
ER-Force
Extended Team Description Paper

RoboCup 2015

Michael Eischer, Peter Blank, Alexander Danzer, Adrian Hauck, Markus
Hoffmann, Benjamin Reck and Bjoern M. Eskofier

Digital Sports, Pattern Recognition Lab, Department of Computer Science
Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany

Robotics Erlangen e.V., Martensstr. 3, 91058 Erlangen, Germany
Homepage: http://www.robotics-erlangen.de/

Contact Email: info@robotics-erlangen.de

Abstract. This paper presents proceedings of ER-Force, the RoboCup
Small Size League team from Erlangen located at Friedrich-Alexander-
University Erlangen-Nürnberg, Germany. We present an innovative, robot-
based method of ball detection that uses infrared light reflected from
the ball. Recent publications include an updated version of our JTAG-
Programmer ERPROG and our software framework. Detailed documen-
tation is provided on our website and in this paper. Furthermore, we
share our experiences with our multi-agent system and the path plan-
ning algorithm.

http://www.robotics-erlangen.de/

1 Introduction

With RoboCup Small-Size-League using highly standardized mechanical designs
and several of them being commonly available, we decided to pass on comment-
ing on the minor changes we made on our design and focus on electronics and
software. Hence, find information on our innovative, robot-based infrared ball
detection device in section 3, together with the design for the updated version
of ERPROG, a JTAG-Programmer. Insights into our strategy, more precisely
the multi-agent system and the path planning algorithm are given in section 4
and section 5, respectively. The final part, section 6, introduces all information
needed to make use of our software publication.

We hope to advance the league with those topics where it is needed: by
facilitating the entry for new teams and by supporting the referee who is unable
to follow game scenes that are becoming faster and faster.

2 Mechanics

The mechanics design has not changed since last year. See the 2014 TDP [1] for
details.

3 Electronics

In 2014 we realized a complete redesign of our electronics components. This
modular design offers us the possibility to renew each component as described
in [1] without interfering with the whole architecture. For RoboCup 2015 we
are in the comfortable position of having a working system which can be opti-
mized step by step. Especially the ball detection and EMC troubles offer lots of
room for improvement. This chapter describes the rework of our balldetection
system. Furthermore we decided to publish our optimized JTAG-Programmer
as described in the second part of this chapter.

3.1 Detecting the ball

A ball detection system is required because the camera system is not able to
measure exactly the distance of the ball and the robot. Our approach is to notify
the robot if the ball is located in immediate proximity, but have the final ball
detection done locally on the robot. The requirements of ball detection systems
suitable for this application are listed below.

• No interference with the camera-system,
• insensitive to the field lights,
• fast detection (within 20µs),
• no physical interaction with the ball, and
• failsafe decision between ball detected and system malfunction.

An answer to these requirements is an optical detection system based on infrared
light. Find two possible implementations subsequently.

Linear light barrier In the 2012 robot generation a linear light barrier system
was used. It was placed in the very front of the bot, below the dribbling device.

Tx Rx

RxTx Tx

RxTx Tx

Fig. 1. Pictorial schematic of a linear light barrier

An infrared LED (IR-LED) on the one dribbler-side was transmitting a con-
tinuous light-beam. The beaming angle was set approx. 6 degree. On the opposite
side, a photo transistor received the signal. Figure 1 shows the arrangement.

The electrical architecture of this system is quite simple. For the transmitting
side (TX) a resistor and the IR-LED is needed. On the receiving side (RX) there
are a photo transistor with a reference voltage source and a comparator with
adjustable threshold voltage to create a digital signal for the microcontroller.

The performance of this system proved to be insufficient. The receiver was
influenced from other light sources than the transmitter, thus required readjust-
ment of the threshold voltage manually with a potentiometer. Additionally, LED
or transistor were physically damaged by other bots. Therefore we decided to
implement a better way of optical ball detection.

Reflective light barrier The principle of this kind of light barrier is to detect
reflected light from a surface. Transmitter and Receiver are next to each other
facing towards the detection area. Figure 2 shows the pictorial schematic. This
design avoids sensible parts to be located in exposed positions of the bot. The
sensor can be behind or above the ball. This prevents mechanical damage of
the components and the related failure of the kicking system. Integrated parts
are available from Vishay, like CNY70 or TCRT5000. Unfortunately, the detec-
tion distance is only specified in a very small range (0 to 15mm). For Sharp
GP2Y0A21YK a detection is only possible above 100mm. As our robot-dimensions
require a 50mm operating distance, the Sharp sensor is not suitable as well. For
that reason, a custom solution was developed and is in use since 2014.

