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Abstract—It is known that a reduction of the field of view
(FOV) in 3D X-ray imaging is proportional to a reduction in
radiation dose. The resulting truncation, however, is incompatible
with conventional reconstruction algorithms. Recently, a novel
method for region of interest (ROI) reconstruction that uses
neither prior knowledge nor extrapolation has been published,
named Approximated Truncation Robust Algorithm for Com-
puted Tomography (ATRACT). It is based on a decomposition
of the standard ramp filter into a 2D Laplace filtering and a 2D
Radon-based residual filtering step. In this paper, we present two
variants of the original ATRACT. One is based on expressing the
residual filter as an efficient 2D convolution with an analytically
derived kernel. The second variant is to apply ATRACT in
1D to further reduce computational complexity. The proposed
algorithms were evaluated by using a reconstruction benchmark,
as well as two clinical data sets. The results are encouraging since
the proposed algorithms achieve a speed-up factor of up to 245
compared to the 2D Radon-based ATRACT. Reconstructions of
high accuracy are obtained, e.g. even real-data reconstruction in
the presence of severe truncation achieve a relative root mean
square error (rRMSE) of as little as 0.92 % with respect to non-
truncated data.

Index Terms—C-arm CT, dose reduction, image reconstruc-
tion, region of interest, truncation, truncation artifact

I. INTRODUCTION

MANY interventional procedures in neuroradiology in-
volve minimally-invasive techniques that require image

guidance, often provided by two-dimensional (2D) digital sub-
traction angiography (DSA) on flat-panel C-arm system. 2D
DSA images provide excellent spatial resolution but lack both
low-contrast resolution and three-dimensional (3D) anatomical
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Fig. 1: Visualization of a deployed neurological stent with respect to the
treatment region in (a) view-aligned 2D angiography, and (b) rendered volume
from 3D imaging (Images courtesy of St. Luke’s Episcopal Hospital, Houston,
TX, USA).

information [1]. This may cause difficulties when localizing
the devices within the treatment region. 3D C-arm imaging,
on the other hand, offers both low-contrast resolution and 3D
spatial orientation, and was found to be a valuable imaging
tool during the therapy of intracranial aneurysms [2], [3], [4].
Fig. 1 illustrates the localization of a deployed pipeline stent
with respect to the treatment region in 2D angiography and
3D imaging.

However, radiation dose to the patient can be substantial
during a low contrast 3D scan [5]. Therefore, a reduction in ra-
diation dose without compromising image quality in C-arm CT
has become an active field of research for such circumstances.
In some clinical applications and workflows (e.g. examination
of deployed stents or coils during the intervention, cochlear
implants, and needle biopsies) only a small portion of the
patient may be of diagnostic interest. This enables the idea
of 3D region of interest (ROI) imaging, utilizing an X-ray
beam collimator to transaxially and axially block radiation
during image acquisition. This approach yields a significant
reduction of patient dose, but the resulting projection trunca-
tion typically leads to severe artifacts when using conventional
CT algorithms. These artifacts manifest as a bright ring at the
edges of the 3D ROI and will dramatically contaminate the
image quality in the reconstruction results.

Therefore, it is of practical significance to develop an
algorithm for 3D ROI imaging that is of comparable accuracy
to reconstructions from non-truncated data. In addition to high
image quality, we are also interested in an algorithm that is
suitable for any clinical workflow. The algorithm should pose
as little constraints on the availability of prior image data such
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as preoperative scans and prior image information collected
during the intervention as possible. Any such constraint would
immediately imply a restriction of the applicability of the al-
gorithm to a workflow that provides exactly the required data.
Furthermore, no additional low-dose data should be required,
as the delay caused by patient repositioning and the acquisition
itself introduces another burden on the interventional operator
and impairs the ease of use of the method.

II. RELATED WORK

Various approaches concerning the correction of truncation
have been proposed in the literature over the last several years.

One category requires prior knowledge about the recon-
structed object but achieves an exact reconstruction of the
object ROI if some geometrical conditions are satisfied by
the imaging configuration. Corresponding algorithms were
suggested by Noo et al. [6] and Pan et al. [7] and are based
on the concept of Differentiated Backprojection (DBP): After
backprojecting the derivative of the projection data, these
methods require a 1D finite Hilbert inversion along specific
lines in the backprojection result. Later, Defrise et al. [8], Ye
et al. [9], [10], and Kudo et al. [11] suggested an extension
to the DBP method that solves the Hilbert inversion by
iterative projection onto convex sets (POCS). This extension
allows a wider class of truncation configurations to be solved
accurately, but at the cost of higher computational efforts.

Yu et al. [12] and Cho et al. [13] adapted the PI-line-based
backprojection filtration (BPF) algorithm from helical cone-
beam CT to a circular geometry. In this method, the PI-line
support segment can be small and only the data backprojected
onto the PI-line support segment is required to reconstruct the
image, which enables the ROI image reconstruction.

Chityala et al. [14], Chen et al. [15] and Schafer et al. [16]
suggested to use a filtering mask between the X-ray source and
the patient, to reduce rather than completely block radiation
outside the ROI. Therefore, projections will not be truncated,
but data acquisition becomes more complex and dose reduction
benefits might be reduced. Alternatively, patient size, shape
and attenuation information can also be obtained from a prior
low-dose CT scan (Kolditz et al. [17], [18]), if available, and
then used to extend the collimated projections outside the ROI.

Another major category of ROI reconstruction methods is
based on estimating the missing data using an extrapolation
procedure, such as symmetric mirroring of projection images
(Ohnesorge et al. [19]), water cylinder/ellipse extrapolation
(Hsieh et al. [20], Maltz et al. [21]), smooth function esti-
mation (Van Gompel et al. [22]), square root extrapolation
(Sourbelle et al. [23]), optimization-based extrapolation (Maier
et al. [24]) or scattering radiation-based extrapolation (Bier
et al. [25]). However, these methods are based on heuristic
assumptions that may not always accurately approximate the
objects outside the ROI.

