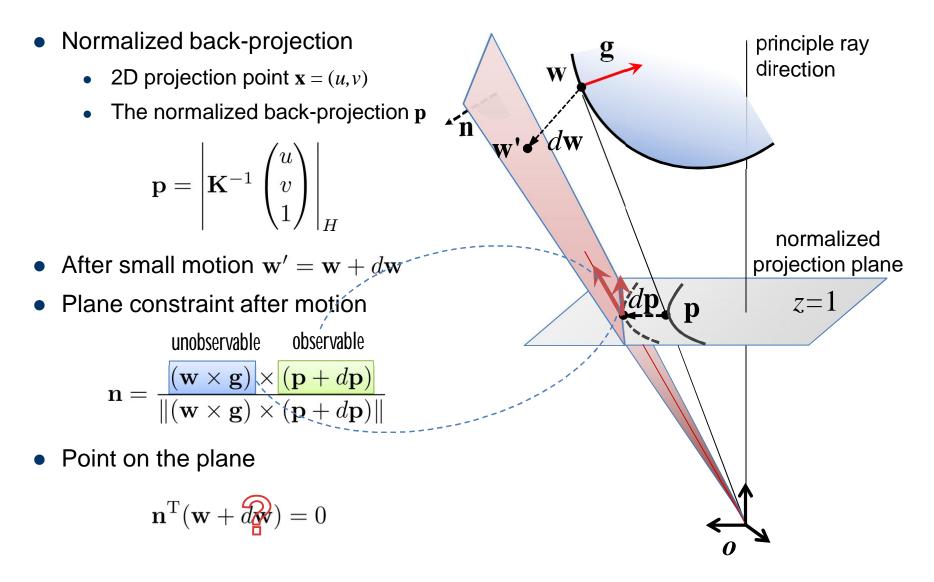
- Normalized back-projection
 - 2D projection point $\mathbf{x} = (u, v)$
 - The normalized back-projection **p**

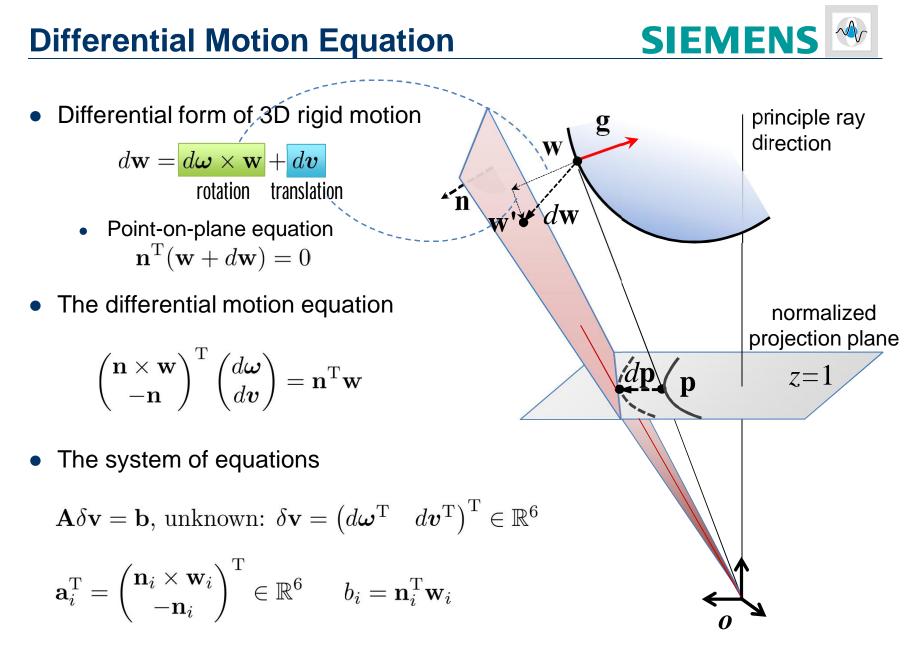
$$\mathbf{p} = \left| \mathbf{K}^{-1} \begin{pmatrix} u \\ v \\ 1 \end{pmatrix} \right|_{H}$$

$$\left| \begin{pmatrix} x \\ y \\ w \end{pmatrix} \right|_{H} = \begin{pmatrix} x/w \\ y/w \\ 1 \\ 1 \end{pmatrix}$$


The Geometric Setup

- Normalized back-projection
 - 2D projection point $\mathbf{x} = (u, v)$
 - The normalized back-projection **p**


$$\mathbf{p} = \left| \mathbf{K}^{-1} \begin{pmatrix} u \\ v \\ 1 \end{pmatrix} \right|_{H}$$


