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and 2D ATRACT Algorithm

Yan Xia · Frank Dennerlein · Sebastian Bauer · Hannes Hofmann ·
Joachim Hornegger · Andreas Maier

Abstract
Purpose Recently, a reconstruction algorithm for region of
interest (ROI) imaging in C-arm CT was published, named
Approximate Truncation Robust Algorithm for Computed
Tomography (ATRACT). Even in the presence of substantial
data truncation, the algorithm is able to reconstruct images
without the use of explicit extrapolation or prior knowledge.
However, the method suffers from a scaling and offset artifact
in the reconstruction. Hence, the reconstruction results are
not quantitative. It is our goal to reduce the scaling and offset
artifact so that Hounsfield unit (HU) values can be used for
diagnosis.
Methods In this paper, we investigate two variants of the
ATRACT method and present the analytical derivations of
these algorithms in the Fourier domain. Then, we propose an
empirical correction measure that can be applied to the AT-
RACT algorithm, to effectively compensate the scaling and
offset issue. The proposed method is evaluated on ten clin-
ical datasets in the presence of different degrees of artificial
truncation.
Results With the proposed correction approach, we achieved
an average relative root mean square error (rRMSE) of 2.81%
with respect to non-truncated FDK (Feldkamp, Davis, and
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Kress) reconstruction, even for severely truncated data. The
rRMSE is reduced to as little as 10% of the image reconstruc-
ted without the scaling calibration.
Conclusions The reconstruction results show that ROI recon-
struction of high accuracy can be achieved since the scaling
and offset artifact is effectively eliminated by the proposed
method. With this improvement, the HU values may be used
for post-processing operations such as bone or soft tissue
segmentation if some tolerance is accepted.

Keywords Region of interest imaging · Dose reduction ·
Truncation correction · Scaling calibration

Introduction

In three-dimensional (3D) X-ray imaging during an inter-
vention, changes of the examined patient are often restricted
to a small part of the field of view (FOV). For example, in
neuroradiology, only a tiny device, e.g. an implanted stent or
coil, is required to be examined multiple times. This suggests
region of interest (ROI) imaging utilizing an X-ray beam
collimator to laterally and axially block radiation during the
image acquisition, so that only the area of interest is irradi-
ated by X-rays. Although the radiation dose to the patient
will be considerably reduced during ROI imaging, the corres-
ponding 3D reconstruction from lateral data truncation poses
a challenge to conventional tomographic reconstruction al-
gorithms, e.g. the FDK method [8]. Due to the non-local
property of the ramp filter, FDK reconstruction of any point
of an object requires the knowledge of the projections away
from the point at the same lateral position. This requirement,
however, is not satisfied anymore if projection data are lat-
erally truncated. Thus, a noticeable degradation of image
quality manifesting as a cupping-like low-frequency artifact
will be observed in the reconstruction.

So far various truncation correction methods have been
proposed to overcome the effect of the truncation artifact. In
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the field, the most commonly used approach is based on a
model-driven extrapolation scheme. Such methods include
symmetric mirroring of projection images [13], water cylin-
der fitting [9], square root extrapolation [15], optimization-
based extrapolation [11] and scattering signal-based extra-
polation [1]. However, these methods are based on heuristic
assumptions that may not always accurately approximate the
object outside the FOV/ROI.

Another major category of ROI reconstruction methods
requires prior knowledge about the reconstructed object but
yields an exact reconstruction if some geometrical conditions
are satisfied by the imaging configuration. Reconstruction
algorithms of this category are based on a combination of a
back projection of the first derivative and 1D Hilbert trans-
form in the object domain [2, 6, 12, 14].

Iterative reconstruction can also be a candidate for tack-
ling the interior problem. Related work focus on the use of
compressed sensing [19] and total variation [18]. However,
iterative methods entail a higher computational load and are
often not practically viable.

Recently, a novel method for ROI reconstruction of highly
truncated projection data with neither the use of prior know-
ledge nor any explicit extrapolation has been suggested [3].
This method (ATRACT) is based on a decomposition of the
standard ramp filter within FDK into a local and a non-local
filtering step, where the local step is a 2D Laplace operator
and the non-local step is a 2D Radon-based filtering [3] or
2D convolution-based filtering [4, 5, 17]. Furthermore, the
ATRACT method has been investigated in different decom-
positions, such as in a 1D filtering that is applied per detector
row [16]. The ATRACT method can provide satisfactory
reconstruction results even in the presence of severe data
truncation. However, it suffers from a global scaling and bias
issue in the reconstruction so that the measurement can not
be quantitative.

