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Abstract—In interventional radiology, preoperative 3-D vol-
umes can be fused with intra-operative 2-D fluoroscopic images.
Since the accuracy is crucial to the clinical usability of image
fusion, patient motion resulting in misalignments has to be
corrected during the procedure. In this paper, a novel gradient-
based differential approach is proposed to estimate the 3-D
rigid motion from the 2-D tracking of contour points. The
mathematical relationship between the 3-D differential motion
and the 2-D motion is derived using the 3-D gradient, based
on which a tracking-based motion compensation pipeline is
introduced. Given the initial registration, the contour points are
extracted and tracked along 2-D frames. The 3-D rigid motion
is estimated using the iteratively re-weighted least square
minimization to enhance the robustness. Our novel approach is
evaluated on 10 datasets consisting of 1010 monoplane fluoro-
scopic images of a thorax phantom with 3-D rigid motion. Over
all datasets, the maximum structure shift in the 2-D projection
caused by the 3-D motion varies from 17.3 mm to 33.2 mm.
Our approach reduces the 2-D structure shift to the range of
1.93 mm to 6.52 mm. For the most challenging longitudinal
off-plane rotation, our approach achieves an average coverage
of 79.9% regarding to the ground truth.

Keywords-2-D/3-D image fusion; motion compensation; in-
terventional radiology; gradient-based approach

I. INTRODUCTION

In current clinical practice, interventional radiology be-
comes a standard routine for image-guided minimally in-
vasive procedures, e. g. endovascular aneurysm coiling, bal-
loon angioplasty and stenting. Interventional C-arm systems
provide two-dimensional (2-D) fluoroscopic X-ray images
for real-time guidance. Preoperative three-dimensional (3-D)
volumes (e.g. X-ray computed tomography) can be fused
onto the live 2-D X-ray images. 2-D/3-D image fusion
provides complementary information from the 3-D volume
that is not directly available in 2-D fluoroscopic images,
e. g. preoperative planning information, depth information
or vascular structures without contrast media.

The accuracy of image fusion is critical to the clinical
usability, which leads to the topic of 2-D/3-D image regis-
tration [1]. In clinical practice, 2-D/3-D registration is per-
formed at the starting point to ensure the overlay accuracy.

However, the patient motion during the intervention must be
corrected as well. In recent years, efforts have been made
for cardiac and breathing motion compensation. Brost et al.
[2] proposed a breathing motion compensation approach for
electrophysiology (EP) procedures, where 2-D motion is es-
timated and extracted by catheter tracking. Hadida et al. [3]
proposed an approach for 3-D motion compensation of coro-
nary arteries, where a stochastic model of the cardiac cycle
is used for the deformation estimation. However, there are
still challenges for general patient movement compensation:
1) breathing/cardiac model-based methods are restricted to
the model cycles and the patient movement usually leads
to the failure of these approaches; 2) device-tracking-based
approaches are restricted to certain procedures; 3) pure
2-D motion compensation is not fundamentally correct and
estimation of 3-D motion from a monoplane system is
challenging [2]. Currently, patient movement correction is
done by manually triggering the registration procedure when
misalignment is detected.

The image gradient contains important structural informa-
tion, thus 2-D and 3-D gradient-based registration methods
have been widely investigated [4], [5], [6], [7]. However,
most of the methods are not designed for real-time motion
compensation and it is usually computationally expensive
to perform the registration procedure each frame. On the
contrary, tracking-based approaches are investigated for real-
time motion compensation [2], [8], [9]. However, these
approaches are limited to 2-D motion estimation. The goal of
our work is to build a tracking-based motion compensation
framework, where 3-D motion is recovered from 2-D motion
using more image information (e. g. gradient).

Recently, Wang et al. [10] proposed a depth-layer-based
tracking approach for patient motion compensation. Since
initial registration is usually available, the structures from
2-D and 3-D are well aligned. Instead of a whole volume
rendering, the depth-layer images are rendered from different
depth intervals. The depth information of 2-D feature points
can be estimated by performing a patch-wise local similarity
measure (e. g. normalized cross correlation) between the



initial frame and the depth-layer images. By 2-D tracking
of the extracted points, 3-D rigid motion is estimated from
the point correspondences. However, this approach is not
optimal for X-ray images (comparing to the optical images),
where ideal point correspondences are difficult to obtain.