Iterative reconstruction can also be a candidate for tackling
the interior problem. Some related work focusing on the use of
compressed sensing (Yu et al. [26]) and total variation (Yang
et al. [27]) was also suggested.

Recently, another filtered-backprojection method
(ATRACT) has been proposed for ROI reconstruction

from transaxially-truncated projections (Dennerlein [28]).
This algorithm neither uses prior knowledge nor explicit
extrapolation and no hardware changes in the acquisition
systems are needed. It therefore goes along with the workflow
requirements described in the previous section and can readily
be applied on current clinical C-arm systems. The ATRACT
reconstruction scheme was originally derived in [28] using
2D Radon transform operations. We thus refer to this
method as 2D Radon-based ATRACT throughout this paper.
This algorithm, however, requires frequent interpolations
and complicates the filtering procedure. For practical use,
ATRACT was later refined to a more practically-useful
reconstruction algorithm with implementations that are
based on a 2D convolution. The corresponding kernel was
numerically determined in [29], [30] and analytically derived
in [31]. To further reduce the computational complexity,
ATRACT coming with non-local row-wise filtering was
suggested, with a 1D kernel numerically determined by
computing the impulse response of the standard ramp filtering
coupled with the second-order anti-derivative operator [32].
Note that all of the previous algorithms suffer from a global
offset problem. To tackle this problem, two solutions [33],
[34] were suggested and evaluated on synthetic data.

In this paper we present the analytical derivations of 2D and
1D convolution-based ATRACT. Both result in a noticeable
computational speed-up and thus make ROI imaging applica-
ble to interventional workflows. Furthermore, we present the
steps that need to be undertaken to make these algorithms
suitable for clinical application. The performance of a refined
heuristic extrapolation method [35] was also investigated and
compared to our proposed algorithms. In the experimental part,
image quality evaluations involving both virtually cropped and
physically collimated clinical datasets are provided.

III. TRUNCATION CORRECTION

A. CB Projection and Truncation

Let us denote the object density function f (x) with x =
(x, y, z). Focus on the circular cone-beam (CB) imaging
geometry with a flat-panel detector shown in Fig. 2, the 2D
projection at the rotation angle λ obtained for all possible unit
vectors α can be written as

g (λ, u, v) =

∞∫
0

f (a (λ) + tα (λ, u, v)) dt . (1)

The reconstruction problem is to restore f (x) from CB
data g (λ, u, v) collected over a suitable angular range, e.g.,
of π plus fan-beam angle in a short-scan acquisition. The
Feldkamp–Davis–Kress algorithm (FDK) [36] is commonly
used for the circular cone-beam reconstruction due to its
simplicity and efficiency. It typically consists of the following
three steps: 1) Cosine and Parker weighting of the projection
data to obtain g1 (λ, u, v); 2) a row-wise ramp filtering of pre-
weighted data to get the filtered projection data gF (λ, u, v);
3) a distance weighted cone-beam backprojection to restore
the object function f (x). Because of the non-local property
of the ramp kernel, filtering of any point of a projection
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Fig. 2: Geometry and associated notations. (a) Short-scan circular cone-beam geometry with a flat-panel detector. (b) Detector coordinates (u, v) and Radon-
based coordinates (θ, s). Notations: a (λ) = (R cosλ,R sinλ, 0) describes the trajectory of the X-ray source, with the patient-detector distance R and the
rotation angle λ. ew (λ) is the unit vector orthognoal to the flat-panel detector, and eu (λ) and ev (λ) are the orthogonal unit vectors at distance D from
the source. g (λ, u, v) denotes the projection data at the point (u, v) acquired at angle λ.
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Fig. 3: Workflow of the FDK algorithm and the ATRACT algorithm. Note
that ATRACT has the same first and last step as FDK, but comes with
two successive 2D filtering steps instead of a row-wise ramp filtering. g1,
g2 and gF in ATRACT workflow indicate the projection data after pre-
weighting (Cosine and Parker weighting), Laplace filtering and residual
filtering, respectively.

image requires the knowledge of all line integrals along
the whole detector row. This requirement, however, is not
satisfied anymore if projection data are transaxially truncated.
Therefore, using standard FDK directly for reconstruction of
truncated data will introduce severe artifacts, such as cupping
artifacts and incorrect HU values.

B. 2D Radon-based ATRACT

In this section, we review the ATRACT reconstruction
scheme that was originally derived in Ref. [28] using 2D
Radon transform operations and that was later refined to
a more practically-useful reconstruction algorithm [29]. The
main idea was to find an equivalent of the 1D ramp fil-

ter within FDK so that the filtering procedure is intrinsi-
cally less sensitive to data truncation. The ramp filtering of
g1 (λ, u, v) is analytically reformulated to the 2D Laplace
operation (g1 (λ, u, v) → g2 (λ, u, v)) and a 2D residual
filtering operation (g2 (λ, u, v) → gF (λ, u, v)) that is given
by equations (20) and (21) in [28]. These equations define a
2D parallel-beam Radon transform, a angular weighting and
a 2D backprojection, namely:

g3 (λ, θ, s) =

∫
Ω

g2 (λ, u, v) δ

(
u ·
(

cos θ
sin θ

)
− s
)

du , (2)

gF (λ, u, v) = − 1

4π2

R

D

π∫
0

| cos θ|g3 (λ, θ, s∗) dθ (3)

where g2 (λ, u, v) indicates the pre-weighted projection data
after the Laplace operation, g3 (λ, θ, s) is an intermediate
function with the Radon-based coordinate, Ω indicates the
shadow of the object on the detector, u = (u, v) and
s∗ = u cos θ + v sin θ.

The algorithmic flowchart of ATRACT is illustrated in
Fig. 3, where it is compared to that of the short-scan FDK.
The advantages of considering this two-step filtering can be
summarized as follows:

1) The local 2D Laplace operation only introduces errors at
the boundaries of the FOV, where outer neighboring values are
unknown due to truncation, but nowhere else inside the FOV.
In the numerical implementation, we remove any incorrect
values at the FOV boundaries by setting them to zeros after
Laplace filtering. With the FDK method, such a removal is
not straightforward, due to the non-local character of the ramp
filter.

