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Abstract. In C-arm computed tomography there are certain constraints
due to the data acquisition process which can cause limited raw data.
The reconstructed image’s quality may significantly decrease depending
on these constraints. To compensate for severely under-sampled projec-
tion data during reconstruction, special algorithms have to be utilized,
more robust to such ill-posed problems. In the past few years it has
been shown that reconstruction algorithms based on the theory of com-
pressed sensing are able to handle incomplete data sets quite well. In
this paper, the iterative iTV reconstruction method by Ludwig Ritschl
et al. is analyzed regarding it’s elimination capabilities of image artifacts
caused by incomplete raw data with respect to the settings of it’s various
parameters. The evaluation of iTV and the data dependency of iterative
reconstruction’s parameters is conducted in two stages. First, projection
data with severe angular under-sampling is acquired using an analytical
phantom. Proper reconstruction parameters are selected by analyzing
the reconstruction results from a set of proposed parameters. In a sec-
ond step multiple phantom data sets are acquired with limited angle
geometry and a small number of projections. The iTV reconstructions
of these data sets are compared to short-scan FDK and SART recon-
struction results, highlighting the distinct data dependence of the iTV
reconstruction parameters.

1 Introduction

C-arm systems with a mounted X-ray tube and flat panel detector are very

popular in medical image acquisition [1]. The C-arm device is typically rotated

around the patient in a 200
◦
radius or less. During rotation projection images

are acquired and utilized for reconstructing a 3D distribution of the object’s

X-ray attenuation coefficients. Due to the limited projection angle of the C-arm

and a small number of projections severe artifacts may show in the computed

coefficients. Reconstructing from limited raw data, the very popular reconstruc-

tion method of Feldkamp-Davis-Kress (FDK) [2] does not yield optimal results.

Iterative methods are designed to compensate those artifacts by iteratively alter-

nating between backprojecting data into the reconstructed image and projecting

intermediate reconstruction images back into the raw data domain. Especially
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a combination of iterative algorithms with insights from Compressed Sensing [3]

seems to improve reconstruction results from limited raw data [4]. The problem

arising from those hybrid approaches is twofold. The runtime for a final solution

to emerge may significantly increase. Furthermore, the number of parameters to

be set by the user may be the sum of the combined method’s free variables. This

introduces a high dimensional optimization space. In the following, the impact

of changes to the parameter set is analyzed.

2 Materials and methods

A method to solve the inverse problem of the Radon transform is to formulate

the reconstruction problem as a system of linear equations. A reconstruction is

performed minimizing an objective function which may incorporate prior knowl-

edge about the image. One unconstrained objective function for an iterative

reconstruction approach is defined by the SSD measure between the original

projection values and the projected current image

min ||Rf(r)−p||22 (1)

where f(r) is the value of voxel r = (r1, r2, r3) in the reconstructed image f .
Rf(r) is the system of linear equations with X-ray transform R. p denotes the

measured raw projection data.

2.1 Compressed sensing

Compressed Sensing is a signal processing technique to deal with the problem

of incomplete data sets [3, 5] when reconstructing by finding solutions to under-

determined linear systems. It takes advantage of the signal’s sparseness or com-

pressibility in some domain, allowing the entire signal to be determined from

relatively few measurements. This sparseness can be incorporated into a con-

straint. A signal is transformed by a sparsifying operator Ψ into a suitable

domain for measuring it’s compressibility. For a signal f ∈ R
n
the transforma-

tion in an orthonormal basis is defined as f(t) =
∑n

i xiΨi(t), where xi is the

coefficient sequence of f , xi = 〈f, Ψi〉 in the basis Ψ . With under-sampled data,

only a subset of all n coefficients of f can be measured

yk = 〈f, φk〉, k ∈ M ⊂ [1 . . . n] (2)

φk is the function discretizing f to samples yk and may be a Dirac delta function

shifted by k. The reconstruction is given by f̂ = Ψx̂ where x̂ is the solution of

the convex optimization

min
xapp∈Rn

||xapp||	1 subject to yk = 〈φk, Ψxapp
〉 ∀k ∈ M (3)

