

# Portability of TV-Regularized Reconstruction Parameters

Mario Amrehn<sup>1</sup>, Andreas Maier<sup>1,2</sup>, Frank Dennerlein<sup>1</sup>, Joachim Hornegger<sup>1,2</sup> <sup>1</sup>Chair of Pattern Recognition, Department of Computer Science <sup>2</sup>Erlangen Graduate School in Advanced Optical Technologies (SAOT)



**TECHNISCHE FAKULTÄT** 

### **Background and Purpose**

In C-arm CT, severe artifacts may show in the reconstructed image due to a limited rotation angle and view projections during acquisition.

Iterative methods using Compressed Sensing [3] are designed to compensate those artifacts by **iteratively** alternating between backprojecting data into the reconstructed image and projecting intermediate reconstruction images back into the raw data domain.

The purpose of our work is to present insights about the data dependence of the combined method's parameters set by the user, introducing a high dimensional optimization space.

### Results

Reconstruction results with limited angle relative to ground truth or FDK in percent.

Simultaneous Algebraic Reconstruction Technique Reconstruction results for the SART method,  $\beta = 0.8$ , N = 20.

|       | FORBILD head |               |               |               |               |      | Human head phantom |               |               |               |  |  |
|-------|--------------|---------------|---------------|---------------|---------------|------|--------------------|---------------|---------------|---------------|--|--|
|       | 200°         | $185^{\circ}$ | $170^{\circ}$ | $155^{\circ}$ | $140^{\circ}$ | 200° | $185^{\circ}$      | $170^{\circ}$ | $155^{\circ}$ | $140^{\circ}$ |  |  |
| RMSE  | 56           | 50            | 51            | 51            | 47            | 58   | 49                 | 56            | 57            | 54            |  |  |
| PC    | 102          | 103           | 103           | 103           | 106           | 58   | 49                 | 56            | 57            | 54            |  |  |
| MSSIM | 97           | 90            | 101           | 114           | 124           | 99   | 109                | 118           | 122           | 134           |  |  |
| PSNR  | 156          | 172           | 156           | 164           | 209           | 142  | 145                | 141           | 148           | 147           |  |  |
| TV    | 135          | 117           | 123           | 130           | 145           | 126  | 112                | 119           | 121           | 134           |  |  |

### **Key Ideas**

- Analyze the impact of changes to the TV constraint iterative reconstruction method's parameter set
- Define and validate suitable error metrics
- Select one optimal parameter set for given data
- Investigate the quality of the reconstruction with the parameter set on different data

### **Method: TV Constraint Iterative Reconstruction**

**Compressed Sensing** deals with the problem of incomplete data by finding solutions to underdetermined linear systems.

- $\bullet$  Takes advantage of the signal's sparseness or compressibility in some domain using sparsifying operator  $\Psi.$  [3]
- Sparseness can be incorporated into a constraint. [5]

During reconstruction the one solutions is chosen which transformed coefficient sequence also minimizes the  $\ell 1$  norm, penalizing image artifact creation.

#### Improved TV Regularized Reconstruction Reconstruction results for the iTV method

 $\beta = 0.8$ ,  $\omega = 0.8$ ,  $\lambda_{max} = 1.2$ , N = 20, regul = 10<sup>-4</sup>,  $\alpha_{init} = 0.3$ , GD-Iterations = 25.

|       | FORBILD head |               |               |               |               |  | Human head phantom |               |               |               |               |  |  |
|-------|--------------|---------------|---------------|---------------|---------------|--|--------------------|---------------|---------------|---------------|---------------|--|--|
|       | 200°         | $185^{\circ}$ | $170^{\circ}$ | $155^{\circ}$ | $140^{\circ}$ |  | $200^{\circ}$      | $185^{\circ}$ | $170^{\circ}$ | $155^{\circ}$ | $140^{\circ}$ |  |  |
| RMSE  | 17           | 19            | 29            | 32            | 38            |  | 45                 | 38            | 52            | 52            | 47            |  |  |
| PC    | 102          | 103           | 104           | 104           | 107           |  | 102                | 104           | 105           | 105           | 110           |  |  |
| MSSIM | 141          | 132           | 149           | 169           | 181           |  | 112                | 123           | 131           | 137           | 159           |  |  |
| PSNR  | 149          | 138           | 127           | 135           | 168           |  | 123                | 129           | 121           | 122           | 129           |  |  |
| TV    | 57           | 50            | 46            | 46            | 48            |  | 41                 | 36            | 29            | 30            | 34            |  |  |



min  $||\Psi f(r)||_1$  subject to  $||R f(r) - p||_2^2 < \epsilon$  (1)