2) Implicit extrapolation with zeros beyond the FOV bound-
aries in the second-order derivative domain yields a better
approximation for the missing data than such an implicit
extrapolation on g (λ, u, v) or g1 (λ, u, v), i.e. before differ-
entiation.

3) Although the 2D Radon-based filtering is a non-local
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operation, it is less sensitive to data inconsistencies than the 1D
ramp filtering. Furthermore, as the 2D filtering is performed
for all detector elements simultaneously, this reduces outliers
that may be caused by individual 1D processing of detector
lines.

Consequently, even though no explicit extrapolation is used
during the filtering steps in ATRACT, the filtered result gF
will not contain a noticeable artificial structure at the edge of
transaxial truncation compared to that of FDK method.

C. 2D Convolution-based ATRACT

A numerical implementation of ATRACT that directly
adopts Eqns. (2) and (3) for the non-local residual filter-
ing is computationally very expensive, because a 2D Radon
transform and Radon inversion have to be executed once for
each projection image. Moreover, Eqns. (2) and (3) require
frequent interpolations, so a loss of spatial resolution in the
reconstruction is unavoidable. For practical use of ATRACT,
an implementation of the non-local filtering operation using
a 2D convolution in u and v was suggested to increase
computational efficiency [29], where the corresponding 2D
kernel function was determined numerically by computing the
2D impulse response of (2) and (3).

Here we go one step further and analytically derive the
convolution formula that replaces the 2D Radon-based filter
in the original ATRACT algorithm. This analytical formula
has the potential to increase spatial resolution in the ATRACT
reconstructions and again significantly increases computational
performance (due to FFT-based computations) compared to a
direct implementation using (2) and (3). We refer to the new
method as 2D ATRACT in the following.

With a small modification, Eqn. (2) can be rewritten as
follows:

g3 (λ, θ, s) =

∞∫
−∞

g2 (λ, s cos θ − t sin θ, s sin θ + t cos θ) dt .

(4)
Inserting (4) into (3) yields

g
(ATRACT )
F (λ, u, v) = − 1

4π2

R

D

π∫
0

| cos θ|

∞∫
−∞

g2 (λ, s∗ cos θ − t sin θ, s∗ sin θ + t cos θ) dtdθ . (5)

Substituting variables (t, θ) by (u′, v′) with u′ = t sin θ and
v′ = −t cos θ, it is easy to obtain the following equations:

|t| =
√
u′2 + v′2 and (6)

cos θ =
v′√

u′2 + v′2
. (7)

The area element dtdθ can be replaced by |J|du′dv′, where
|J| is the determinant of the Jacobian, i.e.,

Fig. 4: 3D plot of the analytical 2D kernel in the spatial domain. The constant
C1 is set to 1. Note that in the numerical implementation, the singularity at
(u = 0, v = 0) can be approximated as the mean value of its neighboring
points.

|J| = 1

|J|−1 = 1/det
(
∂ (t, θ)

∂ (u′, v′)

)
= 1/

∣∣∣∣ ∂t
∂u′

∂θ
∂u′

∂t
∂v′

∂θ
∂v′

∣∣∣∣
= 1/

∣∣∣∣ sin θ − cos θ
t cos θ t sin

∣∣∣∣ = 1/t. (8)

Also, since s∗ = u cos θ+ v sin θ and tan θ = u/v, we can
obtain

s∗ cos θ = u cos2 θ + u
sin θ

cos θ
sin θ cos θ = u , (9)

s∗ sin θ = v
cos θ

sin θ
sin θ cos θ + v sin2 θ = v . (10)

Now, inserting (6), (7), (8), (9) and (10) into (5), we finally
obtain the 2D convolution formula:

g
(ATRACT )
F (λ, u, v) =

u2∫
u1

v2∫
v1

g2 (λ, u− u′, v − v′)

h2D (u′, v′) du′dv′ , (11)

where the analytical 2D kernel h2D (u′, v′) is determined as
follows:

h2D (u′, v′) = − 1

4π2

R

D
| cos θ||J| = C1

|v′|
u′2 + v′2

(12)

with C1 = −R/
(
4π2D

)
.

The plot of the 2D analytical kernel is given in Fig. 4. A
similar kernel was also found in the field of phase contrast CT
[37].

The frequency representation of the analytical 2D kernel is
given as

H2D (ωu, ωv) = C1
|ωu|

ω2
u + ω2

v

. (13)

where H2D (ωu, ωv) denotes the 2D Fourier transform of
h2D (u, v); see the appendix for the derivation.

Now we can explain the reason why the ATRACT residual
filtering is less affected by data inconsistencies. As shown in
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Fig. 5: Normalized line profiles of the 2D residual kernel in the Fourier
domain. Frequency response shows that the 2D kernel possesses a low-
pass character, which is able to provide a regularizing effect to suppress
inconsistencies introduced in truncated data.

Fig. 5, the residual filter is a low-pass filter. This is beneficial
since the data function g2 (λ, u, v) contains inconsistencies
due to implicit constant extrapolation to zeros outside the
FOV, the filtering will provide a regularizing effect that is
able to suppress these newly introduced inconsistencies in the
projection image. Fig. 6 exemplarily shows different impacts
of projection truncation on the 1D ramp filtering and 2D
ATRACT filtering. As can be seen, the two-step ATRACT
filtering can produce a more robust result than that of the ramp
filtering in terms of eliminating the truncation-induced cupping
artifact. The cupping artifact can be roughly quantified by the
mean value difference between the two ROIs indicated in Fig.
6, with 14.8 for the ramp filter but only 0.07 for the two-
step ATRACT filter. However, we found that 2D ATRACT
filtering suffers an offset or bias-like artifact. This problem
will be further addressed in Section III-D.

