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Abstract. Voice hoarseness can have various reasons, one of them is
a change of the vocal fold mucus. This change can be examined with
micro endoscopes. Cell detection in these images is a difficult task, due
to bad image quality, caused by noise and illumination variations. In
previous works, it was observed that the repetitive pattern of the cell
walls cause an elliptical shape in the Fourier domain [1, 2]. A manual
segmentation and back transformation of this shape results in filtered
images, where the cell detection is much easier [3]. The goal of this work
is to automatically segment the elliptical shape in Fourier domain. T'wo
different approaches are developed to get a suitable band-pass filter: a
thresholding and an active contour method. After the band-pass filter
is applied, the achieved results are superior to the manual segmentation
case.

1 Introduction

A hoarse voice can have various reasons, such as structural changes or changes
in the mucus of the vocal folds, leading to an influence on the voice signal [4].
One method to examine the vocal fold mucus is to use micro endoscopes in
vivo and investigate the resulting epithelial cell images. Compared to normal
microscopes, micro endoscope images have a poor image quality with much noise
and brightness changes across the image. This lack of image quality makes the
detection of cells a difficult task.

In the literature, several cell detection approaches exist [5, 6, 7, 8]. The
cell images we use have the property that no separation of background and
foreground has to be done, because cells cover the whole scene. Furthermore,
the cell walls form a repetitive pattern. This property is used in [1, 2], where they
observed a circular shape in the Fourier domain of cell images, representing the
pattern of the cell walls in the image. Furthermore, this approach is used in [3],
where the ellipse is segmented manually in the Fourier domain. The filtered cell
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image has less noise and cell detection is then easier and more robust. The goal
of this work is to find a method which automatically segments the elliptical shape
in the Fourier domain. Two different methods are presented: one thresholding
approach and an approach using geodesic active contour segmentation.

2 Material and methods

Nine images of epithelial cells of the vocal fold acquired with a micro endoscope
of a Cellvisio probe-based confocal laser endomicroscope (pCLE) system are
used in this work, same images as in [3] (Fig. 1(a)). In order to avoid artificial
frequencies of the black circle around the cells, the original images are cropped
(Fig. 1(b)). Image resolution after cropping is 405 x 397 pixels. In Fig. 1(c), the
Fourier transform of the cropped image is shown. In the middle of the image,
one can see clearly an elliptical shape corresponding to the repetitive pattern
of the cell walls. The following presented methods segment this circle to get a
band-pass filter mask. The methods are implemented in C++ with ITK [9]. Cell
detection is performed by detecting intensity minima in the filtered image.

2.1 Labeling of the reference data and evaluation

To be able to evaluate the new methods, ground truth is needed. This is done by
manually labeling the cropped cell images with the program ImageJ. In the la-
beling procedure, each cell center is clicked and the coordinate of these reference
cells are stored. These coordinates are used for evaluation.

Due to the bad image quality caused for example by dirt on the lens and
illumination changes, it is not easy to recognize all cells properly during the
labeling process. Consequently, one has to have in mind that even the ground
truth contains some mistakes. The average number of cells per image after
cropping is 294.

In order to be able to evaluate the methods quantitatively, the detected
cells have to be matched with the reference cells. This is done with a standard
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(a) Epithelial cell image  (b) Cropped input image (c) Fourier transform of (b)

Fig. 1. Sample epithelial cell image and its Fourier transform. In the Fourier transform
an elliptical shape in the center of the image can be seen.



Band-Pass Filter Design 415

algorithm for such problems, the Hungarian algorithm. This matching algorithm
allows a maximum distance of 8 pixels between the reference and the detected
cells. This is the same evaluation method used in [3].

2.2 Thresholding method

The thresholding method is based on finding a suitable threshold. Experimen-

tally, a relative threshold of 0.988 is estimated, meaning that the highest 1.2%

of the values in the Fourier image are set to one, and the other 98,8% to zero

1 if |F(x)| > threshold

M(x) = . (1)
0 otherwise

M (x) describes the mask at coordinate x and F' is the input Fourier image.
After applying this threshold, many pixels inside the elliptical shape are zero
(Fig. 2(a)). In order to get a nice ellipse, a median filter with size 12 is used to
smooth the pixel cloud. The brightness and illumination changes in the images
can be reduced by cutting out the low frequencies. This is done by setting a
circle with radius of three pixels in the center of the image mask to zero. The
resulting band-pass filter mask is shown in Fig. 2(b).

