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Abstract
Geometry and physics of absorption imaging impose certain constraints on

X-ray projections. Recently, the Epipolar Consistency Conditions (ECC) have
been introduced and applied to motion correction in flat-detector computed
tomography (CT). They are based on redundant information in transmission
images along epipolar lines. Unlike other consistency conditions for CT scans,
they act directly on an arbitrary pair of X-ray images. This paper proposes
an application of ECC to 3D patient tracking in interventional radiology. We
evaluate the proposed method against 2D-3D registration with a previously ac-
quired CT. Our experiments on synthetic data based on a patient CT and phan-
tom data from an interventional C-arm demonstrate that our method is able
to compensate online for rotations of up to ±10° and translations of ±25 mm
between consecutive frames. We successfully track rotations of as much as 45°
over 45 images. The outstanding property of the approach is that no 3D scan
is required for tracking a 3D object in space. We show, that small rotations
of about 3° in space and translations of about 50 mm can be tracked based on
just two reference X-ray images. Since the proposed approach works directly
on X-ray images, it exceeds regular 2D-3D registration with a CT in an order
of magnitude in computational speed. We conclude that ECC are a simple and
effective new tool for pre-aligment and online patient tracking for fluoroscopic
sequences.

1 Introduction
Image guidance in interventional radiology typically relies on both preoperative CT
and real-time fluoroscopic images. Correct alignment is either provided by the scan-
© 2015. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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ner odometery or, in many cases, must be estimated using 2D-3D registration [8].
Patient motion during the procedure deteriorates the initial alignment. Depending
on application, this may include non-rigid periodic effects such as breathing and
cardiac motion[3, 5], as well rigid patient movement. In order to recover from promi-
nent movements and re-positioning of the patient, 2D-3D registration is triggered
to correct the alignment. In addition, tracking-based approaches allow incremental
correction of smaller movements [12].

Flat-detector CT is another X-ray based modality affected by motion. Here,
consistency conditions in the raw data domain of X-ray projections offer an attrac-
tive means to detect it. Notably, Debbeler et al. [4] observed that specific lines in
projection images contain redundant information. They exploit this property for
raw-data-driven re-calibration of the CT geometry. The method was extended to jit-
ter and motion correction by Maass et al. [7] and consequently, Aichert et al. [1, 2]
presented a derivation and alternative formulation of the Epipolar Consistency Con-
ditions (ECC) using the epipolar geometry of an arbitrary pair of X-ray images. The
latter formulation is not restricted to the trajectory of a CT scan. Epipolar geometry
is the intrinsic geometry of two pinhole cameras and it therefore applies even to a
small set of fluoroscopic images.

This paper investigates the application of ECC in interventional radiology to track
patient movement. The idea is to directly exploit redundancies in a few reference
X-ray images to estimate 3D motion relative to an unseen image. Our approach
can be understood as a low-dimensional alternative to 2D-3D registration, which we
consider the gold-standard. However, we do not need a CT to apply the proposed
method, which has two major advantages. First, we are computationally much less
expensive, since the algorithm works directly on a small set of 2D X-ray images.
Second, two or three low-dose images expose the patient to less radiation and can
can be acquired and readily updated more easily compared to a CT. We present
two sets of experiments. One uses synthetic X-ray images generated from a clinical
CT. The other uses real data of a pumpkin phantom acquired with an intervention
C-arm. The tracking of two image sequences is complemented by random studies to
investigate stability. We conclude that our method provides stable tracking even in
the presence of large rotations and translations.

2 Methods
2.1 Epipolar Consistency Conditions
We begin with the introduction of ECC [2] between two X-ray images. Throughout
this paper, we refer to “ray-sums” I(x) = log(Itube/Î(x)) when we speak of projection
images. Here, Itube is the initial intensity and Î(x) is the intensity of an X-ray image
at a pixel location x ∼= (u, v, 1)⊤ ∈ P2 in homogeneous coordinates of the oriented
projective plane, where ∼= denotes equality up to positive scalar multiples. Every
image is associated with a projection matrix P ∈ R3×4, which describes the mapping
of world points X ∼= (X ,Y,Z,1)⊤ ∈ P3 to the image x ∼= PX .

