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Abstract— Over the last decade, increased effort has been
made to acquire three dimensional images of knee joints under
weight-bearing condition. Cone-beam CT systems are popular
because of their high flexibility with respect to patient position
and scan trajectory. However, scans in a standing or squatting
patient position are affected by involuntary patient motion dur-
ing the acquisition, which results in streaking and blurring arti-
facts in the reconstructed volumes. Previous work suggested the
use of fiducial markers to estimate and compensate for motion
artifacts. However, marker placement on the skin might not ac-
curately reflect the motion at the center of the joint. In this work,
we propose a marker-free motion compensation method that is
based on 2D/3D rigid registrations of individual projection im-
ages to a segmentation of the bones from a prior, motion-free
scan. The estimated motion of the individual bones is then com-
bined to a global motion field to allow for a motion compensated
reconstruction. Qualitative and quantitative results show sub-
stantial improvement compared to uncorrected images. Incor-
porating smoothness constraints into the estimated motion pa-
rameters during the registration further improved the results.
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I. INTRODUCTION

Computed Tomography (CT) is a common diagnostic tool
to assess the anatomical morphology of the knee joint. Com-
pared to diagnostic CT, cone-beam CT (CBCT) provides
more flexibility in terms of patient position and positioning
of the system. It has been shown that modern angiography
CBCT systems are able to acquire 3D volumetric images of
the knee joint under physiologic weight-bearing conditions,
e.g. in a standing or squatting position [1]. However, the high
acquisition time (> 5s) of CBCT devices can lead to severe
streaking and blurring artifacts caused by patient motion.

External fiducials are popular for motion estimation be-
cause they can be tracked in the 2D projection images. Choi
et al. have used externally attached fiducial markers to cor-

rect for patient motion during standing and squatting acqui-
sitions of knee joints [1]. Even though the markers can be
tracked accurately, they may not reflect the internal motion of
the bones or cartilage. Additionally, attaching markers might
lead to increased examination times and patient discomfort.
Purely data-driven motion estimation methods could help to
overcome these limitations.

One approach of data-driven motion correction is data
consistency conditions (DCC). DCCs build a mathematical
description of the redundant information that must be ful-
filled by projection images acquired in an ideal setup. These
methods typically estimate a motion model by optimizing the
underlying DCC and have been successfully applied to sim-
ulated data [2, 3, 4]. Yet, little work has been done on real
acquisitions, leaving their practical applicability in question.

In previous work we introduced a data-driven motion cor-
rection based on 2D/2D registrations between maximum-
intensity projections of the motion corrupted reconstruction
and the acquired projections [5]. No additional information
was necessary, but the improvement in image quality was
limited. In this paper we propose a novel data-driven motion
compensation method that is based on 2D/3D registrations of
segmented bone volumes from a prior, motion-free scan.

II. METHODS

The pipeline of our motion estimation and correction ap-
proach is depicted in Fig. 1. First, the bones that best repre-
sent the joint motion are segmented. The segmentations are
roughly aligned in 3D with respect to an initial motion cor-
rupted reconstruction. Motion parameters are estimated by
2D/3D registration of each bone to each projection image.
After combining the individual bone motions to a global de-
formation, we can generate a corrected reconstruction.

A. Initialization

As the prior data might be in a substantially different coor-
dinate system, e.g. supine vs. standing, an initialization step
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Fig. 1: Pipeline of our motion correction method.

is necessary. Thus, an initial, motion corrupted reconstruc-
tion is built and used to manually align the individual bone
volumes. The result is a set of affine transformation matri-
cesS; € R**4, where j denotes the j-th bone volume. These
transformations will roughly align the bones’ coordinate sys-
tems with those of the current scan.