In this paper, we propose a tracking-based differential ap-
proach for 3-D motion compensation using image gradient.
Since only small motion occurs between neighboring frames
during continuous acquisition, the differential approximation
of the 3-D rigid motion is employed. A mathematical rela-
tionship between the differential 3-D motion and 2-D motion
is derived using the 3-D gradient, based on which a tracking-
based motion compensation pipeline is developed. Under the
initial registration, occluding contour points are initialized
based on 3-D gradient analysis and 2-D/3-D selection crite-
ria. By tracking of the contour points in 2-D X-ray images,
the 3-D rigid motion is estimated frame by frame using an
iteratively re-weighted least square estimation scheme.

The remainder of the paper is structured as follows:
after a brief problem description (Sec. II-A), the math-
ematical derivation of the relationship between 2-D and
3-D differential motion is presented in Sec. II-B. Then, the
tracking-based motion compensation pipeline is introduced
in Sec. II-C. Experiments are explained and the evaluation
is discussed in Sec. III. At last, Sec. IV concludes the paper
with an outlook.

II. METHOD

A. Problem Description

As illustrated in Fig. 1(a), an interventional C-arm sys-
tem can be modeled as a pinhole camera [11], where the
camera center is the X-ray source and the imaging plane is
the detector. The projection geometry is described by the
projection matrix

P = K[Re|te] ∈ R
3×4 , (1)

where K ∈ R
3×3 is the camera matrix, Re ∈ R

3×3 and
te ∈ R

3 are respectively rotation and translation of the
camera center in the world coordinate system [12]. Without
loss of generality, we use the camera coordinate system for
derivation, where the projection matrix is simplified as

Pe = K[I|0] . (2)

Given the projection parameters, the 3-D volume can
be rendered as imaged from the X-ray focus. The image
fusion is done by blending the resulting image to the
live fluoroscopic image [11]. After the initial registration,
the corresponding structures of the patient’s anatomy are
properly aligned in the fused image. Our task is to estimate
the 3-D motion out of the fluoroscopic image sequence and
apply it to the 3-D volume rendering, such that the alignment
is maintained under the patient movement. Since bone
structures are usually well observed in X-ray images and
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Figure 1. (a) Illustration of the projection model of a C-arm system
and the coordinate systems; (b) Sketch for the mathematical relationship in
gradient-based differential motion estimation.

directly present the patient movement, they are employed
as the anatomical target for motion estimation. Therefore,
the target movement is modeled as 3-D rigid motion since
bones almost stay rigid during the intervention.

B. Mathematical Model for Differential 3-D Motion given
2-D Motion and 3-D Gradient

During the continuous 2-D acquisition, the difference
between two neighboring frames gives a good impression
how the object moves in 3-D. However, a mathematical
model is required to apply this impression for motion
estimation. In this section, we derive the mathematical
relationship between 2-D motion to 3-D differential motion
using gradient information.

3-D points on occluding contours have strong gradient
in the 3-D volume and also appear in the projection im-
age as the border of a region having remarkably different
attenuation values in relation to its neighborhood. This is
the case, e. g. for bone structures surrounded by water-
like environment or soft tissue. Thus, the occluding contour
points are chosen as the target for our motion estimation
approach.

In the X-ray image sequence, a movement of a point x ∈
R

2 can be determined only in the direction of the image
gradient vector ∇I(x), where I is the 2-D image function
of the projection image. Similarly, within a vicinity of a
point w ∈ R

3 in 3-D, a small movement only causes a
change of intensity values if the movement has a component
in the direction of its 3-D gradient vector g = ∇f(w) ∈ R

3

(Fig 1(b)), which can be determined for each point w from
the volume data described by the 3-D image function f .
All movements orthogonal to g do not change the intensity
values in the vicinity of w.

In this case, the 2-D motion vector dx and 3-D gradient
vector g are co-planar as both are related to the same oc-
cluding contour. Therefore, we assume that only movements
in the direction of the 2-D and 3-D image gradients are
observable, which is the intuition behind the derivation.



As illustrated in Fig. 1(b), a 2-D point x is normalized as
p ∈ R

3 in homogeneous coordinate with respect to the focal
length, such that the normalized point p is treated as a 3-D
point lying on the plane z = 1 in the camera coordinate
system. Under the convention in Eq. (2), given the image
coordinate x = (u, v) of the projection of w, the normalized
image coordinate is formulated as the back-projection

p =

∣∣∣∣∣∣K−1

⎛
⎝u
v
1

⎞
⎠
∣∣∣∣∣∣
H

, (3)

where |·|H denotes the homogeneous normalization, such
that the last element of p is normalized as 1.