D. ATRACT with Row-wise Filtering

For further improvements in filtering speed, we will derive
and investigate a 1D version of ATRACT. It is known that the
computational complexity of a 2D FFT for a N ×N image is
proportional to N2 log2N

2, i.e. 2 ·N2 log2N . Applying a 1D
FFT to each row of the same image yields a complexity of N ·
N log2N , which implies a reduction of a factor of 2. Moreover,
additional padding in the axial direction, as would be required
for the 2D FFT-based filtering, is avoided. This contributes to
further reduction of computation time when using 1D row-
wise filtering.

We will derive the 1D ATRACT method starting with an
alternative decomposition of the ramp filter. Radon’s inversion
formula is also referred to as the Differentiation, Hilbert
transform and Backprojection (DHB) [6] which decomposes
the ramp filter into two parts as follows

g
(ATRACT )
F (λ, u, v) =

∂g1 (λ, u, v)

∂u
∗ 1

2π2u
, (14)

where the symbol * denotes the 1D convolution operation.
To derive the 1D ATRACT algorithm, Eqn. (14) can be

modified as

g
(ATRACT )
F (λ, u, v) =

u∫
−∞

∂2g1 (λ, ũ, v)

∂ũ2
dũ ∗ 1

2π2u
. (15)

Using the property of convolution, we can move the anti-
derivative operator to the Hilbert kernel

g
(ATRACT )
F (λ, u, v) =

∂2g1 (λ, u, v)

∂u2
∗

u∫
−∞

1

2π2ũ
dũ . (16)

The first part of (16) is the 1D Laplace operation, i.e. the
second-order derivative with respect to u (detector row) and
the second integral can be further computed as follows

u∫
−∞

1

2π2ũ
dũ =

1∫
−∞

1

2π2ũ
dũ+

u∫
1

1

2π2ũ
dũ

= C2 +
1

2π2
ln|u|, (17)

where C2 is a constant that is determined as

C2 =

1∫
−∞

1

2π2ũ
dũ (18)

The expression of the 1D analytical kernel in the Fourier
domain can be obtained by using Fourier transform of ln|u|,
which yields:

H1D (ωu) =

−∞∫
−∞

1

2π2
ln|u|e−i2πuωudu

= − 1

4π2

|ωu|
ω2
u

. (19)

It can be observed that analogous to the 2D kernel, the 1D
residual kernel possesses a low-pass property and its plot in
the Fourier domain is consistent to the horizontal line profile
in Fig. 5. Similarly, we analyze the filtering of 1D ATRACT
from a truncated projection using the same configuration as in
shown Fig. 6. As expected, 1D ATRACT filtering is superior
to the standard 1D ramp filtering for removing inhomogeneous
structural artifacts (achieves a mean value difference of 0.05
between the two ROIs) although both use a row-wise filtering
to improve the runtime.

E. Offset Artifact in ATRACT

As mentioned in the previous sections, the 2D/1D ATRACT
filtering is capable of eliminating truncation-induced cupping
artifacts but an offset or bias-like artifact arises. This is because
during the filtering process the mean value of the truncated
projection data is removed. Thus, subsequent backprojection
will be only correct up to an offset.

Throughout this paper we use the term “given scenario” to
indicate the same acquisition geometry and same anatomical
region of the patients, e.g. patient head scan. Depending on
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Fig. 6: Illustration of different impacts of truncation on ramp filtering and 2D ATRACT filtering. From left to right: A projection of a simulated water cylinder
(Image generated by Deterministic Radiological Simulation Software (DRASIM), Siemens AG, Forchheim, Germany) with the actual scan FOV indicated by
the black-dashed rectangle, ramp filtering of the projection in the scan FOV, 2D ATRACT filtering of the projection in the scan FOV. Note that the filtered
projection image from 2D ATRACT is almost evenly distributed while cupping-like distribution appears in the 1D ramp filtering.

the calibration information available, one of two procedures is
used to deal with this problem, as follows.

Min-Max Scaling. If neither a full FOV scan is available nor
the parameters in offset correction (see Eqn. (22)) are provided
in the given scenario, then a simple min-max scaling method is
utilized to the backprojected results, to roughly align the total
intensity values to a reasonable range (-1024 ~ 3072 HU). This
approach is used to avoid clamping the over-saturated values
caused by an incorrect offset in the last stage of the imaging
pipeline and should only be used when offset correction can
not be applied.

f (x)
corrected

=
f (x)− fmin
fmax − fmin

· 4096− 1024 (20)

where

fmin = min (f (xi)) and fmax = max (f (xi))

Offset Correction. If a full FOV scan is available in the
related acquisition scenario or the parameters were initially
calculated, then we can more effectively compensate the offset
problem by calibrating the projection-related parameters in the
projection domain. The correction scheme is formulated as
follows:

gcorrectedF (λ, u, v) = g
(ATRACT )
F (λ, u, v) + ε (λ) (21)

ε (λ) = A ·
u2∑
u1

v2∑
v1

g (λ, u, v) +B+C · (u2 − u1) · (v2 − v1) ,

(22)
where g(ATRACT )

F (λ, u, v) and gcorrectedF (λ, u, v) denote the
filtered projections by ATRACT without and with correction
and ε is the projection-dependent offset. In principle, the offset
problem discussed above can also be regarded as a loss of
the information on the object support. We empirically found
that this information is related to the attenuation summation
and truncation size. It is an interesting observation because
we can approximately recover this information, i.e. ε (λ), by
setting the attenuation related linear parameters A and B
and truncation size related parameter C. All these parameters
are calibrated by measuring the differences (offsets) between
the ATRACT filtered truncated projections and the reference
filtered projection by FDK from a non-truncated data.

Normally, the min-max scaling can only enable a linear
relationship, rather than an exact HU value match, between

the FDK reconstruction from a full FOV scan and ATRACT-
based ROI reconstruction inside the ROI. The offset correction,
on the other hand, is able to provide a more accurate match
to that of FDK from non-truncated data.