Alternating optimization: iTV reconstruction approach. [4] • SART [2] to minimize  $||R f(r) - p||_2^2$ 

• Gradient Descent to increase the sparsity of  $\Psi f(r) := \nabla f(r)$ 

• Linear combination of intermediate volumes  $f_{n+1} = (1 - \lambda)f_{n+1}^{SART}(r) + \lambda f_{n+1,M}^{TV}(r)$  after each iteration

An optimal parameter value  $\lambda \in [0;1]$  is determined in the raw data domain by solving (3), since  $\epsilon_{n+1}$  is known and  $\omega$  constant.

$$\epsilon_{n+1} = (1-\omega) \cdot \|Rf_{n+1}^{SART}(r) - p\|_2^2 + \omega \cdot \epsilon_n, \ \omega \in ]0;1[ (2) \\ \|R[(1-\lambda)f_{n+1}^{SART}(r) + \lambda f_{n+1,M}^{TV}(r)] - p\|_2^2 = \epsilon_{n+1}.$$
(3)

### Variables: Select one optimal parameter set

| Star-shaped search for the optimal parameters using iTV |     |          |                 |                |           |               |                      |  |
|---------------------------------------------------------|-----|----------|-----------------|----------------|-----------|---------------|----------------------|--|
| Туре                                                    | eta | $\omega$ | $\lambda_{max}$ | iterations $N$ | regul     | $lpha_{init}$ | <b>GD-Iterations</b> |  |
| default                                                 | .4  | .8       | 1.2             | 20             | 10-4      | .3            | 25                   |  |
| changes                                                 | .8  | .4       | $\{5,\infty\}$  | $\{10, 30\}$   | $10^{-2}$ | .8            | 10                   |  |

Figure 1: FORBILD head phantom and human head phantom reconstructions from limited angle ( $\Theta_{max} = 155^{\circ}$ ) and few projections ( $\Theta_{\Delta} = 2.25^{\circ}$ ). WC:0, WW:{200, 1000}

### Conclusion

The fixed set of parameters **optimized for a limited angle** acquisition of the FORBILD head phantom was used during reconstruction of various scenarios.

The inhomogeneous regions resulting from the X-ray photon

The default parameters for the iTV reconstruction and it's variations. The best result for the FORBILD head phantom comes from the default set plus relaxation parameter  $\beta = 0.8$ . [1]

## **Metrics: Measure reconstruction quality**

Measures used for 3D image comparison

Root-Mean-Square Error
Peak Signal-to-Noise Ratio
Mean Structural Similarity

- Pearson Correlation
- Total Variation
- Eyeball Measure

noise induced and streak artifacts are less prominent in iTV improving the perception of low contrast elements. However, the porous bone structure of the human head phantom got blurred significantly using the same set of parameters for this reconstruction.

### Acknowledgement

This project was funded by the Siemens AG Healthcare Sector in the context of Collaborative Research with the Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg.

References

] M. Amrehn. Implementation and Evaluation of a Total Variation Regularized Iterative CT image Reconstruction Method. Friedrich-Alexander-University Erlangen-Nuremberg, 2014.

[2] A. Andersen and A. C. Kak. Simultaneous algebraic reconstruction technique (sart): a superior implementation of the art algorithm. Ultrasonic imaging, 6(1):81–94, 1984. [3] D. L. Donoho. Compressed sensing. Information Theory, IEEE Transactions on, 52(4):1289–1306, 2006.

- [4] L. Ritschl, F. Bergner, C. Fleischmann, and M. Kachelrieß. Improved total variation-based ct image reconstruction applied to clinical data. *Physics in Medicine and Biology*, 56(6):1545, 2011.
- [5] H. Wu, A. Maier, R. Fahrig, and J. Hornegger. Spatial-temporal Total Variation Regularization (STTVR) for 4D-CT Reconstruction. In N. J. Pelc, editor, Proceedings of SPIE Medical Imaging 2012, pages 83133J–83133J, 2012.