Under the small motion assumption, the 3-D motion vec-
tor dw ∈ R

3 of the 3-D point w between two neighboring
frames is represented by the differential form as

dw = dω ×w + dv , (4)

where dω ∈ R
3 denotes the differential rotation around the

origin1 and dv ∈ R
3 denotes the differential translation. As

shown in Fig 1(b), dw, ω and v are drawn as dotted lines to
show that they can lie outside of the drawing plane described
by o, w, and the 3-D gradient vector g.

Based on the above considerations, the 2-D and 3-D
movements are now related to each other by a plane Π
containing the target point of the movement w + dw, the
coordinate origin o, and the moved image point p+dp. The
normal n ∈ R

3 of this plane can be computed by

n =
(w × g)× (p+ dp)

‖(w × g)× (p+ dp)‖ . (5)

Now, the plane Π is defined by the normal n and the
coordinate origin o. Therefore, a point a lies on Π if
nT(a− o) = 0, i.e. nTa = 0. Therefore, the following
equation holds for w + dw as

nT(w + dw) = 0 . (6)

By substituting dw in Eq. (4) to Eq. (6), it yields

nT(dω ×w) + nTdv + nTw = 0 . (7)

After reformulating the equation in the way that the
unknown motion vector is on one side, the linear constraint
between the differential motion and a contour point (2-D/3-D
positions, i.e. p, w and gradient g) can be formulated as(

n×w
−n

)T (
dω
dv

)
= nTw . (8)

A system of linear equations can be assembled by com-
bining a set of occluding contour points {wi} with their
normalized projections {pi} (i = 1, ..., N ) as

1The differential rotation is the estimate from the Rodrigues’ rotation
formula w′ = w + sin θ(ω ×w) + (1− cos θ)ω × (ω ×w)

Aδv = b , (9)

where δv =
(
dωT dvT

)T ∈ R
6 denotes the differential

motion vector, aTi =

(
ni ×wi

−ni

)T

∈ R
6 is the i-th row of

matrix A ∈ R
N×6, bi = nT

i wi is the i-th entry of vector
b ∈ R

N and N is the number of points. At least N =
6 points are acquired for the closed-form solution of the
motion vector δv using the pseudo-inverse as

δ̂v =
(
ATA

)−1
ATb . (10)

Given the differential motion vector δv, the rotation
matrix δR ∈ R

3×3 can be calculated from dω as

δR = cos θI+ (1− cos θ)rrT + sin θ[r]× , (11)

where θ = ‖dω‖, r = dω/‖dω‖ and

[r]× =

⎡
⎣ 0 −rz ry

rz 0 −rx
−ry rx 0

⎤
⎦ . (12)

The 3-D rigid motion Tk ∈ R
4×4 is then updated from

frame k to k + 1 as

Tk+1 =

[
δR dv
0 1

]
Tk . (13)

C. Tracking-Based Differential Motion Compensation

Section II-A presents the mathematical relationship be-
tween the 3-D differential motion and 2-D motion given
the 3-D gradient. Based on this model, a tracking-based
differential motion compensation pipeline is developed. It
consists of three main steps: 1) 3-D volume gradient analysis
for pre-selection of occluding contour points; 2) Occluding
contour point extraction with 2-D/3-D correspondences; 3)
2-D tracking and motion estimation. Step 1) and 2) are
performed once as initialization. Then, step 3) is performed
for each frame. Details are described as follows.

1) 3-D gradient analysis for pre-selection of candi-
dates: Since occluding contour points have strong gradient
magnitude, volume gradient analysis is performed. He et
al. [13] recently proposed the guided image filter (GIF),
which is an effective edge and gradient preserving image
filter. We extend the GIF to 3-D for preprocessing of
the volume to reduce noise and artifacts. First, window
thresholding is applied to the intensity values in the way,
that only the voxels representing the structures of interest
(e.g. bone structures) remain for analysis. The 3-D gradient
is computed for all remaining voxels using the error function
of third degree (3EF) suggested by Rheingans and Ebert
in [14]. Thresholding on 3-D gradient magnitude is also
performed to leave out the weak contour points. The result
is a set of voxels that potentially lie on occluding contours
depending on the viewing direction. Figure 2 shows the
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Figure 2. Pre-selected candidates (white dots) in one slice of (a) the
original volume and (b) the filtered volume. The volume filtering reduces
the number of wrong candidates due to noises and artifacts comparing to
the original volume.