There may be multiple solutions for f̂ = Ψxapp. The one is chosen which co-

efficient sequence minimizes the 
1 norm, a suitable measure for the function’s

sparsity. This also penalizes image artifact creation during reconstruction.
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2.2 Simultaneous algebraic reconstruction technique (SART)

Starting from an initial guess for the reconstructed object, SART performs a

sequence of iterative grid projections and correction back-projections until the

reconstruction has converged [6]. An update of the current image is performed

after all rays in one projection are processed. Correction terms are computed

to update the image voxel values with respect to their objective function, then

combined by a weighted sum

fν+1
i = fν

i + β ·
∑

k∈s(ν)

1∑
j (R

T )
k
i,j

(
RT

)k
i,j

∑
i R

k
j,if

ν
i − pkj∑

i R
k
j,i

, ν ∈ [0, NSub[ (4)

where the system matrix Rk
i,j of the k-th projection maps f on pk. The index i

represents an image voxel r. j is a projection’s element. The relaxation param-

eter β ∈]0, 1] controls the convergence speed of the minimization. The choice

of the number of subsets NSub affects the angular distance between successively

used projections. All elements of fi are processed in each sub iteration ν [4]. It-

erating over all subsets ν yields one full SART-iteration fSART
n+1 . SART has many

advantages over FDK, such as better noise tolerance and handling of sparse and

non-uniformly distributed projection datasets. However, computation time is

considerably higher [6].

2.3 Constrained total variation optimization (TV)

With incomplete data the inverse problem to (1) is under-determined causing an

infinite number of possible solutions for a reconstructed image. One proposed

approach utilizes an iterative reconstruction combined with Compressed Sensing

by extending the cost function with a constraint from a priori knowledge. The

signal f(r) can be completely reconstructed with a high probability with less

samples than required by the Nyquist criterion, if most entries of Ψf(r) are

zero i.e. a sparsifying transformation is known. This is approximated by the


1-norm of Ψf(r) [4, 7] as seen in (3). This yields an inequality-constraint

convex optimization function as a penalized least squares approach (Tikhonov

regularization)

min ||Ψf(r)||1 subject to ||Rf(r)−p||22 < ε (5)

minimizing the raw data cost function with the sparsity constraint at a low value.

To speed up the computation, iTV [4] minimizes the raw data cost function

via SART and image sparsity separately in their own domain, using the image

gradient ∇ as Ψ and a Gradient Descent approach, which in each of it’s M steps

reduces the cost function ||∇f(r)||1, called the total variation

fTV
n+1,m+1(r) = fTV

n+1,m(r) + α · ∇||∇fTV
n+1,m(r)||1 (6)

∇||∇fTV
n+1,m(r)||1 ≈

(
∇xxf

TV
n+1,m +∇yyf

TV
n+1,m +∇zzf

TV
n+1,m

)√(
∇xfTV

n+1,m

)2
+
(
∇yfTV

n+1,m

)2
+
(
∇zfTV

n+1,m

)2
+ regul

2

(7)
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Table 1. Default parameters for the iTV reconstruction and it’s variations.

Type β ω λmax eTV-Iterations regul αinit GD-Iterations

Default 0.4 0.8 1.2 20 10-4 0.3 25

Changes 0.8 0.4 {5,∞} {10, 30} 10-2 0.8 10

The linear combination of the two resulting intermediate images form a full iTV

iteration. An optimal parameter value λ ∈ ]0; 1] is determined in the raw data

domain by solving the quadratic (9), since εn+1 is known and ω is set by the

user [4]

εn+1 = (1− ω) · ‖RfSART
n+1 (r)− p‖22 + ω · εn, ω ∈ ]0; 1[ (8)

‖R[ (1− λ)fSART
n+1 (r) + λfTV

n+1,M (r) ]− p‖22 = εn+1 (9)

fn+1 = (1− λ)fSART
n+1 (r) + λfTV

n+1,M (r) (10)

3 Results

To evaluate the portability of a parameter set for iTV, a two-pass experiment is

performed. In the first stage a proper parameter set for a given reconstruction

problem is evaluated. In the second stage, the parameter set is used for different

reconstruction scenarios as proposed in [8]. All reconstructions were computed

on projection images corrupted with Poisson distributed noise and a simulated

radiation dose of k = 10
6
X-ray photons.