B. 2D/3D Registration

We applied the “projection-method” described in Markelj
et al. [6], which is a commonly used 2D/3D registration tech-
nique. The basic idea is to vary the 3D position of a bone,
simulate the X-ray acquisition by a digitally reconstructed
radiograph (DRR), and compare the DRR result with the ac-
quired projection using a similarity measure. The similarity
measure is then optimized with respect to the position.

Let P; € R3*4 be the i-th of N projection matrices that de-
scribe the scanner’s geometry and define how a 3D point in
space is mapped to the 2D detector. We further introduce an
affine mapping M;; € R*** that encodes the estimated rigid
motion for the j-th bone at the i-th projection image. Then a
3Dpointx = [x; X x3] T belonging to a bone segmenta-
tion, can be mapped to a homogeneous 2D point by

uj; X
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The actual detector coordinate can be computed by the map-
ping i : R? = R? with h(u;) = [ui/k,- v,-/ki] T With fj being
the intensity function of the j-th bone, we can now formalize
the DRR with help of the Dirac function as follows:
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Let ¢(.) be the similarity measure that compares a projection
image p;(u,v) with the DRR image d;;(u,v), then the opti-
mization function for a single bone can be denoted as

N
dMyj, -, My;) = Zc(dij(”av)vpi(“av)) .
i=1
As similarity measure we used the gradient correlation mea-
sure as described in Penney et al. [7], but with a row and
column-wise Laplacian instead of the Ist order derivatives.
This was helpful to further reduce the influence of surround-
ing tissue and keep the focus on the bones’ outline. We lim-
ited the optimization to 3D translations only, which assumes
that the rotational contributions have been estimated suffi-
ciently well in the initialization step. Thus, the optimization
function reduced to ®(t;,--- ,ty;), where t;; € R3 is the es-
timated 3D translation of the j-th bone for the i-th projection.
To increase robustness we also imposed a smoothness con-
straint to the translations in temporal direction. Our regular-
ization aims to minimize the energy of the difference between
original and low-pass filtered translations. Let k be Gaus-
sian filter coefficients based on a standard deviation o, then
we can reformulate the cost function to
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where (t*k°);; denotes the low-pass filtering over i.

C. From Local to Global Motion

Three planes that separate 1) left and right leg, 2) left fe-
mur and left tibia and 3) right femur and right tibia, have
been defined manually in the motion corrupted reconstruc-
tion. Thus, the volume is divided into four compartments,
where each has its own translation t;;. To avoid artifacts in
proximity to a plane we introduce a weighting function that
ensures a smooth transition at plane boundaries. The resulting
translation t;;(x) is given by,

w(x) = 1/(1+exp(—co(x)))
t;;(x) = w(x)t}; + (1 —w(x)t};

where @(x) is the distance to the plane, t}j and tl.zj are the
translations assigned to each side of the plane and c is a scal-
ing factor that was determined heuristically.

III. RESULTS

A. Experimental Setup

To verify our approach we used a simulated XCAT-based
dataset from Choi et al. [8]. XCAT is a numeric phantom



based on segmentations of real bones, organs and tissue [9].
Real motion parameters of healthy volunteers were incorpo-
rated into the XCAT model using an optical tracking system.
For further details, refer to Choi et al. [8].

The bone volumes were generated by volume rendering
the XCAT bones in a supine coordinate system using an
isotropic voxel spacing of 0.5 mm. The initial alignment of all
bones to the motion corrupted reconstruction was done man-
ually using the software 3D Slicer [10]. For the 2D/3D regis-
tration, we implemented the DRR generation and the gradient
correlation using CONRAD [11]. Overall 248 x 3 = 744 pa-
rameters were estimated for each bone using an interior-point
optimization algorithm.

B. Qualitative and Quantitative Assessment

Transversal slices of the reference, motion corrupted, and
motion corrected reconstructions are shown in Fig. 2. Top and
bottom rows show the femur and tibia, respectively. The mo-
tion induced streaking and blurring artifacts are clearly visi-
ble in the non-corrected reconstruction. All correction meth-
ods substantially improve the image quality. We can see a re-
duction of streak artifacts and clearer bone edges with ¢ = 1.
Increasing the regularization to ¢ = 2 led to slightly increased
streaking but still improved certain locations.