(a) (b)

Figure 3. (a) shows the pre-selection after volume gradient analysis, where
the color encodes the perpendicularity between the 3-D gradient and the
viewing direction (red: high perpendicularity, blue: low perpendicularity
and green: between); (b) shows the final selection of occluding contour
points, where the color encodes depth (red: near, blue: far and green: in
between).

pre-selection results of an example volume slice. Since
artifacts and noise disturb the selection, the volume filtering
significantly reduces wrong candidates (Fig. 2(b)) compared
to the results on the original volume (Fig. 2(a)). An example
of the projected candidates is shown in Fig. 3(a).

2) Occluding contour extraction with 2-D/3-D corre-
spondence: After the pre-selection of feature candidates,
occluding contour points are firstly selected in 3-D using
the projection parameters of the initial registration. The per-
pendicularity α between the 3-D gradient g and the viewing
direction w (in camera coordinate system) of each candidate
is checked by α = arccos (| (g ·w) / (‖g‖ · ‖w‖) |). In 3-D,
the points with the perpendicularity α ≥ αT are chosen to
be the occluding contour points, where αT is the threshold
controlling contour thickness.

After the 3-D perpendicularity check, the set of 3-D points
{wi} are projected onto the 2-D fluoroscopic image using
the projection geometry from the initial registration. Two
criteria are then applied to further selection of the occluding
contour points from 2-D image: 1) 2-D gradient magnitude
and 2) depth similarity maps. Occluding contour points with
high 2-D gradient magnitude are chosen, which are relatively
easy to track in the following frames; Similarity maps are
generated between the initial frame and the depth-layer
images rendered from different depth intervals as described
in [10], where patch-wise local normalized cross correlation
is employed as the similarity measure. Feature points within
the corresponding depth interval with high similarity are

chosen to neglect the points that are not observed as the
corresponding structure in the 2-D projection image. After
the feature point selection both in 3-D and 2-D, a set
of occluding contour points with 2-D/3-D correspondence
{wi,pi}sel are then used for motion estimation. Figure 3(b)
shows the contour points selected from the candidates shown
in Fig. 3(a).

3) 2-D tracking and robust motion estimation: Kanade-
Lucas-Tomasi (KLT)-based optical flow [15] is used to
measure the 2-D motion fields of the feature points along
frames. To achieve a better tracking performance, the gradi-
ent magnitude map of the k-th filtered X-ray frame is used,
i.e.‖∇h(Ik)‖, where h is the 2-D GIF [13].

After measuring the 2-D offsets, we have all the necessary
information {wi,gi,pi, dpi}sel of the feature points to set
up the linear system of equations according to Eq. (9).
A closed-form solution is available as shown in Eq. (10)
when more than 6 points are chosen. However, usually
over 1,000 candidates are available and each candidate may
have a different confidence. Therefore, instead of using
direct pseudo-inverse (Eq. (10)), the linear equation system
(Eq. (9)) is converted to a weighted least square problem as

δ̂v = argmin
δv

N∑
i

βi

(
aTi δv − bi

)2
. (14)

The above scheme allows to assign the confidence of
the i-th feature point as its weight βi. The least square
optimization can be solved using the Levenberg-Marquardt
optimization [12]. For the purpose of enhancing the ro-
bustness, an outlier-aware iteratively re-weighted estimation
scheme [16], [17] is employed. For the i-th feature point,
the confidence βi is formulated as

βi = βz,i · βr,i , (15)

where βz,i is the observation confidence and βr,i is the
estimation confidence.

The observation confidence βz,i is determined by two
observation measurements as

βz,i = N(0.5,1) (rα,i/rklt,i) , (16)

where rklt,i is the tracking residual from KLT tracker and
rα,i = 1− | cosαi| is the perpendicularity term in 3-D. The
normalization operation

N(a,b) (βi) = a+ (b− a)
βi

max(β)
(17)

is the normalization of all βi to the range of [a, b] to avoid
the dramatic influence of each factor on the weights.