In this paper, we investigate two variants of the ATRACT
method, namely 1D ATRACT and 2D ATRACT, named after
the dimension of the filter kernel. As a first contribution,
we analytically derive both algorithms in the Fourier domain.
The two variants consist of a local Laplace operator and a low-
pass global filter that are consistent to the original ATRACT
formulation [3]. The derivation confirms that these variants
of ATRACT are mathematically identical to the standard
FDK. Moreover, the proposed methods are computationally
more efficient than Radon-based ATRACT since we know
the Fourier representation of the kernel; implementing the
FFT-based convolution is thus more straightforward. Then,
as main contribution, we propose an empirical correction
scheme being applied on the investigated ATRACT methods
to achieve more accurate ROI reconstructions, particularly
regarding the offset problem.
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Figure 1 Cone-beam geometry and associated notation: The curve
a (λ) = (R cosλ,R sinλ, 0) describes the trajectory of the X-ray
source, with the iso-center patient distance R and the rotation angle λ.
The planar detector is parallel to the unit vectors eu (λ) and ev (λ)
and at distance D from the source. ew (λ) is the detector normal. The
function g (λ, u, v) is used to describe the projection data at the point
(u, v) acquired at angle λ.

Materials and Methods

1D Convolution-based ATRACT

In this section, we describe the first variant of the ATRACT
method that comes with a two-step row-wise filtering. We
refer to this method as 1D ATRACT below. Let us denote
the object density function f (x) with x = (x, y, z) and
the trajectory of the source a (λ) = (R cosλ,R sinλ, 0).
Focusing on the circular cone-beam (CB) imaging geometry
with a flat-panel detector shown in Fig. 1, the 2D projection
at the rotation angle λ obtained for all possible unit vectors
α with can be written as

g (λ, u, v) =

∞̂

0

f (a (λ) + tα (λ, u, v)) dt , (1)

with

α (λ, u, v) =
1√

u2 + v2 +D2
(ueu + vev −Deω) , (2)

where eω is the unit vector orthogonal to the detector plane
and pointing toward the source, and eu and ev are orthogonal
unit vectors pointing in the direction along which u and v are
measured.

To derive 1D ATRACT, the standard ramp filter is decom-
posed into the 1D Laplace filter and a 1D convolution-based
filter. The application of the standard 1D ramp filtering in the
Fourier domain can be written as follows:

gF (λ, u, v) = F−11 {F1 {g1} (λ, ωu, v) |ωu|} , (3)

where F1 and F−11 denote the 1D Fourier transform and 1D
inverse Fourier transform with respect to u, and g1 (λ, u, v)
denotes the pre-weighted projection data for the cone-beam
short scan. |ωu| is the ramp kernel in the Fourier domain,
which can be further decomposed as follows
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|ωu| = ωusgn (ωu) = i2πωu
1

i2π
sgn (ωu)

= (i2πωu)
2

(
− 1

4π2

sgn (ωu)
ωu

)
.

(4)

Substituting Eqn. (4) into (3), we can obtain an alternative
expression of ramp filtering:

gF (λ, u, v) = F−11

{(
− 1

4π2

sgn (ωu)
ωu

)
·

(i2πωu)
2 · F1 {g1} (λ, ωu, v)

}
. (5)

It is well-known that multiplication in the Fourier domain
corresponds to convolution in the spatial domain. We can
thus transform Eqn. (5) into the spatial domain with a convo-
lution of two other terms, as the inverse 1D Fourier transform
of (i2πωu)

2 F1 {g1} gives ∂2g1/∂u2 (see Appendix for the
derivation), i.e., the 1D Laplace operation with respect to
u, and the inverse 1D Fourier transform of −sgn (ωu) /ωu,
which yields the 1D residual kernel ln|u|.