The ECC state that integrating over lines in projection images is almost the same
as integrating over planes of absorption coefficients through the object. Epipolar lines
are pairs of special lines in two images, whose corresponding plane is the same. Thus
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there are two redundant ways to compute the plane integral from either of the two
images. Epipolar Consistency can thus be quantified by taking several epipolar planes
and measuring the difference between redundant line integrals. A line l ∼= line(α, t) =
(−sin(α), cos(α),−t)⊤ ∈ P2 in an image can be expressed by its angle α between the
u-axis and its distance to the origin t. Let the epipolar plane E ∼= (nX , nY , nZ , d)⊤ ∈ P3

have normal n = (nX , nY , nZ)
⊤ of unit length and signed distance to the origin d, then

it is related to the epipolar lines as [6]

E ∼= P⊤
0 l0 ∼= P⊤

1 l1. (1)

Debbeler et al. [4] suggested pre-computing all line-integrals of a projection image
I using the Radon transform ρI(l) = ρI(α , t) (note the slight abuse of notation) and
takes the first derivative of the Radon transform d

dt ρI in t−direction to account for
non-parallel projections [2]. Given two views of the same object or patient denoted
by the tupels of image and projection matrix V0 = (I0,P0) and V1 = (I1,P1), along with
the derivative of their Radon transform d

dt ρI0 and d
dt ρI1 , the consistency condition for

two corresponding epipolar lines l0, l1 ∈ P2 can be expressed by

d
dt

ρI0(l0)−
d
dt

ρI1(l1)≈ 0. (2)

2.2 Cost Function and Optimization
We assume a rigid body motion and express its 6 degrees of freedom in a parame-
ter vector as ϕ = (rX , rY , rZ , tX , tY , tZ)⊤, where rX , rY , and rZ are three Euler angles
defining a rotation matrix Rϕ and a translation vector tϕ = (tX , tY , tZ)⊤. The rigid
transformation of the object is then given as a homography in projective three-space
which can be right-multiplied to the respective projection matrix

Tϕ ∼=
[

Rϕ tϕ
0⊤ 1

]
∈ R4×4. (3)

Given a set of reference views, i.e. a set of tupels of X-ray images and projection
matrices V ={V1,V2, . . .}= {(I1, P1) , (I2, P2) , . . .} our goal is to optimize a cost func-
tion for the consistency with an input image I0 and its projection matrix P̂0 = P0Tϕ ,
given our current motion estimate Tϕ . Suppose we have computed for each reference
view Vi ∈ V a set of equiangular epipolar planes Êi = {Ê1, Ê2, . . . , ÊN} which intersect
the detectors and contain both (finite) positions of the X-ray sources Ĉ0 ∼= null(P̂0)∼=
T−1

ϕ null(P0) and Ci ∼= null(Pi), where null(·) denotes the kernel of a matrix. For an
algorithm to compute these planes, we refer the reader to Aichert et al. [2]. We can
then measure consistency after transformation between the view V̂0 = (I0, P̂0) and all
reference views based on Equation 2 using the sum of squared difference between the
derivative of line integrals in all views

Mϕ = ∑
Vi∈V

1
|Êi|

∑
Êk∈Êi

(
d
dt

ρI0

(
P̂+⊤

0 Êk

)
− d

dt
ρIi

(
P+⊤

i Êk

))2

, (4)

where ·+ denotes the pseudo-inverse. This expression is a metric of the consistency
between the input V̂0 with respect to all reference views in Vi ∈ V taking into account



4 AICHERT ET AL. : EPIPOLAR CONSISTENCY FOR IMAGE-BASED TRACKING

the epipolar planes Êk ∈ Êi. In Equation 4, all quantities which depend on the pa-
rameter vector ϕ are indicated with a hat ( ˆ ). Our goal is now to find the set of
parameters ϕ ⋆ = argminϕ Mϕ , which minimizes the cost function Mϕ and therefore
maximizes the consistency between the input view V̂0 with respect to the reference
views V. It has previously been suggested to find ϕ ⋆ using either grid-search [7] or
a non-linear local optimization strategy [1, 2]. In our experiments, we relied on SB-
PLX [10], a local gradient-free optimizer, since grid-search would not allow real-time
results because a fine grid requires too many individual evaluations. The specific
choice of optimization technique seems not be too important, since we obtained sim-
ilar results with the familiar downhill simplex and BOBYQA [9] optimizers.