Furthermore, the estimation confidence βr,i is used to
suppress outliers. It is initialized as β

(0)
r,i = 1, where

i = 1, ..., N . For further iterations, β
(t)
r,i is determined by

the corresponding residual term as

β
(t)
r,i = N(0.5,1)

(
1/r(δv(t−1))

)
, (18)



1. Initialize t = 0 and the estimation confidence β
(0)
r,i = 1 (i =

1, ..., N);
2. Determine the observation confidence βz,i from measurements using
Eq. (16);
3. Determine the residual term r(δv(t−1)) using Eq. (19);
4. Determine the confidence β

(t)
i with β

(t)
r,i using Eq. (18) and βz,i;

5. Solve for δv(t) according to Eq. (14) using Levenberg-Marquardt
optimization;
6. Set t ← t+ 1 and repeat step 3 to 5 until convergence.

Table I
THE ITERATIVELY RE-WEIGTHED LEAST SQUARES(IRLS) SCHEME FOR

MOTION ESTIMATION

where the residual term at t-th iteration is

r(δv(t−1)) = aTi δ̂v − bi (19)

For each frame k, the motion estimation is done using the
iteratively re-weigthed least squares (IRLS) (Tab. I).

III. EXPERIMENTS AND EVALUATION

A. Experimental Materials

For experimental evaluation, an interventional C-arm
system was used for image acquisition. Figure 4 shows
the experimental imaging environment. A thorax phantom
was used to acquire both 3-D volume and 2-D image se-
quence (fluoroscopy) by the calibrated C-arm system. Initial
2-D/3-D alignment was accurate, since no position change
raised between the 3-D acquisition and the initial frames of
2-D fluoroscopic images. The motion of the thorax phantom
was triggered manually by pulling a belt that was attached
to the phantom during the 2-D acquisition. The 3-D optical
camera (OptoTrak motion capture system) was employed to
capture the motion of the markers attached on the phantom,
which is used as the ground truth for evaluation. The markers
were attached on the borders of the phantom, such that no
markers were visible in the X-ray image sequences. Ten
sequences under 3-D rigid motion consisting of in-/off-plane
translation/rotation were acquired.

B. Ground-Truth Motion Acquisition

The OptoTrak motion capture system was employed to
acquire the ground-truth motion (Fig. 4). To make the
OptoTrak data available for evaluation, two main issues
are considered: 1) transforming the OptoTrak motion se-
quence

{
Topt

k′
}

from the OptoTrak coordinate system to the
world coordinate system (i.e. determining the transformation
Topt2wld); 2) synchronizing the OptoTrak motion sequence
with the 2-D fluoroscopic acquisition.

As shown in Fig. 4, the markers are tracked under the Op-
toTrak coordinate system as (xopt, yopt, zopt). The principle
of determining the transformation Topt2wld is to determine
the position of the markers in the world coordinate system
(xw, yw, zw). Since the markers are also included in the 3-D

volume, the markers can be segmented from the 3-D volume.
Using the projection parameters of the calibrated C-arm
system, the position of the markers in the world coordinate
system are determined. Then, the rigid transformation matrix
is directly estimated from the 3-D point correspondences
under two coordinate systems. The closed-form solution
of absolute orientation [18] is employed to compute the
orientation (rotation) and position (translation). Due to the
limited field of view, multiple 3-D scans were taken under
different table positions to acquire the positions of more
markers.

The synchronization of the OptoTrak data to the fluo-
roscopy image sequence was done manually. The frame
rate of OptoTrak acquisition was 100 fps, compared to
10 fps of the fluoroscopy. There are two criteria used for
the synchronization: 1) the 2-D/3-D alignment under the
synchronized ground-truth motion along all frames and 2)
the estimated motion curves should be well aligned to the
ground-truth motion, especially the steep shifts should be
synchronized. The motion curves are later explained in the
results (Fig. 5).

C. Motion Compensation Results

We assess the quality of motion compensation as fol-
lows: 1) comparing the 3-D motion with the corresponding
ground-truth motion and 2) comparing the projection error
of the structures of interest under the estimated motion and
under the ground-truth motion. The depth-layer-based (DL)
motion compensation [10] is used as our baseline approach.

1) The Estimated 3-D Motion: 3-D rigid motion can be
decomposed into 6 components, i.e. 3 rotation angles (Rx,
Ry and Rz) and 3 translations (tx, ty and tz) about the
corresponding axes. Thus, we compare the estimated motion
components using both our new differential approach and
the baseline approach with the ground truth in the world
coordinate system (Fig. 4).