We conducted an image based quantitative comparison of
the reference and corrected reconstructions by computing the
relative root-mean-square-error (fRMSE) and the universal
image quality index (UQI) [12]. For the reference image, all
projections were fixed at the first time-frame. This means that
the global alignment and therefore also our measures is heav-
ily dependent on the accuracy of only 3 of the 744 parameters.
To avoid this dependency, we applied a global 3D/3D regis-
tration for each bone region to the reference reconstruction
using 3D Slicer [10]. The pipeline was as follows:

1. Corrected reconstruction with respect to the first frame
2. Generation of ROI for each bone, including soft tissue
3. For each ROI:
(a) 3D/3D registration of ROI to reference volume
(b) New reconstruction including estimated global
transformation (to avoid additional interpolation)
(c) Computation of rRMSE + UQI for each ROI
4. Construction of mean value of bone-wise measures as
shown in Table 1

All correction methods improved the image quality compared
to the case without correction (cf. Tab. 1). Regularization
helped to improve values for rRMSE and UQI. The best re-
sult was obtained by o = 1. The increased streaking at ¢ = 2
did not substantially influence the quantitative measures.

Table 1: Mean quantitative measurements over all registered bone regions.

| rRMSE (%) | SSIM (x10?)

With Motion 12.80 38.37
Corrected (No Reg.) 5.78 86.02
Corrected (o = 1) 5.02 88.69
Corrected (o =2) 5.18 87.95

IV. DISCUSSION

Motion compensation in CBCT is a challenging task and
still an active field of research. In most applications reported
in the literature, an auxiliary signal is needed to reduce com-
plexity. One example is the ECG signal used in cardiovas-
cular imaging or fiducial markers used in previous weight-
bearing knee imaging studies. In this work, we present a
data-driven approach that uses segmented bones of a prior,
motion-free dataset. The method enables marker-free motion
compensation and does not require an auxiliary signal.

Qualitative and quantitative results show great improve-
ment over a case with no motion correction. In particular the
method accurately restores the bones’ outlines. This is im-
portant because most relevant structures in the knee joint are
located close to the bones, e.g., the ligaments and cartilage.
Regularization of the objective function by requiring smooth
translations over time further improve the results. However,
care must be taken in adjusting the amount of regularization
because overly-smooth transformation parameters might not
be able to fully recover the underlying motion (cf. Fig. 2(e)).

Our simulated data are based on a real motion pattern and
the anthropomorphic nature of the XCAT phantom suggests
that our method’s effectiveness on real data is promising. To
confirm our results, more evaluation on simulated and real
data is necessary and is a goal for future work. To improve
results, we plan to extend the registration by optimizing not
only the bones’ translations but also their rotations. Addition-
ally, we plan to incorporate information given by the physio-
logical model of the joint to further improve the registration.

V. CONCLUSION

A novel data-driven approach for motion compensation
in C-arm CT acquisition of the knee joint is presented. The
method applies 2D/3D registration of bones segmented from
a prior, motion free scan. The estimated transformations are
then incorporated into a global motion field to allow for a
motion-corrected reconstruction. Our qualitative and quanti-
tative results show a substantial improvement in image qual-
ity compared with an uncorrected reconstruction.



(a) Reference (c) Corrected (No Reg.) (d) Corrected (o = 1) (e) Corrected (0 = 2)

(f) Reference (g) With Motion (h) Corrected (No Reg.) (i) Corrected (o = 1) (j) Corrected (o =2)

Fig. 2: Qualitative comparison of the reconstructed volumes. Top row: Transverse slice of femur and patella. Bottom row: Transverse slice of Tibia and
Fibula. The visualization window was chosen at a density of [0.7, 2.1].
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