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Abstract—Three-dimensional (3D) region of interest (ROI)
imaging with C-arm systems provides anatomical information in
a predefined 3D target region at a considerably low X-ray dose. A
necessary initial step prior to a 3D acquisition is to isocenter the
patient with respect to the target to be scanned. To this end, two
low-dose fluoroscopic X-ray acquisitions are usually applied from
anterior-posterior (AP) and medio-lateral (ML) views. In this
paper, we present a patient-bounded extrapolation method that
makes use of these non-collimated fluoroscopic images to improve
image quality in 3D ROI reconstruction. The algorithm first
extracts the 2D patient contours from the AP and ML images.
These 2D contours are then combined to estimate a volumetric
model of the patient. Forward-projecting the shape of the model
at the eventually acquired C-arm rotation views gives the patient
boundary information in the projection domain. In this manner,
we are in the position to substantially improve image quality
by enforcing the extrapolated line profiles to end at the known
patient boundaries, derived from the 3D shape model estimate.
The proposed method is evaluated on five clinical datasets with
different degrees of truncation. The proposed algorithm achieved
a relative root mean square error (rRMSE) of 0.7% with respect
to non-truncated data, even in the presence of severe truncation,
compared to 8.7% from a state-of-the-art heuristic extrapolation.

I. INTRODUCTION

Three-dimensional (3D) C-arm based region of interest
(ROI) tomography that provides anatomical information in a
predefined target region at considerably low X-ray dose is a
valuable tool in interventional radiology for therapy planning
and guidance, particularly for neurointerventions. However,
ROI imaging leads to laterally truncated projections from
which conventional reconstruction algorithms generally yield
images with severe truncation artifacts.

A major category of truncation correction methods is based
on estimating the missing data using a heuristic extrapolation
procedure, such as symmetric mirroring of projection images
(Ohnesorge et al. [1]), water cylinder extrapolation (Hsieh et
al. [2]), square root extrapolation (Sourbelle et al. [3]) and
hybrid extrapolation (Zellerhoff et al. [4]). Although these
methods can be carried out without a priori information, they
rely on heuristics. The degree of accuracy of these extrapola-
tion estimates highly depends on the level of truncation.

Later, Maltz et al. [5] observed that the thickness of the
patient could be estimated by calculating water-equivalent
thicknesses, so that the unknown patient boundary can be
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Fig. 1: Illustration of two short fluoroscopic X-ray pulses from ML view
(left) and AP view (right), respectively. The red outlines indicate the extracted
boundary information.

approximated. However, in practice, the presence of any non-
water tissue may result in a substantial over- or underestima-
tion of the actual object thickness.

In contrast, Wiegert et al. [6] and Kolditz et al. [7] suggested
that patient size and shape information can be obtained from an
a priori low-dose CT scan if available. By forward-projection
of this a priori CT volume, the collimated regions in the ROI
acquisition can be extended in an accurate manner.

In this paper, we present a patient-bounded extrapolation
method that leads to major improvements in the quantitative
accuracy of 3D ROI imaging, even in the presence of severely
truncated data. The method does not require any additional
hardware and can be readily integrated into the existing
interventional workflow. It is based on the fact that prior
to a 3D scan, low-dose fluoroscopic X-ray acquisitions are
generally performed from anterior-posterior (AP) and medio-
lateral (ML) views, to isocenter the patient with respect to
the target to be scanned; see Fig. 1. The fundamental idea of
the proposed method is to estimate a 3D shape model of the
patient from these low-dose non-truncated fluoroscopic images
and then exploit this patient-specific a priori shape knowledge
for the extrapolation of truncated projections.

II. METHOD

First, we estimate the rough 3D patient shape based on
two low-dose fluoroscopic projections, using per-slice ellipse
fitting. The details are elaborated in the following sections;
also see Fig. 2 for notations.

Contour-bounded Slice-wise Ellipse Fitting
To extract the boundaries, we first compute the gradient

image of fluoroscopic projections and detect the edges using
an empirically pre-set threshold. Suppose uAPlb =

(
uAPlb , vi, 1

)
,

uAPrb , uML
lb , and uML

rb are the homogeneous coordinates of the
segmented left and right boundary points at detector row vi of
the 2D fluoroscopic images from AP and ML view. Let P ∈
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Fig. 2: Illustration of the patient-bounded extrapolation scheme. (Left) Contour-bounded slice-wise ellipse fitting. (Right) Forward-projection of the boundaries
of the previously estimated patient shape model at a given C-arm rotation view provides the patient boundary in the projection domain.

R3×4 be the projection matrix that maps position x = [x, y, z]
in the C-arm coordinate frame to a position u = [ωu, ωv, ω]
in the 2D projection plane:

u = P

[
x
1

]
. (1)

The matrix P can be decomposed as follows:

P = [P13 | p4] = [AR | At] (2)

where R ∈ R3×3 denotes the rotation matrix, t ∈ R3 denotes
the translation vector, and A ∈ R3×3 the intrinsic parameter
matrix.

