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Introduction

• Reduce radiation dose while preserving diagnostic value

• Reduced dose leads to increased noise

• Linear filters incorporated into ramp filtering step cannot preserve
image resolution

• Can non-linear filtering methods keep resolution constant while
decreasing noise in homogeneous areas?
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FDK Reconstruction for Cone Beam CT

Projection stack Cosine weighting

Parker weighting

Ram-Lak ramp filtering

Backprojection 3-D reconstruction
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Materials and Methods

Materials and Methods



Reconstruction-Based Noise Filtering

Projection stack Cosine weighting

Parker weighting

Ram-Lak ramp filtering

Backprojection

Noise filtering 3-D reconstruction
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Projection-Based Noise Filtering

Projection stack Noise filtering

Cosine weighting

Parker weighting

Ram-Lak ramp filtering

Backprojection 3-D reconstruction
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Gaussian Filter

f̂ (x , σg) =
∑
µ∈Ω

f (µ) · c(x ,µ, σg)

c(x ,µ, σg) =
1√

(2πσg)d
exp

(
− 1

2σ2
g

(x − µ)T(x − µ)

)
(1)

where

• f is the noisy image, f̂ the filtered image

• x geometric position in image, Ω defines neighborhood of x
• σg spherical standard deviation of d-dimensional filter kernel

• Notation: GP-2D, GP-3D, GV-3D
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Bilateral Filter

f̃ (x , σg, σp) =
1

k(x , σp)

∑
µ∈Ω

f (x) · c(x ,µ, σg) · s(f (x), f (µ), σp)

s(f (x), f (µ), σp) = exp
(
− 1

2σ2
p

(f (x) − f (µ))2
)

(2)

where

• σp standard deviation used for the photometric distance

• normalization factor k(x , σp) formed by sum of all kernel values

• Notation: BP-2D, BP-3D, BV-3D

Tomasi et al. (1998). Bilateral filtering for gray and color images.
In: Computer Vision, 1998. Sixth International Conference on (pp. 839-846).
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Bilateral Filter

Unfiltered region Filtering kernel Filtered region

Figure: Kernel of bilateral filter for a neighborhood close to the edge (center)
and final filtering result (right)
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Experiments and Quality Metrics

Figure: Forbild phantom

• Standard deviation σsd

calculated inside 3-D box shaped
homogeneous region

• Modulation transfer function
(MTF) along scull edges

• Low noise (50×103 photons with
80keV) and high noise dataset
(30×103 photons with 50keV)

• 248 projection images:
640 × 480 (1.2 mm spacing)
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Results

Results



Filtering Methods at σsd = 0.01 (80keV Dataset)

Ground Truth GP-2D GP-3D GV-3D

Unfiltered BP-2D BP-3D BV-3D
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Filtering Methods at σsd = 0.07 (50keV Dataset)

Ground Truth GP-2D GP-3D GV-3D

Unfiltered BP-2D BP-3D BV-3D
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Comparison of Bilateral Filters (80keV dataset)
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Conclusion

• Bilateral filtering in reconstruction domain yielded best results

• Projection-based filtering can preserve edges, but might
incorporate streaking artifacts

• Measurement requires independence of noise and resolution

• Independence not given, especially for noisy data

• Traditional evaluations not ideal for non-linear methods
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Outlook

• Combine 2D and 3D noise filtering in projection and
reconstruction domain

• Evaluation of further non-linear noise filtering methods

• Task-based evaluation, e.g., detection of a lesion

• Use a model-observer evaluation pipeline
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Thank you for your attention! Questions? 
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