Using the same pre-scaling scheme and 3D cone-beam
backprojection as FDK, the 1D ATRACT algorithm consists
of the following four steps:

– Step 1: Cosine- and Parker-like weighting of projection
data to obtain pre-scaled projection data g1 (λ, u, v):

g1 (λ, u, v) =
Dm (λ, u)√
D2 + u2 + v2

g (λ, u, v) , (6)

where D denotes the source-detector distance, m (λ, u)

is the Parker weight to compensate for data redundancy.
– Step 2: 1D Laplace filtering to obtain projection data
g2 (λ, u, v):

g2 (λ, u, v) =
∂2

∂u2
g1 (λ, u, v) . (7)

– Step 3: 1D convolution-based filtering to get the filtered
data gF (λ, u, v)

gF (λ, u, v) = − 1

4π2

∞̂

−∞

g2 (λ, u− u′, v) ln|u′|du′ .

(8)

– Step 4: 3D cone-beam backprojection with a weighting
function of object-focal point distance to get the estim-
ated object function f (x):

f (ATRACT ) (x) =

λ2ˆ

λ1

RD

[R− x · ew (λ)]
2 gF (λ, u, v)dλ ,

(9)

where [λ1, λ2] is the short scan angular range.

The benefits of considering this two-step filtering instead of
the standard ramp filtering are:

1) The first filtering step (1D Laplace operation) is a pure
local operation to the projection data and can thus be com-
puted accurately even if projection data are truncated. Errors
will only be introduced at the border of the FOV since the
outer values are unknown. In the numerical implementation,
we remove these incorrect values (singularities) by setting
the values at border pixels to be 0. In standard FDK on the
other hand, such removal is not straightforward and the non-
local ramp filtering will perturb the whole projections in the
presence of data truncation.

2) After the Laplace operation, the values of g2 (λ, u, v)
are much closer distributed around 0 than the values of g1.
This implies that the extrapolation with constant 0 for the
missing data in the second-order derivative domain that was
implicitly performed, is a good approximation prior to apply-
ing the residual global filtering.

3) Although the residual filtering is a non-local operation,
it is less sensitive to data inconsistencies due to its low-pass
character. Consequently, even though no explicit extrapola-
tion is used during the filtering steps in ATRACT, the filtered
result gF (λ, u, v) will not contain a noticeable cupping-like
artificial structure at the borders of lateral truncation com-
pared to that of the FDK method.

2D Convolution-based ATRACT

Since 2D filtering can be performed for all detector elements
simultaneously, it could reduce outliers that may be caused by
individual 1D processing of the detector lines. In this section
we investigate a 2D version of the ATRACT method that has
potential to increase the image quality of ROI reconstruction
[4, 17]. Below, we present the analytical derivation of this
algorithm in the Fourier domain using a similar approach as
we did in 1D ATRACT. Using Cartesian coordinates in the
frequency plane, the 2D version of the ramp filtering in the
Fourier domain can be expressed as:

gF (λ, u, v) = F−12 {F2 {g1} (λ, ωu, ωv) |ωu|} , (10)

where F2 is the 2D Fourier transform and F−12 denotes its
inversion.

We can decompose the ramp kernel into

|ωu| =
−1
4π2

|ωu|
(ωu)

2
+ (ωv)

2

(
(i2πωu)

2
+ (i2πωv)

2
)
. (11)

Inserting Eqn. (11) into Eqn. (10) yields
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gF (λ, u, v) = F−12

{
−1
4π2

|ωu|
ω2
u + ω2

v(
(i2πωu)

2
+ (i2πωv)

2
)
· F2 {g1} (λ, ωu, ωv)

}
. (12)

Analogously, we can transform Eqn. (12) into the spatial
domain with a convolution, where the inverse 2D Fourier
transform of

(
(i2πωu)

2
+ (i2πωv)

2
)
F2 {g1} (λ, ωu, ωv) g-

ives
(
∂2/∂u2 + ∂2/∂v2

)
g1 (λ, u, v), and the inverse 2D Fo-

urier transform of |ωu| /
(
ω2
u + ω2

v

)
yields

h2D (u, v) =

∞̂

−∞

∞̂

−∞

|ωu|
ω2
u + ω2

v

ei2π(uωu+vωv)dωudωv

=

∞̂

−∞

e−u|ωv|ei2πvωvdωv

=
|v|

u2 + v2
,

(13)

where h2D (u, v) is the spatial representation of the 2D con-
volution kernel.