2.3 Center of Rotation
Since we require that all projections show the same object, it is possible to determine
a point close to its center by computing the closest point X ∈ R3 to the principal
rays of the reference projections. If no additional information about the geometry
of the object is available this point can serve as the center of rotation. For finite
source positions, it is easily determined by minimizing the sum of algebraic distances
of that point and all X-ray sources in an orthogonal projection in direction of the
respective principal ray. Let m3

i ∈R3 be the direction of the i-th principal ray, which
can be found in the lower left three elements of the projection matrix Pi [6] and
Ci = null(Pi) ∈ R3 be the i-th source position, then Oi = I−m3

i ·m3⊤
i with the 3× 3

identity matrix I is the orthogonal projection to a plane through the origin orthogonal
to the principal ray m3

i . The point X should minimize the distance of the projections
within that plane

∑
Vi∈V

∥OiX−OiC∥. (5)

This can be written as a linear least-squares problem. In case of a small number of
reference views, we can even solve for X directly:

− ∑
Vi∈V

(
m3

i ·m3⊤
i

)
X = ∑

Vi∈V

(
Ci −m3

i ·m3⊤
i Ci

)
. (6)

In practice, this step is important because the world coordinate system is usually
located either at a corner of the table on which the patient is lying or in the iso-
center of the scanner. For a stable optimization, however, the center of rotation
should be located in the center of the structure of interest.

3 Experiments and Results
3.1 Simulation Study Based on a Patient CT
We validated our method using a simulation study of noise-free, absorption-only
digitally reconstructed radiographs from a real patient head CT. A salient basis of
evaluation is the re-projection error, which we compute based on the corners of cube
of side length 10 cm (compare Figures 1, 2). We extracted 15 source and detector
positions from real images acquired with an interventional C-arm, see Figure 1, left.
The epipolar lines in the first image of the sequence for three reference images are
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Figure 1: Left: Visualization of 15 source and detector positions around a cube of
10 mm side length, which can actually be reached on a clinical C-arm system; Right:
Digitally reconstructed radiograph of a patient CT showing epipolar lines for three
reference views;.

Figure 2: Left, Center: reference images (X-ray intensity before logarithm). Epipolar
lines are shown in the color of corresponding frame. Right: Visualization of 25
iterations of a random study of ±10° and ±25 mm showing two outliers.

visualized in Figure 1, center. It is an important observation, that a translation in
horizontal direction would only marginally affect the line-integrals of the yellow lines.
It is therefore important to have sets of epipolar lines at an angle close to 90°, which
assures, that any object motion is observable in at least one of the reference views.
Similar to 2D-3D registration [11], an estimation of motion of the object in view
direction from just one input image is an ill-posed problem.

We manually created a continuous motion over 300 frames of various translations
and rotations of more than 90◦ and 30° about different axes. Individual frames have a
resolution of 1240×960. The radon transforms were computed with 1024×1024 bins.
To cover such a large variation in orientation, we selected 5 of the set of 15 reference
views from Figure 1, left. We then tracked the motion incrementally by minimizing
Equation 4 for each frame in the sequence. We used the ground truth projection
matrix as an initial guess for the first image. Supplementary material provides a
video sequence of the 300 frames with the 10 cm box overlay. The box is projected
once with ground truth (green) and once with estimated projection matrices (red).
In this paper, we present Figure 3, left, which shows the ground truth (green) and
estimated (magenta) distance of the source to the object along with the angles of
rotation relative to the CT. Note that in-plane translations are not shown and that
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Figure 3: Left: Source-object distance and rotation angle in degrees of the artifi-
cial motion used in the simulation study. Both ground truth (green) and estimate
(magenta) are shown; Right: The same for second sequence and only two reference
images with disturbances of ±1° and ±25 mm.

the angle alone is not a complete representation of the rotation (varying rotation axis
is not visualized). We achieved a mean re-projection error of 3.50 pixels or 2.15mm
on the detector, where the mean 3D error in depth was 2.2 mm and the mean error in
rotation was 1.3°. Despite we observe 2% outliers of more than 10 pixels, tracking was
recovered in consecutive frames without re-initialization. Notably, this experiment
demonstrates, that the proposed method can in fact track a 3D rigid motion even
with large rotations and translations in all spatial directions using nothing but five
reference X-ray images as input. Observe, that the quick translation of the source
away from the object was recovered correctly, if only after several outlier frames.