2.3 Geodesic active contours segmentation

The geodesic active contour filter needs a feature image on which it can find a
contour iteratively, according to the energy term [10]

%J/ = —aA(x) - V¥ — 8B(x)|V¥| + ~vZ(x)k| VY| (2)

A (x) describes the advection term to the edge in the image, B(x) describes
the propagation term and Z(x) is the spatial modifier term for the mean curva-
ture k. «, B and y are weights defining the influence of each term. The algorithm
then finds the optimal contour, where the level-set function ¥ equals 0.

To get a feature image, a filter is used which calculates the gradient of the
image by convolving it with the first derivative of the Gaussian. The smoothing
size of the Gaussian is determined experimentally and set to o = 0.9 (Fig. 2(c)).
Afterwards, the derivative image is multiplied by —1 and scaled between zero
and one, as required for the geodesic filter. For Eq. (2) this results that B(x) and
Z(x) are equal to the the negative and scaled gradient magnitude image. A(x)
is the negative gradient of the feature image. The geodesic active contour filter
is then applied with the weights 5 = 1.0, v = 1.0 and a = 4.0. Furthermore,
the filter needs an initial contour, set here to a circle around the center of the
image with a radius of 24 pixels. Same as in the thresholding method, the low
frequencies are cut out of the mask center with a circle of radius three pixels.
The resulting band-pass filter mask is shown in Fig. 2(d).
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Table 1. Recall, Precision and the F-measure results averaged over all images.

Method Recall Precision F-measure
Original Images 98.2 £ 0.9 24.3 + 4.0 38.8 £ 5.1
Manual Segmentation [3] 94.6 + 3.7 70.0 £ 7.3 80.2 £ 4.7
Thresholding Method 83.6 + 2.2 83.9 + 3.3 83.7 + 2.0
Geodesic Segmentation 83.5 £ 5.1 83.1+4.1 83.3 £ 4.1
3 Results

In Tab. 3, the results achieved with the thresholding and the geodesic method
are compared with minima detection on the original unprocessed image and
with the results of the manual segmentation presented in [3]. The two presented
methods achieved almost the same results. In addition, they were considerably
superior to minima detection on the unprocessed image and approximately 3%
better than [3] in F-measure.

Qualitative results are shown in Fig. 3. In Figs. 4(a) and 4(b), the cell image
before and after the processing is shown with a zoomed region of the same ROI

(a) After thresholding (b) Resulting band-pass mask

(c) After gradient filtering (d) Resulting band-pass mask

Fig. 2. Intermediate steps and final masks of the thresholding method (upper row)
and the geodesic segmentation (lower row).
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Fig. 3. Qualitative comparison between minima detection on an unprocessed image
and on an image filtered with the band-pass filter designed by the thresholding method.
In Figs. 4(c) and 4(d), reference cells are marked with a red plus sign and the auto-
matically detected cells with a green plus sign. The yellow lines in Fig. 4(d) connect

matched cells.

(d) Zoomed region of (b)

(¢) Zoomed region of (a)

(Fig. 4(c) and 4(d)). Here, one can see that the band-pass filtered image contains
less noise and the cell walls and centers are well visible.
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Fig. 4. Line profile comparison of the original and the reconstructed image.
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The effect of the enhanced cell walls can be seen in Fig. 4, where two nor-
malized line profiles of the original and the reconstructed image are shown. The
noise is removed and only the cell walls remain.

4 Conclusion

In [3], it was shown that detection of epithelial cells in endomicroscope images
of the vocal folds is possible with basic image processing techniques when an
image is preprocessed with a band-pass filter which corresponds to the repetitive
pattern of cells inside the image. In this paper, we showed that it is possible
to automatically design this filter by segmenting an ellipse which shows up in
Fourier domain, even though segmentation parameters were manually set or
experimentally found.
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