• After small motion $\mathbf{w}' = \mathbf{w} + d\mathbf{w}$

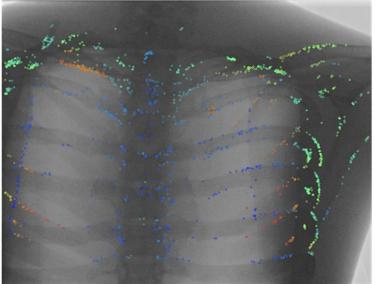
The Geometric Setup

3D volume analysis & 3D selection

- Intensity windowing
- gradient thresholding
- Occluding contour points selection
 - 2D: gradient magnitude
 - 2D/3D: patch-wise similarity
 - 3D:View-gradient perpendicularity

$$\alpha = \arccos\left(\left|\frac{\mathbf{g} \cdot \mathbf{w}}{\|\mathbf{g}\| \cdot \|\mathbf{w}\|}\right|\right)$$

 $\{\mathbf{w}_i, \mathbf{g}_i, \mathbf{p}_i\}_{\text{sel}}$


• Selection:

3DV 2014 12/10/2014 | Jian Wang | Gradient-Based Differential Motion Compensation for 2-D/3-D Image Fusion

Occluding Contour Point Selection

- Volume pre-processing
 - 3D guided image filter

Tracking and Motion Estimation

- 2D tracking (*d***p**)
 - Kanade-Lucas-Tomasi optical flow
- Iteratively re-weighted least squares (IRLS)

Reminder of the linear equation

$$\begin{pmatrix} \mathbf{n} \times \mathbf{w} \\ -\mathbf{n} \end{pmatrix}^{\mathrm{T}} \begin{pmatrix} d\boldsymbol{\omega} \\ d\boldsymbol{v} \end{pmatrix} = \mathbf{n}^{\mathrm{T}} \mathbf{w}$$

$$\mathbf{n} = \frac{(\mathbf{w} \times \mathbf{g}) \times (\mathbf{p} + d\mathbf{p})}{\|(\mathbf{w} \times \mathbf{g}) \times (\mathbf{p} + d\mathbf{p})\|}$$

$$\mathbf{A}\delta\mathbf{v} = \mathbf{b} \Rightarrow \widehat{\delta\mathbf{v}} = \arg\min_{\delta\mathbf{v}} \sum_{i}^{N} \beta_i \left(\mathbf{a}_i^{\mathrm{T}}\delta\mathbf{v} - b_i\right) \text{, where } \beta_i = \beta_{z,i} \cdot \beta_{r,i}$$

- The observation weight $\beta_{z,i}$
 - Tracking error term and the view-gradient perpendicularity
- The residual weight

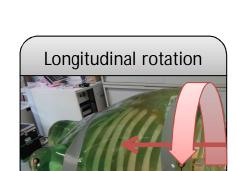
$$\beta_{r,i}^{(t)} \sim 1/r(\delta \mathbf{v}^{(t-1)})$$

• The residual term at *t*-th iteration is

$$r(\delta \mathbf{v}^{(t-1)}) = \mathbf{a}_i^{\mathrm{T}} \widehat{\delta \mathbf{v}}^{(t-1)} - b_i$$

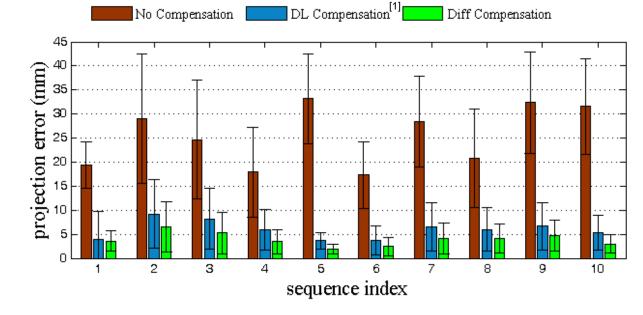
Experiment: Data Acquisition

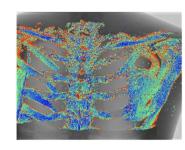
- Image acquisition
 - Interventional C-arm system
 - 3D C-arm CT volume
 - 2D fluoroscopic sequences
 - Motion triggered manually


- Ground-truth motion acquisition
 - OptoTrak motion capture system

3D Motion Error Statics

- The **motion recovery rate** for motion component *m* $r(m) = 1 - \epsilon(m) / \max|m^*|$
- Major motion recovery
 - In-plane: $r(R_y) = 97.4\%$, $r(t_x) = 95.4\%$, $r(t_z) = 96.7\%$
 - Off-plane rotation: $r(R_z) = 79.9\%$