Then, we can compute the direction unit vector eAPm , eML
m

of the ray that connects the source to the middle point of the
two boundaries, i.e., uAPm =

(
uAPlb + uAPrb

)
/2 and uML

m =(
uML
lb + uML

rb

)
/2, as:

eAPm =
(PAP13 )−1uAPm
‖(PAP13 )−1uAPm ‖2

, eML
m =

(PML
13 )−1uML

m

‖(PML
13 )−1uML

m ‖2
,

(3)
where P−1 denotes the pseudo-inverse of the matrix P.

Now the ray equations can be expressed as (t, l ∈ R)

lAPm (t) = sAP + teAPm , and lML
m (l) = sML + leML

m , (4)

where sAP and sML are source positions at AP and ML views,
which can be computed using s = −P−113 p4.

Then, the center of the fitted ellipse x0 is estimated by
computing the intersection of the two rays lAPm and lML

m .
Here, we confine to breaking the problem down to a 2D line
intersecting based on the approximation that sAP Iz = sMLIz
and eAPm Iz = eML

m Iz = 0, where Iz =
[
0 0 1

]T
. The

third component of x0 is given by the corresponding slice
position. To obtain the intersection point x0, we establish
sAP +teAPm = sML+leML

m and solve for t. Then, substituting
t in the first equation of (4) yields:

x0 = sAP +

∥∥(sML − sAP
)
× eML

m

∥∥
2

‖eAPm × eML
m ‖2

eAPm . (5)

Now we need to determine the radii Rx, Ry of the ellipse.
The line equation of the rays from AP view that connects
the patient boundary and source can also be expressed as
(e.g. right boundary) lAPr (h) = sAP + heAPr , where eAPr
is computed using uAPrb accordingly. Suppose xr is the point

Fig. 3: Visualization of the actual patient shape extracted from a non-
collimated 3D reconstruction (left) and the 3D volumetric model estimated
from two orthogonal projections with different ellipses in each slice (right).

located on the line lAPr that satisfies xrIy = x0Iy , i.e., with
the same y-axis coordinate as x0. Then, the radius along the
x-axis Rx can be approximated as follows:

Rx = (xr − x0) Ix (6)

where Ix =
[
1 0 0

]T
and Iy =

[
0 1 0

]T
.

In analogy, we can use the boundary from ML view to
determine the radius of the ellipse along the y-axis Ry .

Patient Boundary Estimation for Arbitrary Angulations
With the estimated ellipse in the volumetric image domain,

we can compute the left and right patient boundaries of that
ellipse for any given C-arm rotation angle λ as follows:

xλlb = x0 − reu, (7)

xλrb = x0 + reu, (8)

where r =
√
(Ry cosλ)

2
+ (Rx sinλ)

2 and eu denotes the
unit vector in detector row direction.

Then, we forward-project these voxel positions to 2D pro-
jection plane using Eq. (1), also cf. Fig. 2:

uλlb = Pλ
[

xλlb
1

]
, and uλrb = Pλ

[
xλrb
1

]
. (9)

The estimated patient left and right boundaries at the
detector row vi and rotation angle λ, i.e.,

(
uλlb, vi

)
and(

uλrb, vi
)
, can be easily obtained with uλlb = uλlbIx/u

λ
lbIz and

uλrb = uλrbIx/u
λ
rbIz .
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Fig. 4: Comparison of the non-bounded traditional extrapolation and patient-bounded extrapolation in a severe truncation case. Line profiles at projection
views of λ = −40◦ (left), λ = 20◦ (middle) and λ = 80◦ (right). Note that the bounded ellipse parameters are estimated using two single projections from
λ = −90◦ (ML) and λ = 0◦ (AP). Shaded regions indicate the measured part of projections in ROI scan.

Bounded ROI Projection Profile Extrapolation
Based on the estimated patient boundaries in the ROI scan

projection data, we are in the position to apply any extrap-
olation technique and adapting it according to the restriction
that the extrapolated profile must end at the known patient
boundaries. In this paper, we adapt the water cylinder approach
of Hsieh et al. [2] by extending or compressing the initial
extrapolated lines to fulfill this restriction. Let g (λ, u, v) be
the projection data at the detector coordinates (u, v) acquired
at angle λ. Then, the extrapolation function is given by

g̃wat (λ, u, v) = 2µ

√
R2 − ξ2 (u− uw)2 (10)

where µ is the water attenuation coefficient, uw is the location
of the fitted cylinder with respect to the detector row and R
is the radius. The parameters uw and R are determined as
described in [2].

In contrast to the formulation by Hsieh et al., in Eq. (10) we
introduce ξ that serves as a scaling factor to stretch or shrink
the extrapolated profiles, which is computed as

ξ2 =
R

ub − uw
, (11)

where ub indicates the left or right boundary (ulb or urb) we
obtained in the previous section.