Now we obtain the 2D ATRACT algorithm by substitut-
ing the filtering steps 2 and 3 in 1D ATRACT as follows:

– Step 2: 2D Laplace filtering to obtain projection data
g2 (λ, u, v):

g2 (λ, u, v) =

(
∂2

∂u2
+

∂2

∂v2

)
g1 (λ, u, v) . (14)

– Step 3: 2D convolution-based filtering to get the filtered
data gF (λ, u, v)

gF (λ, u, v) =
−1
4π2

∞̂

−∞

∞̂

−∞

g2 (λ, u− u′, v − v′)

|v′|
u′2 + v′2

du′dv′ . (15)

Note that there is a singularity in the filter kernel at (0, 0).
In the numerical implementations, we address this by com-
puting the mean value of its neighboring positions, i.e., for
u = ±0.1, v = ±0.1. The 2D ATRACT method is intrins-
ically robust to data truncation due to its two-step filtering.
Meanwhile, it has the potential to further increase the image
quality compared to the 1D ATRACT approach due to its 2D
processing.

Scaling and Offset Artifact in ATRACT

In the ATRACT algorithm, we remove the singularities at the
borders of lateral data truncation after Laplace filtering. This
causes a loss of the information on the thickness of the object.
The following residual filtering of truncated projections will
result in an offset or bias with respect to the FDK filtering
of non-truncated projections. For visualization, we manually
performed a correction of this bias in the final reconstructed
volume for each dataset previously.

In this paper, we investigate an automatic correction
scheme for this problem. Note that throughout this paper
we use the term “given scenario” to denote the same acquis-
ition geometry and application scenario, i.e. a patient head
scan in our case. Depending on the information available,
one of the two procedures proposed below is used to deal
with this problem.

Min-Max Scaling. If no prior knowledge is available in
the given scenario, then a simple min-max scaling method
is utilized to the backprojected results, to roughly align the
total intensity values to a reasonable range (-1024 ~ 3072
HU). The min-max scaling method is applied on the recon-
structed volume f (x) and is used to avoid clamping the
over-saturated values caused by an incorrect offset in the last
stage of the imaging pipeline. However, note that it would
introduce an additional scaling problem and thus should only
be used when offset correction (as introduced in the following
paragraph) cannot be applied.

f (x)
min_max

=
(f (x)− fmin)
(fmax − fmin)

· 4096− 1024 , (16)

where

fmin = min (f (xi)) and fmax = max (f (xi))

The min-max scaling can only enable a linear relation-
ship, rather than an exact HU value match, between the FDK
reconstruction from a full FOV scan and ATRACT-based
ROI reconstruction.

Offset Correction. Now we introduce our correction ap-
proach that can be applied on the filtered data gF (λ, u, v), to
more accurately compensate the scaling/offset problem gen-
erated by ATRACT. The scheme is based on the following
correction model:

gcorrectedF (λ, u, v) = gF (λ, u, v) + ε (λ) , (17)

and

ε (λ) = A ·
u2∑
u1

v2∑
v1

g (λ, u, v)∆u∆v +B

+ C · (u2 − u1) · (v2 − v1) (18)

where gF (λ, u, v) and gcorrectedF (λ, u, v) denote the filtered
projections by ATRACT without and with correction, ε is the
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Figure 2 Illustration of the calibration procedure using full FOV scan data (data courtesy of St. Luke’s Episcopal Hospital, Houston, TX, USA).
Step 1 involves determining the attenuation-related parameters A and B1 using two projections from different views g (λ1, u, v) and g (λ2, u, v)
by comparing the difference between the mean values of selected ROIs (marked as red circles) in FDK and ATRACT filtered projections. With
determined A and B1, a different truncation size was chosen (i.e., (u4 − u3) · (v4 − v3)) in the same angulation λ1, to calculate the size-related
parameters B2 and C using Eqn. (20) .

projection-dependent offset and ∆u, ∆v are spacings in u
and v direction. In principle, the offset problem discussed
before can also be regarded as a loss of the information on the
object support. We empirically found that this information
is related to the attenuation summation

∑u2

u1

∑v2
v1
g (λ, u, v)

and truncation size (u2 − u1) · (v2 − v1). We can approx-
imately recover this information, i.e. ε (λ), by setting the
attenuation related linear parameters A and B and truncation
size related parameter C.