IV. EXPERIMENTAL SETUP

The proposed algorithms were evaluated in terms of com-
putational efficiency and robustness of the correction quality.
All data sets contain 496 projection images (1240× 960) with
a resolution of 0.308 mm / pixel (2 × 2 binning mode) that
were acquired on a 200◦ short-scan circular trajectory from a
C-arm system (Artis Zee, Siemens AG).

A. Measurement of Computational Performance

An open-source reconstruction benchmark framework (Rab-
bitCT [38]) was employed to analyze the computational ef-
ficiency of the proposed methods. In this framework, the
reconstruction performance is evaluated using a specific high
resolution data set of a rabbit, which was acquired at the De-
partment of Neuroradiology, University of Erlangen, Germany.

The execution time spent on processing all 496 projections
with our algorithms was measured, and compared to that of
a standard CPU based ramp filtering operation. Note that
the Radon-based filtering in the original ATRACT used 1024
angular and 1024 of radial samples in Eqns. (2) and (3), so as
to match spatial resolution.

B. Measurement of Correction Quality

To analyze the robustness of the proposed algorithms for
practical application, we used two pairs of clinical examples
(data courtesy of St. Luke’s Episcopal Hospital, Houston, TX,
USA) in presence of different types of truncation (one case
additionally suffers from motion artifacts). First, we virtually
collimated (by setting the outside region to 0) non-truncated
projection data (see Fig. 7(a)) to three different degrees,
as shown in Fig. 7(b), (c) and (d), respectively. Note that
dependent on the location of the ROI, the position of virtual
cropping may vary from one projection to the other.

Then, we considered two truncated clinical data sets ac-
quired using physical X-ray collimation, namely using medium
truncation (FOV area about 29% of the corresponding full
data set) and using severe truncation (FOV area about 9%).
The scan FOV as well as the dose area product (DAP) in
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(a) (b)

(c) (d)

Fig. 7: Virtual collimation of the clinical example. (a) The full FOV scan,
(b)-(d) virtually cropped projections with different FOVs.

Table I: Area of FOV and DAP in the physical collimation examples.

Data set Scan setup FOV area (mm2) DAP (µGym2)

Example 1
Full FOV 234× 181 5667.4

ROI 116× 109 1630.9

Example 2
Full FOV 234× 181 5676.9

ROI 74× 66 543.6

each case are listed in Table I. It should also be pointed out
that the patient moved slightly in the ROI scan of Example
2. We therefore expected motion artifacts to appear in the
reconstructions.

All clinical data sets were reconstructed onto a Carte-
sian grid (512 × 512 × 350). In the virtual collimation, the
sampling spacing is 4x = 4y = 4z = 0.4 mm in all
cases. In the physical collimation, the sampling spacing is
4x = 4y = 4z = 0.4 mm for the medium truncation case
and 4x = 4y = 4z = 0.3 for the severe truncation case.
We also investigated the performance of a refined heuristic
extrapolation method [35], and compared it to our proposed
algorithms. It is a hybrid extrapolation algorithm that estimates
the missing data either using a water cylinder fitting scheme
[20] or a Gaussian extrapolation scheme. The decision which
scheme will be used depends on the slope at the trunca-
tion border, which is computed robustly from a polynomial
function that was fitted to the projection data. Additionally,
a transition region between measured and extrapolated data
is smoothed, which reduces non-differentiable transitions and
transfers noise behavior into the extrapolated range.

The standard FDK reconstruction of the full FOV scan was
used as the gold standard. The ROI scans were reconstructed
using the proposed corrections as well as the hybrid extrap-
olation method. Since the patients were repositioned in the
physical collimation scans, image registrations of the reference
data were performed.

C. Implementation Details

This section describes the details of the implementation of
the ATRACT algorithm. The Laplace operation was computed
using the finite difference method with either a 3 × 1 kernel
(1D Laplace) or a 3 × 3 kernel (2D Laplace) and thus
filtering can be efficiently performed in the spatial domain.
The ATRACT residual filtering procedure was achieved using
FFT in the Fourier domain. The kernel size was determined by
the effective FOV size in the first projection: we chose the next
power of 2 from the larger one among length and width of the
FOV. Once the size was determined, the convolution kernel
was created and applied on all projection images. To avoid
singularities in the central values of the kernels (see Eqns.
(12) and (17)), we estimated the central values by computing
the mean value at (u = ±0.1, v = ±0.1) in 2D ATRACT and
u = ±0.1 in 1D ATRACT. Furthermore, the integral constant
in Eqn. (18) was approximated to −0.35. Reconstruction
resolution can be controlled for 2D/1D ATRACT by applying
a Gaussian distribution function on the convolution kernel.
For the evaluation, resolution was matched by computing the
modulation transfer functions (MTF) of the 2D/1D ATRACT
reconstructions and the FDK reconstruction with a Shepp-
Logan filter using a bead phantom (created by DRASIM,
Siemens AG, Forchheim, Germany). We applied the offset
correction and chose the data in Fig. 7(a) as the reference
full FOV data. It is important to state that in all evaluations
the parameters A, B and C were measured only once using
this reference, with A = −3.68 · 10−7, B = 1.78, and
C = −6.76·10−7 in 2D ATRACT and with A = −9.03·10−8,
B = 1.25 and C = 8.48·10−7 in 1D ATRACT. For correcting
the difference of radiation due to automatic exposure control
in physical collimation, we slightly adjusted the offset ε (sub-
tracted by 0.2) so that HU level in the reconstruction matches
the reference. Additionally, before the filtering process we set
values of 30 pixels to next each boundary of the FOV to zeros,
to remove the shadow of the physical collimator.

D. Image Quality Metrics

To quantify the correction accuracy obtained by each algo-
rithm, two quantitative metrics were used.