Bounded Square Root Function Extrapolation
As an alternative, we also investigate the square root func-

tion extrapolation that was proposed by Sourbelle et al. [3].
The extrapolation function is given as

g̃sqr (λ, u, v) =
√
a · u2 + b · u+ c. (12)

To determine the parameters a, b, and c, the following
continuity equations are used:

g (λ, ut, v) =
√
a · u2t + b · ut + c, (13)

g′ (λ, ut, v) =
b+ 2a · ut
2g (λ, ut, v)

, (14)

where ut denotes the truncated projection edge and
g′ (λ, ut, v) is the mean slope value over a small region.

We integrate the patient boundary information into (12) such
that the extrapolated profile ends at ub:

Fig. 5: Transversal slices of the clinical data 1 (medium truncation) recon-
structed by FDK from non-truncated data (left), patient-bounded extrapolation
(middle), and water cylinder extrapolation (right), in the grayscale window
[-1000 HU, 1000 HU]. The black circles indicate the ROI.

g (λ, ub, v) =
√
a · u2b + b · ub + c = 0. (15)

Thus, the three parameters a, b, and c can be deter-
mined using these three equations. Note that for both patient
bounded extrapolation schemes, we apply a cosine-based
smooth weighting on the transition region.

III. EVALUATION

A. Experiment Setup

Five clinical datasets of the patients’ head (data courtesy of
St. Luke’s Episcopal Hospital, Houston, TX, USA) were used
to evaluate the proposed method. The datasets were acquired
on a C-arm system with 496 projection images (1240×960 px)
at the resolution of 0.308 mm / px. Even though a practical
implementation would involve the extraction of the patient
boundaries from low-dose fluoroscopic data, for proof of
concept we here confined to extract the boundaries from two
projections (λ = −90◦ and λ = 0◦) of a non-collimated 3D
scan. All datasets were virtually cropped to a medium field of
view (FOV) and a small FOV and were reconstructed onto a
volume of 5123 with an isotropic voxel size of 0.4mm3. The



Table I: Quantitative evaluation of truncation corrections for different FOVs. Note that the given RMSE, rRMSE and CC are the average over all five datasets.

Medium FOV Small FOV

Water cylin. [2] Bounded water cf. [2] Bounded sqr. cf. [3] Water cylin. [2] Bounded water cf. [2] Bounded sqr. cf. [3]

RMSE 96.4 HU 30.6 HU 56.1 HU 391.8 HU 43.8 HU 50.6 HU
rRMSE 2.21 % 0.71 % 1.21 % 8.77 % 0.96 % 1.12 %

CC 0.925 0.995 0.992 0.892 0.992 0.991

Fig. 6: Transversal slices of the clinical data 2 (off-centered ROI) reconstructed
by FDK from non-truncated data (left), patient-bounded extrapolation (mid-
dle), and water cylinder extrapolation (right) [-1000 HU, 1000 HU].

original, non-bounded water cylinder extrapolation (Hsieh et
al. [2]) was investigated as a baseline and compared to our
proposed algorithm for the two schemes. To quantify image
quality, three quantitative metrics were used: the root mean
square error (RMSE), the relative root mean square error
(rRMSE) (i.e., the RMSE divided by the total intensity range)
and the correlation coefficient (CC).

B. Results
An example of the estimated ellipse model compared to the

actual patient shape extracted from reconstruction is shown in
Fig. 3. Figure 4 shows the comparison of the heuristic and pro-
posed extrapolation in a severe truncation case. Reconstruction
results from the dataset 1, 2, and 3 are presented in Fig. 5-
7, respectively. The quantitative evaluation is summarized in
Table I. We can see that the proposed method improves the
image quality substantially, particularly for severely truncated
data. This is due to the fact that non-bounded heuristic extrap-
olation can not accurately fit the data outside an ROI, while the
proposed method yields a much better approximation; see Fig.
4. The reconstructions also show that the proposed method
is robust to both severe truncation and off-centered ROIs.
Quantitative accuracy is improved considerably: the average
RMSE reached 43.8 HU in severe truncation, compared to
391.8 HU from the heuristic method. A relative error of less
than 1% was achieved, yielding an error reduction by a factor
of 8 compared the heuristic method.

IV. DISCUSSION

The method we proposed in this paper leads to a major
improvement in image quality for 3D C-arm based ROI

Fig. 7: Sagittal slices of the clinical data 3 (severe trucnation) reconstructed by
FDK from non-truncated data (top), patient bounded extrapolation (middle),
and water cylinder extrapolation (bottom) [-1000 HU, 1000 HU].

imaging. It involves no additional radiation when using the
fluoroscopic images, as they are acquired anyway during the
patient isocentering process. The model estimation can be
readily integrated into the existing interventional workflow
without additional hardware. Furthermore, it is well-suited for
neurointerventions since: 1) The ellipse is a good model for
the head; 2) the low-dose fluoroscopic images are usually non-
collimated and cover the entire object of interest. Regarding
computation times, both slice-wise ellipse fitting and patient
boundary estimation are computationally inexpensive since
only the boundary points are involved with small vector/matrix
multiplications. Due to their very low radiation dose, a sparse
set of fluoroscopic images can be further acquired from
different views. In this manner, the detailed patient shape could
be estimated using some parametric models such as B-splines.
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