Let us now detail the estimation of the parameters in
Eqn. (18). These parameters are calibrated by measuring the
differences (offsets) between the ATRACT filtered truncated
projections and the ramp filtered non-truncated projection
(FDK). In particular, the estimation divides into two steps
(also see Fig. 2 for illustration):

– Step 1: First we computed the parameter A and an in-
termediate parameter B1 using two different truncated
projections with the same truncation size:

{
B1 +A ·

∑u2

u1

∑v2
v1
g (λ1, u, v)∆u∆v = ε (λ1)

B1 +A ·
∑u2

u1

∑v2
v1
g (λ2, u, v)∆u∆v = ε (λ2)

(19)

– Step 2: WithA andB1 determined in Step 1), we estimate
another two parameters B2 and C from projection data
with a different truncation size:


B1 +A ·

∑u2

u1

∑v2
v1
g (λ1, u, v)∆u∆v +B2

+C · (u2 − u1) · (v2 − v1) = ε (λ1)

B1 +A ·
∑u4

u3

∑v4
v3
g (λ1, u, v)∆u∆v +B2

+C · (u4 − u3) · (v4 − v3) = εnew (λ1)

(20)

where B1 and B2 are two additive parameters. Note that in
Eqn. (18), they are combined into a single parameter (B =

B1 +B2).
In practice, the determination of calibration parameters

depends on the specific clinical scenario: 1) If a prior full
scan projections are available and the ROI scans are used as
follow-up scan to re-examine the patient, we can calibrate the
parameters using Eqn. (18). 2) If no prior full scan is available
and only truncated data are acquired, we use the parameters
that were pre-set in an initial calibration step using another
patient full scan in the same application scenario. In this
work, we focus on the latter case which is more generic, and
the application scenario is a patient head scan.

Experimental Setup

The proposed correction scheme was validated and evaluated
on ten clinical datasets of patient heads (data courtesy of St.
Luke’s Episcopal Hospital, Houston, TX, USA and Rush
University Medical Center, Chicago, IL, USA). All datasets
were acquired on a C-arm CT system (Artis Zee, Siemens
AG, Forchheim, Germany). All scans contain 496 projec-
tion images 1240 × 960 pixels with a resolution of 0.308
mm / pixel and were acquired on a 200◦ short-scan circular
trajectory.
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ROI a) b) c) d)

e) f) g) h)

Figure 4 Reconstruction results of the clinical dataset I (data courtesy of St. Luke’s Episcopal Hospital, Houston, TX, USA), in the grayscale
window [-1000 HU, 1000 HU]. From left to right: The gold standard FDK reconstruction from non-truncated data, the water cylinder extrapolation-
based ROI reconstruction, the 2D ATRACT-based ROI reconstruction with offset correction, the 1D ATRACT-based ROI reconstruction with offset
correction. The diameter of the FOV in the truncated data is 104 mm and is marked as the yellow circle.

Detector

Measured data

Extrapolated data

Slope

Fitted water 

cylinder

Figure 3 Illustration of water cylinder extrapolation process for trun-
cated data.

Four experimental setups were considered. In Setup 1, no
collimation was applied, yielding non-truncated projection
data. In Setup 2, 3 and 4, the datasets were virtually collim-
ated (by setting the values outside the FOV to be 0) to three
different levels (FOV diameter: 104 mm, 72 mm and 40 mm),
so that only the small FOV was kept in the projection data.

All clinical data were reconstructed onto a Cartesian grid
(512× 512× 350) with an isotropic voxel size of 0.4 mm3.
The standard FDK reconstruction of Setup 1 on non-truncated
projections was used as the reference for quantitative eval-
uation in each clinical case. The truncated datasets were
reconstructed using the 1D ATRACT and 2D ATRACT al-
gorithm, with both the min-max scaling and the offset correc-
tion. The quantitative evaluation for the ten clinical datasets
was carried out by using two image quality metrics: 1) the

relative root mean squared error (rRMSE), calculated by the
RMSE value divided by the volume intensity range of the
reference and 2) the correlation coefficient (CC). We also
investigated the performance of a well-known water cylin-
der extrapolation method [9] and compare it to our newly
proposed method quantitatively. As illustrated in Fig. 3, this
extrapolation scheme empirically estimates the missing data
as a partial cylindrical water object, to provide the trans-
ition between measured data and data outside the FOV to be
smooth and differentiable.