3.2 Pumpkin Phantom Study on Clinical C-Arm

3.2.1 Experimental set-up.

To prove applicability on real data, we acquired 15 images of a pumpkin at a resolu-
tion of 2480×1920 with the same source and detector geometry shown in Figure 1,
left. 2×2 binning was applied as a first step but errors are reported w.r.t. the origi-
nal resolution. To simulate motion, we suspended the pumpkin from the ceiling and
recorded two short fluoroscopic sequences of 60 frames each. They show a swinging
motion of the pumpkin. The first is dominated by rather extreme rotations of about
45°, while the second is dominated by translations of about ±50 mm and only about
3° of rotation. We generated gold-standard projections matrices by 2D-3D registra-
tion of individual frames with a CTusing a variation of the algorithm presented in
[12]. The reference implementation required several hours to align the CT with all
images. Judging from the overlay and smoothness of the sine-like patterns due to
the swinging motion, precision appears to be high for the second sequence, while the
the first produced two outliers and several unrealistic measurements of depth (i.e.
sudden changes of a few centimeters, see green line in Figure 4, top left).
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Figure 4: Source-object distance and rotation angle in degrees of reference registra-
tion (green) and our method. Left: First sequence, our method in dashed red; Right:
second sequence comparison of out method for two (dashed black) and three (blue)
reference views.

3.2.2 Tracking

The acquisition of reference views may be associated with additional effort for the
clinician. It is therefore important to investigate the performance for very few ref-
erence images. We begin by selecting four images to track the first sequence. Three
of them are shown in Figure 2. In Figure 4, left, the source-object distance (top)
and angle (bottom) is shown for the 2D-3D registration (green) and our method
(dashed red). Note that our method actually produces more realistic results for the
source-object distance, while the results for the angular parameters are comparable.
We achieved an average agreement of our method with the reference up to 1.7° and
in terms of re-projection 18.9 pixles or 2.9 mm. We processed the second sequence
using the same four reference images to achieve an average disagreement of 0.4° and
9.2 pixels or 1.4mm. The disagreement of source-object distance was 3.1 mm on
average. In a second experiment, we reduced the input to two carefully selected
reference images. As a rule of thumb, we observed that views rotated about two
orthogonal axes by at least 30° relative to the input image gave best results. We
achieved an agreement of up to 0.7° and 7.5 pixels or 1.2 mm, except for two outliers.
Detailed results are shown in Figure 4, right and the re-projection error in Figure
3, right. The video in the supplementary material shows several tracked sequences
of the pumpkin. The same overlay of the 10 cm cube is used to visualize accuracy.
Observe that the rotation in the second sequence is much more extreme than what
can be expected in medical data. In spite of that, tracking is never lost.

3.2.3 Random Studies

To get a more reliable estimate of the stability and accuracy of the algorithm, we
performed random studies with a sample size of 10 for each of the 60 frames. We used
the three reference images shown in Figure 2. For the first sequence, we disturbed the
reference projection by uniformly distributed random offsets of as much as 10° and
25 mm and observed, that an initial re-projection error of almost 200 pixels could
be recovered up to 18.8 pixels or 2.9 mm, excluding 30% outliers of beyond 50 pixels
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Figure 5: Left: Re-projection errors of the second pumpkin sequence tracked with 2
(dashed black) and 3 (blue) reference images; Right: Random study of 10 samples
per 60 frames of the first sequence over random disturbances of ±10° and ±25 mm
using three reference images.

error, compare Figure 4, center. This demonstrates the potential of the algorithm
to recover even from sudden extreme movements without re-initialization. For the
second sequence, we used only two reference views and disturbed the reference by 1°
and 25 mm and consistently achieved a re-projection error of 11.6 pixels or 1.8 mm
with no outliers, compare Figure 5, right. The latter demonstrates high stability and
accuracy for the order of magnitude of motion expected in practice, using just two
2D reference images.