1) Relative Root Mean Square Error (rRMSE): A simple
and straightforward way to evaluate the difference of two
volumes. The rRMSE gives a relative error of the evaluated
volume with respect to the reference and is computed as
follows

rRMSE(f (x) , f (Ref) (x)) =
1

f
(Ref)
max − f (Ref)

min(
1

NROI

NROI∑
i=0

(f (Ref) (xi)− f (xi))
2

) 1
2

, (23)

where f (Ref) (x) represents the reference volume, f (x) repre-
sents the evaluated reconstructed volume and NROI indicates
the number of voxels within the evaluated ROI.
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2) Structural Similarity Index Measurement (SSIM): Some-
times two distorted images with same rRMSE may have very
different types of error, some of which are much more per-
ceptible for the human visual system (HVS) while others are
not. SSIM is a method for measuring the similarity between
two images. The biggest advantage of SSIM over the rRMSE
is that it is consistent with human eye perception, modeling
visual perception implicitly by regarding image contamination
as a perceived change in structural information [39].

The SSIM metric of two volumes f (x) and f (Ref) (x) is
calculated as follows

SSIM(f (x) , f (Ref) (x)) =
(2µxµRef + c1)(2σx,Ref + c2)

(µ2
x + µ2

Ref + c1)(σ2
x + σ2

Ref + c2)
,

(24)
where µx and µRef indicate the mean values of fx and fRef,
σ2

x and σ2
Ref indicate the variances of fx and fRef and σx,Ref

indicates their covariance. c1 and c2 are two constants to
stabilize the results in case the denominator is too small (in
our case, c1 = c2 = 0). The resulting SSIM ranges from -1 to
+1. Large values represent good agreement in terms of both
correlation and mean intensity values.

V. RESULTS

A. Computational Efficiency

The runtimes of the filtering process for each of the
algorithms are shown in Fig. 8(a). A more comprehensive
comparison is represented in Fig. 8(b) by using speed-up
factors with respect to the 2D Radon-based ATRACT.

As expected, a 2D Radon-based implementation of
ATRACT filtering is very time-consuming (computation time
is 25110 ± 116 s) due to the penalty of enormous interpola-
tions in the non-local operation. The 2D analytical ATRACT,
which uses either a numerically or an analytically derived
2D Cartesian kernel and FFT-based convolutions, reduces
runtimes to 2.2% of the original version. 1D ATRACT delivers
maximal computational performance, achieving an additional
5.5 times speed-up with respect to 2D ATRACT due to
less computational complexity and avoidance of additional
padding. We found that the 1D ATRACT filtering is only
10% slower than the ramp filtering, because it has only one
additional pre-filtering step — the Laplace filtering, which is
computationally inexpensive.

Further improvement in computational performance is
gained by using a high-parallel graphic processing unit (GPU),
the NVIDIA Quadro FX 5800. GPU versions (implemented
using CUDA 4.0) of the three ATRACT methods generally re-
duce the runtimes to 5-6% of their CPU versions. It should be
noted that the GPU version of the 2D Radon-based ATRACT
is 60 times faster than its CPU version, due to beneficial
utilization of texture memory which is able to implicitly handle
fast linear and bi-linear interpolations.

B. Correction Quality

1) Virtual Collimation: Reconstructions from data sets
shown in Fig. 7(b)-(d), i.e. of virtually collimated projection
images are represented in Fig. 9 and Fig. 10. In the case of

medium truncation (FOV of 104 mm and 72 mm), both 1D
and 2D ATRACT, as well as the hybrid approach, produce
satisfying reconstructions and avoid bright ring artifacts in
the FOV. The portions of the patient inside the FOV are
visually identical to the gold standard reconstruction in Fig.
9(a) and (e). Quantitative measurements, comprehended in
Table II confirm this observation. With increasing degree
of truncation, however, the hybrid extrapolation suffers from
truncation-induced cupping artifacts at the boundaries of the
FOV (see Fig. 10(b) and (f)), so that a SSIM of only 0.801
was reached in the severe truncation case (FOV of 40 mm). 2D
ATRACT and 1D ATRACT, on the other hand, still maintain
the reconstructions of high accuracy, which is reflected in the
SSIM of 0.982 for 2D ATRACT and 0.958 for 1D ATRACT
when the truncated FOV is 40 mm. The line profiles shown
in Fig. 11 also demonstrate the previous observations.

2) Physical Collimation: The reconstruction results from
our first physically collimated clinical data set (medium trun-
cation) are shown in Fig. 12. Here we also use a narrow
window, highlighting some mild ring-like artifacts in the
hybrid extrapolation, as shown in Fig. 12(f) and (n). These
artifacts — although being of small magnitude — mask the
actual intensity of soft tissue in the vicinity of the FOV border.
The 1D and particularly the 2D ATRACT algorithms avoid this
bright ring and thus perform even slightly better in terms of
soft-tissue contrast restoration, as seen in Fig. 12(g), (o) and in
the central profiles shown in Fig. 14(a)-(c). These findings are
confirmed by the quantitative measurements listed in Table II
(FOV of 102 mm): All three correction methods yield almost
identically high quality images, with 2D ATRACT only being
slightly superior over the other methods.

The reconstruction results of Example 2 (severe truncation)
additionally suffer from motion artifacts arising in this data
set. Transversal, coronal and sagittal views through the recon-
structions are given in Fig. 13 and central profiles through
the transversal plane are represented in Fig. 14(d)-(f). As in
the virtual collimation case, the hybrid extrapolation method
results in more severe truncation artifacts from the heavily
truncated data; see Fig. 13(f) and (j). Quantitatively, 2D
ATRACT yields the most accurate result, with an rRMSE of
only half of that of the hybrid extrapolation scheme (see Table
II (FOV of 65 mm)). Performance of the 1D ATRACT lies
between them, achieving an rRMSE of 6.82% and an SSIM
of 0.718.

VI. DISCUSSION

In this paper, we presented and evaluated two variants of
a truncation correction algorithm recently suggested for inter-
ventional 3D ROI imaging. The general algorithmic scheme of
our method is different from that of other methods proposed
in the field.