In the numerical implementation, the Laplace operation
was computed using the finite difference method with either
a 3× 1 kernel (1D Laplace) or a 3× 3 kernel (2D Laplace)
and thus filtering can be efficiently performed in the spatial
domain. The ATRACT residual filtering was performed using
FFT in the Fourier domain. To avoid singularities in the
central values of the 1D and 2D convolution kernels, we
estimated the central values by computing the mean value at
(u = ±0.1, v = ±0.1) in 2D ATRACT and u = ±0.1 in 1D
ATRACT. Note that in all evaluations the parameters A, B
and C were determined only once using one single reference
dataset (the non-truncated projections of clinical dataset I),
with A = −3.68 · 10−7, B = 1.78, and C = −6.76 · 10−7
in 2D ATRACT and with A = −9.03 · 10−8, B = 1.25 and
C = 8.48 · 10−7 in 1D ATRACT.
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Figure 5 Reconstruction results of the clinical dataset VI (data courtesy of St. Luke’s Episcopal Hospital, Houston, TX, USA), in the grayscale
window [-1000 HU, 1000 HU]. From left to right: The gold standard FDK reconstruction from non-truncated data, the water cylinder extrapolation-
based ROI reconstruction, the 2D ATRACT-based ROI reconstruction with offset correction, the 1D ATRACT-based ROI reconstruction with offset
correction. The third and fourth rows (display window [-1000 HU, 2000 HU]) are zoomed images of the dashed rectangular areas in the first two
rows. The diameter of the FOV in the truncated data is 40 mm and is marked as the yellow circle.

Results

The reconstruction results of the clinical dataset I with the
FOV of 104 mm and dataset VI with FOV of 40 mm, restored
by corrected 1D/2D ATRACT as well as water cylinder ex-
trapolation, are presented in Fig. 4 and Fig. 5. Corresponding
line profiles are shown in Fig. 6 and 7.

For the reconstruction results of the 104 mm FOV, no
substantial difference within the FOV is observed between
all three ROI reconstructions and the reference FDK recon-
struction from non-truncated data. The line profiles (line
position shown as the yellow dashed line), from which no
significant deviation was seen compared to the reference, also
confirm this visual observation. However, with increasing
degree of truncation, the water cylinder extrapolation suffers

from truncation-induced cupping artifacts at the boundar-
ies of the FOV while corrected 1D and 2D ATRACT still
maintain high image quality (see Fig. 7).

Fig. 8 shows a homogeneous area of the reconstruction
by corrected 2D ATRACT from clinical dataset IV, for the
truncated data with a FOV diameter of 104 mm and 72 mm,
respectively. It can be observed that the proposed correc-
tion scheme not only effectively reduces truncation artifacts
and nicely restores the structural information, but also yields
a highly comparable intensity magnitude as non-truncated
FDK due to the automatic scaling/offset correction, even
though the calibration parameters were determined by clin-
ical dataset I.

Fig. 9 and 10 show volume renderings of implanted micro
devices from the standard FDK reconstruction from non-
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Figure 6 The central line profile (line position marked as the yellow
dashed line in Fig. 4, i.e. medium truncation case) along each recon-
struction. Note that all three algorithms achieve comparable results to
the reference.
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Figure 7 The central line profile (line position marked as the yellow
dashed line in Fig. 5, i.e. severe truncation case) along each reconstruc-
tion. Note that truncation-introduced cupping artifact and bias appear
in the water cylinder extrapolation for this severe truncation case while
2D and 1D ATRACT still yield reconstructions of high quality.

truncated data and the new ATRACT reconstruction from
truncated data. In Fig. 9, the truncated FOV is ~30% of
the full FOV, which means that a dose reduction of ~70%
could be achieved in this case. In Fig. 10, the projection data
were highly truncated, yielding a possible dose reduction of
~91%. Note that in both truncation cases the visualization
quality of the neurological stent or coil is almost identical
to the one reconstructed from non-truncated data entailing a
substantially larger X-ray exposure.

The quantitative evaluation of the reconstructions of all
ten clinical datasets by 1D ATRACT, 2D ATRACT and water
cylinder extrapolation are summarized in Table 1, Table 2
and Table 3, respectively. The mean value and standard devi-
ation of rRMSE as well as CC are also presented as column

200 HU

-200 HU

200 HU

-200 HU

Reference Corrected

Figure 8 Homogeneous area of the reconstructions of the clinical data-
set IV (data courtesy of St. Luke’s Episcopal Hospital, Houston, TX,
USA), in a compressed display window [-200 HU, 200 HU]. Left
column: the gold standard FDK reconstruction, right column: the 2D
ATRACT ROI reconstruction by the corrected 2D ATRACT. The first
and second row are reconstructed from truncated FOV of 104 mm and
72 mm, respectively.