3.2.4 Computation Time

The proposed method is computationally very efficient. An evaluation of Mϕ is
associated primarily with sampling the pre-computed derivatives of Radon transforms
d
dt ρi with a total of 2 · ∑

Vi∈V
|Êi| memory accesses, which can be parallelized. Both the

number of reference views |V| and the number of planes per view |Êi| have a linear
influence on the computation time. We observed that under-sampling in Radon space
results in local minima in the cost function. Since this is undesirable, the number
of planes depends directly on the size of the pre-computed radon transform. The
number of bins of the Radon transforms can be adjusted, such that computation
times meet practical constraints.

The random studies of 600 samples presented in this paper were computed in un-
der five minutes, despite our prototype runs on a mobile Intel i3 CPU for1024×1024
Radon bins. A higher resolution Radon transform and more epipolar planes produce a
smoother cost function. Along with more exhaustive search, this drastically increases
the success rate, unfortunately at the cost of computation time. This performance
trade-off should be evaluated once a GPU implementation exists.

3.2.5 Shortcomings

There are several assumptions involved in the ECC. Among those, first, an absorption-
only model for X-ray physics (Beer-Lambert law of attenuation) is assumed when
computing the “ray-sums”, which neglects scatter and other non-linear effects of in-
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tensity. Second, the method uses very little information about the object. It is
essential, that reference views are chosen, which ideally produce sets of orthogonal
epipolar lines in the input image. Third, and most notably, we present an image-
based method. This means, that the object seen by the input and reference views
must actually show the same part of the same object in all views. The method will
not be applicable, for example, if there is a highly non-rigid motion of the object, or
- obviously - if the images are dominated by other objects or show different parts of
the same object. In our experiments, the pumpkin moves relative to the table. The
method proved to be robust to this inconsistency. An investigation into the amount
of consistency required for the ECC to be effective has yet to be run.

4 Discussion
This paper presents a novel approach to the problem of patient tracking in fluo-
roscopy. For the first time, we perform 3D tracking of an object solely based on the
consistency between 2D X-ray shots. The core idea is that before an intervention
under fluoroscopy, between two and five reference images of the region of interest
are acquired from different angles. The major contribution of this paper is the re-
alization, that the Epipolar Consistency Conditions (ECC) can be applied not only
for motion correction in FDCT, but with the more general formulation of Aichert et
al. [2], can be applied to problems in interventional radiology as well. We suggest,
that an optimization based on the ECC between an unseen image and the reference
images enables us to track a rigid 3D patient pose. The method is fast, simple and
relatively robust, despite it does not require a CT scan or other prior information.

We present a proof-of-concept implementation and validate using a synthetic data
based on a real patient CT. Additionally, we evaluate the performance of the method
with a real pumpkin phantom acquired on an interventional C-arm. In both cases, we
are able to incrementally track the object pose, despite extreme motions of about 90◦

in simulated and 45◦ in real pumpkin data within 45 images. The method provides
a mean error of under 3mm in our experiments and was even able to recover from
outliers. We were able to show that small rotations of about 3° and translations of
several centimeters can be compensated for in real data with as little as two reference
images. In a random study, we observed stability and high accuracy of < 2 mm in a
range of ∼ 1° rotation about all axes and ∼ 25 mm translations between consecutive
frames. With three reference images, even extreme rotations of ±10° and transla-
tions of 50 mm could be recovered in about 70% of cases. These results are in fact
comparable to some 2D-3D registration methods, despite the proposed method uses
only a few 2D X-ray images as input and is real-time capable. Future work could also
investigate an exhaustive search to determine an initial pose for 2D-3D registration
without prior knowledge. Additionally, some type of temporal regularization, for
example a Kalman filter, would make the method even more resilient to outliers.

To conclude, we present a new method to track motion in X-ray images. It is able
to determine the 3D pose, although it uses only a small set of 2D reference projections.
In a phantom experiment, we were able to show that it is real-time-capable and very
robust. Even after sudden and large motions, tracking was recovered without the
need for re-initialization. An application specific evaluation, such as neurosurgery,
with real patient data is in order.
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