The motion curves: Figure. 5 shows the comparison
between the estimated motion curves and the ground-truth
motion curves of Seq. 6 and 10. The longitudinal rotation
can be considered as the rolling motion of the patient,
which is described by Rz together with tx (shift of the
rotation center). This off-plane motion is difficult to estimate
for monoplanar approaches. The longitudinal rotation is the
major motion in both of the sequences. Seq. 10 also has a
significant in-plane rotation Ry . Comparing to the baseline
approach, our approach gives a significant improvement in
the longitudinal rotation.

The statistics of the estimation error: the means and
standard deviations of the estimation errors over all frames
of each sequence are calculated, i.e. ε(Rx), ε(Ry) and
ε(Rz) in rotation and ε(tx), ε(ty) and ε(tz) in transla-
tion. Table. II shows the estimation error statics. For each
sequence, the maximum magnitudes of the corresponding
ground-truth motion components are given as reference to
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Figure 4. An interventional C-arm system is used to acquire both 2-D image sequence and 3-D C-arm CT volume of a thorax phantom. Motion of the
thorax phantom is triggered manually. The OptoTrak motion capture system is used to acquire the ground truth.
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Figure 5. The motion curves. The rotation and translation components are plotted for Seq. 6 in (a) and (b), and Seq. 10 in (c) and (d). The ground-truth
curves are the solid plots ((R∗(x), R∗(y), ∗R(z) in rotation and t∗(x), t∗(y), t∗(z) in translation)). Our results are dotted plots with markers, and the
results of the baseline approach (Wang et al. [10]) are the dotted plots without markers.

the estimation error. We focus on the estimation of the
major motion components (bold blue in Tab. II), which have
significant maximum magnitudes. To describe how well the
motion is estimated, the motion recovery rate is defined as
r(m) = 1− ε(m)/max |m∗|, where ε(m) is the estimation
error of the motion component m and max |m∗| is the
maximum ground-truth magnitude. Our approach achieves a
mean recovery rate of 97.4± 0.8%, 95.4± 2.9% and 96.7%
(Seq. 5) for the major inplane rotation Ry and translations tx
and tz . For the longitudinal rotation, our approach achieves
a mean recovery of 79.9 ± 3.5%. As a general problem
of monoplanar approaches, translations in depth (ty) appear
the least stable, which does not influence too much of the

2-D/3-D fusion accuracy.

Both Fig. 5 and Tab. II show our approach is capable of
estimating the 3-D rigid motion from tracking 2-D occluding
contour points.

2) The 2-D Projection Error: Another perspective of
assessing the motion compensation is to evaluate the mis-
alignment observed in the fused view. For a 3-D point, the
distance between the projection under the estimated motion
and the ground-truth motion is noted as the projection
error. Given a set of points, the mean and the standard
deviation of the projection errors represent the amount
and the distribution of misalignment. The pre-selected 3-
D points (Fig. 2) are used for evaluation, because they well



seq. # fr. max |R∗
x|(◦) ε(Rx)(◦) max |R∗

y |(◦) ε(Ry)(◦) max |R∗
z |(◦) ε(Rz)(◦)

1 33 0.18 0.04± 0.02 0.97 0.05± 0.03 4.48 0.93± 0.43
2 93 0.80 0.43± 0.26 0.52 0.05± 0.03 11.93 2.82± 1.55
3 111 0.63 0.40± 0.18 0.38 0.01± 0.01 10.7 2.59± 1.04
4 111 0.27 0.12± 0.11 0.56 0.03± 0.02 8.31 1.51± 0.94

5∗ 110 0.06 0.07± 0.03 10.0 0.37± 0.16 0.04 0.18± 0.08
6 101 0.338 0.0682± 0.036 1.119 0.0245± 0.0123 6.308 1.081± 0.48
7 105 0.23 0.36± 0.26 4.43 0.08± 0.07 6.82 1.54± 0.90
8 117 0.26 0.32± 0.18 1.47 0.04± 0.03 7.93 1.32± 0.83
9 114 0.18 0.10± 0.06 4.57 0.15± 0.08 8.13 1.89± 0.92

10 115 0.371 0.12± 0.078 5.224 0.0897± 0.081 7.225 1.064± 0.66

seq. # fr. max |t∗x|(mm) ε(tx)(mm) max |t∗y |(mm) ε(ty)(mm) max |t∗z |(mm) ε(tz)(mm)