graph in Fig. 11, 12 and 13. We found that even for severely
truncated data (FOV of 40 mm), the corrected 1D ATRACT
method achieved a mean rRMSE of 3.27% compared to a
mean rRMSE of 15.3% for its uncorrected version. For cor-
rected 2D ATRACT, the average rRMSE was 2.81%. This
confirms that the proposed scaling correction performs well
in all evaluated datasets, even though the correction para-
meters were estimated from one dataset and applied to the
others. Note that since the correlation coefficient is free of
the scaling and bias problem in the reconstruction, no signi-
ficant differences can be observed for these values between
the corrected ATRACT and the uncorrected one.

Also note that there is no observable difference between
the image quality of reconstructions from truncated data with
the FOV diameter of 104 mm and of 72 mm for 1D/2D
ATRACT approach. We found that the water cylinder extra-
polation performs nicely for the truncated FOV of 104 mm.
Both rRMSE and CC values are comparable to the ATRACT
methods. But when the truncation becomes more severe, e.g.
with the FOV diameters of 72 mm and 40 mm, it is not able
to accurately approximate the missing data and thus results
in a lower image quality: A mean rRMSE of 5.14% for the
72 mm FOV and 11.9% for the 40 mm FOV.

Discussion and Conclusion

Typically, 3D C-arm CT scans cause a considerable amount
of effective dose up to 2.7 mSv for a low-contrast scan of the
patient’s head [7]. ROI imaging, which deploys a collimator
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Figure 9 3D volume rendering of an implanted neurological stent from the FDK reconstruction of the full FOV scan (left) and from ATRACT-based
ROI reconstruction of truncated FOV scan (right) (data courtesy of St. Luke’s Episcopal Hospital, Houston, TX, USA). Note that image quality
from truncated FOV data is visually comparable to that from the full FOV scan while the former enables considerable dose reduction compared to
the latter.

Figure 10 3D volume rendering of two implanted stents and a coil from the FDK reconstruction of the full FOV scan (left) and from ATRACT-based
ROI reconstruction of severely truncated FOV scan (right) (data courtesy of St. Luke’s Episcopal Hospital, Houston, TX, USA). The potential dose
reduction of 91% can be achieved in this severe truncation.

Table 1 Quantitative evaluation of the reconstructions of the ten patient head datasets using the corrected 1D ATRACT algorithm.

FOV Metrics Data I Data II Data III Data IV Data V Data VI Data VII Data VIII Data IX Data X

104 mm CC 0.98 0.97 0.97 0.97 0.92 0.96 0.95 0.96 0.96 0.96
rRMSE (%) 1.28 2.39 1.36 2.29 2.09 1.60 1.62 3.24 2.31 2.66

72 mm CC 0.98 0.97 0.97 0.97 0.92 0.97 0.97 0.96 0.96 0.96
rRMSE (%) 1.08 1.99 2.06 2.31 2.44 1.28 1.59 2.13 1.96 2.71

40 mm CC 0.98 0.94 0.98 0.95 0.90 0.98 0.92 0.84 0.91 0.94
rRMSE (%) 2.70 2.16 4.11 1.64 7.34 4.32 1.31 2.44 3.18 3.57

Table 2 Quantitative evaluation of the reconstructions of the ten patient head datasets using the corrected 2D ATRACT algorithm

FOV Metrics Data I Data II Data III Data IV Data V Data VI Data VII Data VIII Data IX Data X

104 mm CC 0.99 0.98 0.97 0.98 0.96 0.98 0.97 0.96 0.95 0.97
rRMSE (%) 0.92 1.72 1.55 2.10 1.36 1.48 1.47 3.67 3.99 2.37

72 mm CC 0.98 0.99 0.97 0.99 0.99 0.99 0.97 0.96 0.95 0.98
rRMSE (%) 0.92 1.49 2.54 1.99 2.04 1.53 1.61 2.04 4.43 1.89

40 mm CC 0.98 0.97 0.98 0.96 0.94 0.98 0.96 0.89 0.91 0.98
rRMSE (%) 1.22 2.13 3.95 4.71 3.55 2.43 1.79 3.15 3.31 1.88

Table 3 Quantitative evaluation of the reconstructions of the ten patient head datasets by means of the water cylinder extrapolation.