Methods that require prior knowledge (e.g. [11], [17] and
[18]) can only be applied in a clinical workflow that generates
such information. Our scope of application, however, is a
clinical angiography system that is used for a variety of
workflows. In some of them a full scan is generated during
a procedure. In others such data are not available. Thus, we



9

>>1 hour

558

102

92

414

29

6

Original

2D

1D

Ramp

CUDA Original

CUDA  2D

CUDA 1D

0 100 200 300 400 500 600 700 800
Runtime (s)

(a)

1

45

245

271

60

860

4159

Original

2D

1D

Ramp

CUDA Original

CUDA  2D

CUDA 1D

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Speed-up factor 

(b)

Fig. 8: Runtime (a) and speed-up factor (b) of filtering 496 projections (1240×960) for each algorithm. “Original” stands for the direct implementation of the
Radon-based filtering in the original ATRACT algorithm. “2D” represents the CPU implementation of 2D ATRACT with 2D analytical convolution filtering.
“1D” corresponds to the CPU implementation of 1D ATRACT. The corresponding GPU versions of these algorithms are labeled as “CUDA Original”, “CUDA
2D”, and “CUDA 1D”, respectively. A NVIDIA Quadro FX 5800 was used for GPU implementations, CUDA version 4.0. CPU implementations were based
on a single-threaded Intel R© Xeon X5570.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 9: Reconstructions of the clinical data set from the virtual collimation, in the grayscale window [-1000 HU, 1000 HU]. From left to right: Gold standard
FDK reconstruction from non-truncated projection, hybrid extrapolation-based ROI reconstruction, 2D ATRACT-based ROI reconstruction, 1D ATRACT-based
ROI reconstruction. (b)-(d): ROI reconstructions from the FOV of 104 mm, (f)-(h): ROI reconstructions from the FOV of 72 mm. The white circles in the
gold standard reconstructions indicate the ROIs.

Table II: Summary of quantitative evaluation of truncation corrections for different FOVs in virtual collimation as well as physical collimation.

Virtual collimation Physical collimation
Algorithms Metrics FOV 104 mm FOV 72 mm FOV 40 mm FOV 102 mm FOV 65 mm

Hybrid extrapolation
rRMSE (%) 1.15 3.15 9.13 1.82 11.4

SSIM 0.972 0.944 0.801 0.940 0.695

2D ATRACT
rRMSE (%) 0.922 0.923 0.974 1.65 5.19

SSIM 0.987 0.979 0.982 0.945 0.785

1D ATRACT
rRMSE (%) 1.28 1.08 2.70 1.68 6.82

SSIM 0.978 0.978 0.958 0.943 0.718
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 10: Two transversal slices through the reconstructions of the clinical data set from the virtual collimation with the FOV of 40 mm, in the grayscale window
[-200 HU, 200 HU]. From left to right: Gold standard FDK reconstruction from non-truncated projection, hybrid extrapolation-based ROI reconstruction, 2D
ATRACT-based ROI reconstruction, 1D ATRACT-based ROI reconstruction. The black circles in the gold standard reconstructions indicate the ROIs. For a
fair comparison, remaining offsets were manually subtracted from the reconstructed results of the three methods.
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Fig. 11: Plots of the line profiles indicated as the black solid line in the transversal slice (Fig. 10) for each algorithm. It can be seen that the cupping artifact
still remains in the hybrid method but is effectively reduced in the ATRACT methods, particularly in 2D ATRACT.

wanted to create a robust method that is able to be applicable
to all workflows that are performed on such a machine. The
ATRACT method fulfills this requirement and is able to deal
with all these clinical constraints. Also, it only requires the
ROI itself to be irradiated from all necessary views. Thus, this
is different from the algorithms which deploy a non-uniform
beam filter between the X-ray source and the patient and
which circumvent the truncation problem but at the cost of
reducing the benefit of dose reduction and complicating the
data acquisition due to additional hardware ([14]-[16]). The
difference in dose reduction can be even considerable in the
field of neuroradiology where only a micro device, e.g. an
implanted stent or coil, is required to be examined multiple
times. Compared to the iterative methods proposed in [26]
and [27] or the PI-line-based BPF algorithms in [12] and [13]
(computing the PI-lines is time-consuming), the new methods

adopt the filtered backprojection scheme and can be directly
applied in clinically used scanners at low computational cost.
Explicit extrapolation methods ([20]-[25]) are commercially
preferred since they are computationally efficient and are able
to estimate the missing data heuristically without the require-
ment of prior knowledge. They may be, however, difficult
to apply to severe truncations that are encountered in ROI
scans. In the evaluation, our methods were compared to a
refined hybrid extrapolation method [35] both qualitatively and
quantitatively, and showed for the clinical data superior results
in the severe truncation cases. These results are thus in line
with previous findings reported in [28], [29] and imply that
our algorithms are capable of delivering higher quality images
for severe truncation problems with considerable reduction of
patient dose of up to 90% or more.

Moreover, it is noted that recent appealing techniques
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 12: Reconstruction results of the clinical example 1 by the three algorithms. From left column to right column: Gold standard FDK reconstruction from
non-truncated projection data, hybrid extrapolation-based ROI reconstruction, 2D ATRACT-based ROI reconstruction, 1D ATRACT-based ROI reconstruction.
(a)-(h): Transversal view, (i)-(p): Sagittal view. (a)-(d) and (i)-(l) are in the grayscale window [-1000 HU, 1000 HU], (e)-(h) and (m)-(p) are in the grayscale
window [-200 HU, 200 HU]. The white circle and rectangle in the gold standard reconstructions indicate the ROIs.

such as dynamic asymmetric collimation [40] will make ROI
imaging more flexible but results in off-center FOVs in the
projection data. Some algorithms mentioned above ([12], [14]-
[16], [21]-[23]) may encounter problems in such a scenario.
Although not described in detail here, the ATRACT method
also has been demonstrated to be handle off-center ROI
reconstructions [31].