On a circular trajectory of radius 750mm with a detector-source distance of

1200mm, 227 projections are simulated on an angle of 170.25◦ with an angular

increment of .75◦. The detector’s 800×800 pixel size is 6mm in each dimension.

The ground truth data is a 512 × 512 × 174 centered version of the FORBILD

head phantom with 6mm regular hexahedron voxels. For the parameter search,

a star-shaped pattern is chosen, i. e. from a default set only one parameter is

altered prior to a new reconstruction run. After these ten reconstructions seen

in Tab. 1 the best set is chosen by the RMSE, Pearson Correlation, MSSIM,

PSNR, TV norm metrics as well as human inspection. The unambiguously

best result comes from the default set plus relaxation parameter β = 8 In the

second part, phantoms were reconstructed with limited angle and few projec-

tions through angular incrementation. Results for limited angle are presented in

Tab. 2. Graphical results are presented in Fig. 1.

4 Discussion

The fixed set of parameters optimized for a limited angle acquisition of the

FORBILD head phantom was used during reconstruction of various scenarios.
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Table 2. Reconstruction results with limited angle relative to ground truth or FDK
in percent. Left FORBILD head, right human head phantom.

200◦ 185◦ 170◦ 155◦ 140◦ 200◦ 185◦ 170◦ 155◦ 140◦

RMSE 56.0 49.9 50.5 51.1 46.7 57.7 49.1 55.8 56.7 53.9

PC 101.5 102.6 103.1 103.1 105.7 57.7 49.1 55.8 56.7 53.9

SART MSSIM 96.7 89.9 100.9 113.5 124.1 99.2 108.5 118.1 122.4 134.2

PSNR 155.7 171.8 156.0 163.6 208.7 141.5 145.2 140.5 148.4 147.3

TVNORM 135.4 117.1 122.9 129.4 144.5 125.5 112.0 119.0 121.4 133.7

RMSE 16.6 19.4 29.2 31.5 37.9 44.9 38.2 52.4 51.7 47.1

PC 102.1 103.4 103.9 104.0 106.6 102.2 103.8 104.6 105.3 110.4

iTV MSSIM 140.9 131.5 149.1 168.7 180.5 111.9 123.2 131.2 137.3 159.4

PSNR 149.1 138.1 127.1 134.8 168.1 122.8 129.3 120.9 121.9 128.5

TVNORM 57.2 49.9 46.1 45.8 47.8 40.8 35.6 29.4 29.8 34.2

4.1 Limited angle

For the FORBILD head phantom data and limited angle geometry, the SART

and the iTV algorithm are superior to the short-scan FDK method in terms of

the introduced error metrics, the RMSE in particular. The iTV reconstruction

is superior to the SART method according to every metric except the Peak

Signal-to-Noise Ratio causing more blurred transitions at the inner boundaries

Θmax = 155◦ Θmax = 155◦ ΘΔ = 2.25◦ ΘΔ = 2.25◦

FDK

SART

iTV

Fig. 1. FORBILD head phantom and human head phantom with limited angle
(Θmax = 155◦) and few projections (ΘΔ = 2.25◦). WC:0, WW:{200, 1000}.



136 Mario Amrehn et al.

of the object. The inhomogeneous regions resulting from the X-ray photon noise

induced and streak artifacts are less prominent in iTV improving the perception

of low contrast elements. However, the porous bone structure of the human

head phantom got blurred significantly using the same set of parameters for this

reconstruction.

4.2 Few projections

According to the error metrics, there is a clear hierarchy in the assessment of

data quality with few projections. The RMSE of the iTV method is less than

half the SART’s. Elements with small changes in their attenuation coefficients

are better preserved and not partially overlayed by streaks. For the FORBILD

head phantom iTV performs a superior preservation of resolution. Again, more

structure is lost in the human head phantom reconstruction. Altogether, iTV

handles under-sampled data due to a high angular increment over a short-scan

acquisition procedure quite well. However, it becomes apparent that a proper

parameter set for limited angle may not be transferable to different geometries

without a loss in quality.
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