	seq.	# fr.	$\max R_x^* (^\circ)$	$\epsilon(R_x)(^\circ)$	$\max R_y^* (^\circ)$	$\epsilon(R_y)(^\circ)$	$\max R_z^* (^\circ)$	$\epsilon(R_z)(^\circ)$
	1	33	0.18	0.04 ± 0.02	0.97	0.05 ± 0.03	4.48	0.93 ± 0.43
	2	93	0.80	0.43 ± 0.26	0.52	0.05 ± 0.03	11.93	2.82 ± 1.55
	3	111	0.63	0.40 ± 0.18	0.38	0.01 ± 0.01	10.7	2.59 ± 1.04
	4	111	0.27	0.12 ± 0.11	0.56	0.03 ± 0.02	8.31	1.51 ± 0.94
	5*	110	0.06	0.07 ± 0.03	10.0	0.37 ± 0.16	0.04	0.18 ± 0.08
	7	105	0.23	0.36 ± 0.26	4.43	0.08 ± 0.07	6.82	1.54 ± 0.90
	8	117	0.26	0.32 ± 0.18	1.47	0.04 ± 0.03	7.93	1.32 ± 0.83
	9	114	0.18	0.10 ± 0.06	4.57	0.15 ± 0.08	8.13	1.89 ± 0.92
3	seq.	# fr.	$\max t_x^* (\mathrm{mm})$	$\epsilon(t_x)(\mathrm{mm})$	$\max t_y^* (mm)$	$\epsilon(t_y)(\mathrm{mm})$	$\max t_z^* (\mathrm{mm})$	$\epsilon(t_z)(\mathrm{mm})$
0	1	33	2.76	1.13 ± 0.67	0.99	2.27 ± 1.66	0.16	0.09 ± 0.07
	2	93	4.58	2.96 ± 1.63	0.71	2.06 ± 1.01	0.61	0.64 ± 0.39
	3	111	4.19	3.11 ± 1.32	0.66	3.41 ± 1.37	0.65	0.53 ± 0.24
	4	111	5.72	2.12 ± 1.26	1.40	1.39 ± 0.56	0.94	0.16 ± 0.13
	5*	110	69.3	2.29 ± 0.93	0.45	0.91 ± 0.37	6.31	0.22 ± 0.10
	7	105	30.0	2.62 ± 1.36	0.58	1.27 ± 1.06	0.44	0.59 ± 0.32
	8	117	9.81	1.68 ± 0.94	1.24	1.13 ± 0.69	0.15	0.63 ± 0.36
	9	114	30.3	1.17 ± 0.57	1.69	3.56 ± 1.66	0.11	0.16 ± 0.14

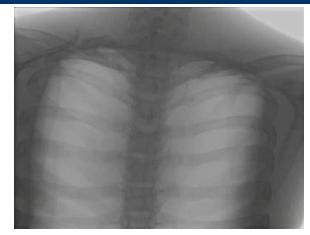


Correction of 2D Misalignment

- The evaluation of the misalignment in the overlay
 - Structures of interest: pre-selected feature points
 - Misalignment measurement for each frame k
 - $\sum \left(dist(p_i^{est,k}, p_i^{GT,k}) \right)$, where $dist(\cdot, \cdot)$ is the Euclidean distance
 - Choose the frame with largest projection shift $\sum (dist(p_i^{I}, p_i^{GT}))$
 - Correction of misalignment from [17.3, 33.2] mm to [1.9, 6.5] mm

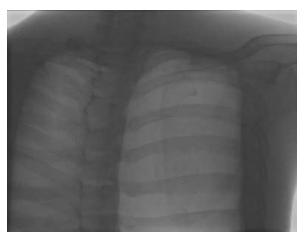
[1] Wang et al., Depth-Layer Based Patient Motion Compensation for the Overlay of 3D Volumes onto X-Ray Sequences, BVM, 2013

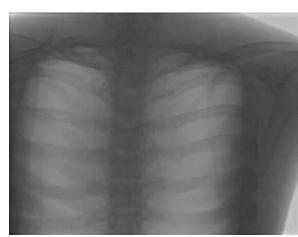
Conclusion & Outlook



- Conclusion
 - Gradient-based differential 3D motion estimation
 - Mathematical model from 2D motion to 3D differential motion
 - An iteratively re-weighted least square (IRLS) minimization
 - Capable of estimating 3D motion out of 2D tracking
 - over 95% recovery rate for in-plane motion
 - ~80% recovery rate for off-plane longitudinal rotation
 - Correction of misalignment: 8/10 cases under 5 mm (clinical failure threshold [2])
- Outlook
 - Refinement to compensate the approximation error
 - Re-initialization of the features considering 2D/3D correspondence
 - Robustness enhancement
 - More motion models (articulated motion, free form deformation)
 - External disturbance (interventional device, contrast injection)

^[2] Gendrin et al., Validation for 2D/3D registration II: The comparison of intensity-and gradient-based merit functions using a new gold standard data set, Medical Physics, 2011


3 2014 Thank you for your attention! Poster Session: P2-25



jian.wang@fau.de

3DV 2014 12/10/2014 | Jian Wang | Gradient-Based Differential Motion Compensation for 2-D/3-D Image Fusion