FOV Metrics Data I Data II Data III Data IV Data V Data VI Data VII Data VIII Data IX Data X

104 mm CC 0.97 0.98 0.98 0.98 0.92 0.97 0.96 0.98 0.95 0.97
rRMSE (%) 1.15 2.13 1.62 1.78 2.39 2.01 0.72 2.70 2.62 2.41

72 mm CC 0.96 0.95 0.97 0.95 0.96 0.98 0.92 0.93 0.92 0.95
rRMSE (%) 3.15 6.38 5.78 5.66 8.08 2.88 2.22 4.90 6.15 6.25

40 mm CC 0.90 0.85 0.97 0.88 0.93 0.95 0.92 0.86 0.87 0.93
rRMSE (%) 9.13 9.38 7.78 18.6 16.5 9.12 4.62 15.7 16.0 12.6
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Figure 11 Mean values and standard deviations of the rRMSE from the
reconstructions of three FOVs using the uncorrected 1D/2D ATRACT
algorithms.

to shield X-rays outside of the diagnostic ROI, will dramatic-
ally reduce radiation dose to the patient. The amount of dose
savings is approximately proportional to the truncated FOV.

However, the resulting truncation poses a challenge to tra-
ditional reconstruction algorithms. In this article, we investig-
ated two variants of an existing truncation correction method
(ATRACT) and presented an empirical scaling correction that
can be applied to these methods. The advantages of the pro-
posed method are addressed by the following aspects: 1) As
opposed to the algorithms reported in [2,12,14], the proposed
method relies very little prior knowledge and is not restricted
to a limited family of data sets. This enbles practicality of
the algorithms in most interventional use cases. 2) Compared
to the iterative methods in [18] and [19], the new methods
adopt the filtered back-projection scheme and can be directly
applied in a clinically used scanner at low computational cost.
For instance, the total computation time of iterative methods
is proportional to I · O(N3) + I · O(N4), where I is the
number of iterations (assume that projection dimension size,
projection number and volume size are equal to N). In con-
trast, the standard FBP scheme only requires the one step
back-projection of the filtered projections with a complexity
of O(N4). 3) Explicit extrapolation methods [1,9,11,13,15]
are interventionally preferred since they are computationally
efficient and are able to estimate the missing data heuristic-
ally without the requirement of prior knowledge. They are,
however, difficult to apply to severe truncations that are en-
countered in ROI scans, as shown in Fig. 5.

Fig. 11 and 12 showed that with the proposed offset cor-
rection, ATRACT is able to effectively reduce the rRMSE to
as little as 2.06%, compared to the one without correction
(11.2%). Unlike an altas-based linear correction that require
a large patient database [10], the newly proposed calibration
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Figure 12 Mean values and standard deviations of the rRMSE from
the reconstructions of three FOVs using the corrected 1D/2D ATRACT
as well as water cylinder extrapolation algorithms.
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Figure 13 Mean values and standard deviations of the CC (correlation
coefficient) from the reconstructions of three FOVs using the corrected
1D/2D ATRACT as well as water cylinder extrapolation algorithms.

measure is only performed once with one dataset and the de-
termined parameters can be factory pre-set for a given organ
program at the scanner. The corrected intensity range can
also enable the application of post-processing algorithms that
rely on values of final reconstructed volume to work properly.
A potential limitation of this study is its restriction to patient
head datasets. Differences between the anatomy are likely
to result in variations in projection correction parameters.
Future work involves the validation in larger studies.
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Appendix

Assume the 1D Fourier transform of g1 (λ, u, v) with respect
to u is F1 {g1} (λ, ωu, v), then we can obtain

g1 (λ, u, v) =

∞̂

0

F1 {g1} (λ, ωu, v) ei2πωuudωu (21)

Applying the second-order derivative to both side of the
equation above yields

∂

∂u2
g1 (λ, u, v) =

∂

∂u2

∞̂

0

F1 {g1} (λ, ωu, v) ei2πωuudωu

=

∞̂

0

F1 {g1} (λ, ωu, v)
∂

∂u2
ei2πωuudωu

=

∞̂

0

[
F1 {g1} (λ, ωu, v) (2πiωu)

2
]
ei2πωuudωu

(22)

Then, the inverse Fourier transform of (i2πωu)
2 F1 {g1}

is equivalent to ∂2g1/∂u2 has been shown.
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