The evaluation results show that the new ATRACT methods
significantly outperform the Radon-based version in terms of
computational performance. Since no explicit extrapolation
of projection data is involved, the proposed methods have
the potential to minimize the computational requirements for
processing truncated data. As mentioned in Section IV-C, the
convolution kernel can be adapted to the effective FOV size.
For the projection images that are truncated to 222 pixels in
each row, it is sufficient to create the convolution kernel with
a size of 512 pixels and then pad the images to 512 pixels.

For the heuristic extrapolation methods (e.g. water cylinder
extrapolation), the ramp kernel is convolved with the extrap-
olated row (sometimes 1240 pixels in our case), even if the
data are highly truncated. This means the 1D FFT of an ROI
image in physical collimation example 2 (222 × 192 pixels)
requires computational complexity of 192 · 2048 log2 2048 for
the water cylinder extrapolation compared to a complexity of
192 · 512 log2 512 for the 1D ATRACT method.

Apart from the computational speed-up, another improve-
ment of the ATRACT method is the offset correction described
in Section III-E. With this correction, the HU values can
be used again for bone or soft tissue segmentation if some
tolerance is accepted. Additional impact is to support any
volume-based post-processing algorithm in final stages of the
imaging pipeline that relies on absolute HU values in the
reconstructed volume. Although the requirement is a full FOV
scan, it is substantially different from the prior knowledge used
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 13: Reconstruction results of the clinical example 2 by the three algorithms, in the grayscale window [-1000 HU, 1000 HU]. From left column to
right column: Gold standard FDK reconstruction from non-truncated projection data, hybrid extrapolation-based ROI reconstruction, 2D ATRACT-based ROI
reconstruction, 1D ATRACT-based ROI reconstruction. (a)-(d): Transversal view, (e)-(h): Coronal view, (i)-(l): Sagittal view. The white circle and rectangles
in the gold standard reconstructions indicate the ROIs.
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Fig. 14: Plots of central line profile in the transversal slice for each algorithm. (a)-(c): clinical example 1, (d-f): clinical example 2.
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in [8]-[11], [17], [18] for two reasons: The full FOV scan
is employed as a reference for offset correction, instead of
completing data for truncation correction; Determination of the
parameters in Eqn. (22) is required only once, working as an
initialization or a calibration measurement for a given scenario.
This measurement does not even have to be performed if using
the same acquisition system. The calibration parameters can
be factory preset for a given organ program at the scanner. We
also investigated more clinical data sets in virtual collimation
acquired from the same acquisition system and an average
rRMSE of 1.63% (including truncation artifacts) was achieved
[33]. The limitation is that only patient head data sets were
employed in this work. We assume that differences in patient
anatomy are likely to result in variations of the correction
parameters. When the reference scan is not available, a min-
max scaling approach is used for approximation of the HU
values in a reasonable range. In such case, a different display
window is required for the visual inspection and quantitative
evaluation becomes more cumbersome.

For image quality evaluation of the proposed methods,
we involved physically collimated data and also the virtual
collimation, as introduced in [29], since the latter nicely allows
retrospective adjustment of the degrees of collimation for early
studies. Quantitative measurements using the rRMSE and the
SSIM in the physical collimation are generally inferior to those
obtained with virtual collimation, most probably caused by the
differences in data acquisition, data pre-processing, the level
of physical effects and motion.

VII. CONCLUSION

In conclusion, we adapted the ATRACT method for clin-
ical use and showed real data reconstructions. Adapting
convolution-based filtering, the use of GPUs and the optional
switch to 1D processing yielded implementations that are
efficient with runtimes that are clinically feasible. Speed-up
factors of up to 245 were observed, compared to a direct
implementation of 2D Radon-based filtering. Image quality
evaluation on clinical data demonstrated that our methods
performed at least as well as a state-of-the art hybrid extrapola-
tion method. However, while the hybrid extrapolation scheme
behaves worse with increasing degree of truncation, our new
methods (especially 2D ATRACT) showed no significant de-
pendence of reconstruction accuracy on the size of the FOV.
The potential of our approaches for interventional 3D ROI
imaging is therefore attractive for two reasons: They have com-
parable computational efficiency to the FDK algorithm and
high capability to achieve accurate ROI reconstruction from
severely truncated data. Future work will comprise validation
in a larger study. The present paper, however, indicates that the
current algorithms will meet all clinical constraints regarding
computational speed, flexibility, and image quality.

APPENDIX

The frequency representation of the 2D analytic kernel can
be obtained by the 2D Fourier transform of h2D (see Eqn

(12)):

H2D (ωu, ωv) =

−∞∫
−∞

−∞∫
−∞

|v|
u2 + v2

e−i2π(uωu+vωv)dudv , (25)

where ωu and ωv are spatial frequencies of u and v, respec-
tively. Eqn (25) can be solved by integration with respect to
u and then followed by integration with respect to v:

H2D (ωu, ωv) =

−∞∫
−∞

 −∞∫
−∞

|v|
u2 + v2

e−i2πuωudu

 e−i2πvωvdv .

(26)
The innermost integral yields the 1D Fourier transform of
|v|

u2+v2 with respect to u. Then we can solve it using the duality
property of the Fourier transform (if F [f (t)] = X (ω), then
F [X (t)] = f (−ω)):

It is well-known that the Fourier transform of f (t) = e−a|t|

yields

F(e−a|t|) =
2a

a2 + ω2
. (27)

Using the property of duality of the Fourier transform, it
then follows that

F(
2a

a2 + t2
) = e−a|ω| . (28)

Thus, the 1D Fourier transform of |v|
u2+v2 with respect to u

is

F(
|v|

v2 + u2
) =

1

2
e−|v||ωu| . (29)

Furthermore, outermost integration of (26) is the 1D Fourier
transform of 1

2e
−|v||ωu| with respect to v. This can be com-

puted by re-using Eqn (27):

F(
1

2
e−|ωu||v|) =

|ωu|
ω2
u + ω2

v

. (30)

Therefore, we get the frequency representation of the ana-
lytical 2D kernel:

H2D (ωu, ωv) =
|ωu|

ω2
u + ω2

v

. (31)
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