1 33 2.76 1.13± 0.67 0.99 2.27± 1.66 0.16 0.09± 0.07
2 93 4.58 2.96± 1.63 0.71 2.06± 1.01 0.61 0.64± 0.39
3 111 4.19 3.11± 1.32 0.66 3.41± 1.37 0.65 0.53± 0.24
4 111 5.72 2.12± 1.26 1.40 1.39± 0.56 0.94 0.16± 0.13

5∗ 110 69.3 2.29± 0.93 0.45 0.91± 0.37 6.31 0.22± 0.10
6 101 7.414 1.159± 0.49 1.341 1.365± 0.59 0.271 0.0629± 0.035
7 105 30.0 2.62± 1.36 0.58 1.27± 1.06 0.44 0.59± 0.32
8 117 9.81 1.68± 0.94 1.24 1.13± 0.69 0.15 0.63± 0.36
9 114 30.3 1.17± 0.57 1.69 3.56± 1.66 0.11 0.16± 0.14

10 115 34.763 0.802± 0.38 0.96 1.709± 0.91 0.247 0.107± 0.059

Table II
THE MOTION ESTIMATION ERRORS: FOR EACH SEQUENCE, THE TOTAL NUMBER OF FRAMES IS SHOWN IN COLUMN ”# FR.”. THE max | · | COLUMN

SHOWS THE MAXIMUM AMOUNT OF THE GROUND TRUTH MOTION COMPONENT, WHERE “∗” MARKS THE GROUND TRUTH. ε(·) SHOWS THE MEAN
AND STANDARD DEVIATION OF THE ESTIMATION ERROR OVER ALL FRAMES OF EACH CASE. THE MAJOR MOTION COMPONENTS ARE BOLD BLUE.

SEQ. 5 IS HIGHLIGHTED AS THE ONLY IN-PLANE MOTION CASE.

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

45

sequence index

pr
oj

ec
tio

n 
er

ro
r (

m
m

)

No Compensation DL Compensation Diff Compensation

Figure 6. The projection error using our approach (”Diff Compensation”)
and the baseline approach (”DL compensation”) compared to the maximum
projection shifts (”No Compensation”).

present the structures of interest. As reference, the distance
between the projection under the ground-truth motion and
the original projection is noted as the projection shift caused
by the motion. For each sequence, we select the frame
with the largest projection shift for evaluating the motion
compensation capability of our approach.

Figure 6 shows the maximum projection shifts and the
projection errors using our approach and the baseline ap-
proach. The performance of our approach outmatches the
baseline approach in all cases. Except for Seq. 2 and 3,
we have kept all the other (80%) cases below the failure
threshold (5 mm) used in [19] along all frames. Figure 7
also directly shows two example frames without and with
our motion compensation.

(a) (b)

(c) (d)

Figure 7. (a) and (b) show respectively the 2-D/3-D fusion of Seq. 4 at
frame 65 (maximum motion) without and with motion compensation. Bags
filled with contrast agent were put in the phantom during fluoroscopy, which
were not in the 3-D scan. (c) and (d) show respectively the 2-D/3-D fusion
of Seq. 7 at frame 50 without and with motion compensation.

IV. CONCLUSION AND OUTLOOK

In this paper, a novel gradient-based differential approach
is proposed, where 3-D rigid motion is estimated from 2-D
tracking for motion compensation in 2-D/3-D image fusion.
The occluding contour points are used for tracking, and a
mathematical relationship from 2-D motion to 3-D differen-
tial motion is derived by considering the 3-D gradient. An it-



erative re-weighted least square minimization scheme is used
for robust motion estimation. The evaluation is performed
on 10 image sequences with 1010 monoplane fluoroscopic
images. The ground-truth motion was acquired by using an
OptoTrak motion capture system. The results show that our
approach is capable of estimating 3-D rigid motion by 2-D
tracking. Our approach achieves a mean recovery of above
95% for all major in-plane motions and a mean recovery
of 79.9% for the longitudinal rotation. Over all sequences,
the maximum projection shift due to the 3-D motion is
from 17.3 mm to 33.2 mm. Our approach reduces the 2-D
structure shift to the range from 1.93 mm to 6.52 mm. The
mean projection error remains under 5 mm for 8 out of 10
sequences. According to [19], our approach manages to keep
80% of the cases below the failure threshold of 5 mm.

In the current implementation, the initialization of the
contour points is done only once and used for all the frames.
As future work, a re-initialization strategy of the contour
points will be developed for higher accuracy and robustness.
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