Our first try of a suitable system was in the 2014 robot generation for last
year’s RoboCup. Figure 3 shows the small PCB with one pulsed IR-LED and one
photo transistor with charge amplifier. We tried to use discrete components to
be able to optimize the circuit for best performance. The analog sensor output
was transmitted as voltage level single-ended via the connecting cable to our
microcontroller to read only the triggering level dynamically. It turned out that

Tx Rx

RxTx Tx

RxTx Tx

Fig. 2. Pictorial schematic of a reflective light barrier

28.02.2015 17:22:01 C:\Users\Markus\robocup\electronics\boards\2014\kicker_controller\2014-03_ball_detection.brd

Fig. 3. Ball detection PCB 2014

this design was failure-prone because of small analog current and voltage levels.
Difficult calibrations were required and the system worked still quite unstable.

Concerning the problems of last year’s ball detection system, two more rules
for ball detection systems were defined.

• Integrated part for signal-receiving and -amplification, and
• Only digital signals on cable connection with EMC protection on both ends.

At this moment the further requests are already implemented into a new
design. The first prototype is working and shows promising results. Figure 4
shows the 2015 PCB.

28.02.2015 17:22:39 C:\Users\Markus\robocup\electronics\boards\2014\kicker_controller\2015-01_ball_detection.brd

Fig. 4. Ball detection PCB 2015

The following changes were made in comparison to the 2014 board. The
infrared illumination of the whole width of the dribbler is ensured by two trans-

mitting IR-LEDs (Vishay VSMB3940X01) with a beaming angle of 60◦ each. They
are pulsed with 36kHz to fit the specific receiver. The integrated receiver Vishay
TSOP1736 processes the signal. It is a standard IR communication IC for remote
controls with a carrier frequency of 36kHz. On the output a digital voltage level
(one bit) is measured which corresponds to the ball states (ball detected and no
ball detected).

These modifications make the circuit very simple compared to the 2014 ver-
sion. For this purpose and the noisy robot environment the new solution seems
to be a better realization without sensible signals on wires across the board.
Tests proved our development to be successful and we are highly pleased with
the results so far. At the moment, we are experimenting with the position and
the light intensity of the LEDs to get the best detection results.

3.2 Publication of ER-Force JTAG-Programmer ERPROG

We developed our own hardware to program the ARM microcontroller flash
memory on our robot. We use the JTAG standard with a 10 pin connector
with the CoreSight 10 pinout, which is described in Table 1. The device is
connected via a Mini-USB plug to a computer. FTDI FT4232HL allows for the
use of OpenOCD. Figure 5 shows the current board layout.

27.02.2015 16:37:20 C:\Users\Markus\robocup\electronics\boards\tools\openocd\openocd_ft42325_1306-1.brd

10

1 2

Fig. 5. ERPROG board layout

The benefits of this hardware are the easy USB connection with EMC protec-
tion and over-current protection. Furthermore the standard JTAG output with a
complete isolation up to 4kV. The target isolation is done by two ISO7231M from
Texas Instruments. This device also does a voltage translation which adapts to
the target voltage-level. Working is guaranteed from 3.2 to 5.4V. With this cir-
cuit the computer is never effected if the programming target fails in any way.

All necessary files can be download from our website with the link given
below. We included the EAGLE schematic and 2-layer-board-file, the bill of ma-
terials (BOM) with manufacturer and distributor (mainly Farnell) order code
and example configuration files for OpenOCD.

https://www.robotics-erlangen.de/publications/jtag-programmer

https://www.robotics-erlangen.de/publications/jtag-programmer

pin signal pin signal

1 VTREF 2 TMS

3 GND 4 TCK

5 GND 6 TDO

7 NC 8 TDI

9 GND 10 nSRST

Table 1. CoreSight 10 pinout

For the next release it is planned to allow for controlling the isolation voltage
translator’s enable-pin. Thus, the programmer can be put to high-impedance
mode so it does not interfere with the target.

4 Strategy

4.1 Experience with the multi-agent system

At RoboCup 2014 the transition of our strategy design towards a multi-agent
system was completed. We like to give an overview of the implementation and
share our experience.

The achievement of the fourth place is the most successful RoboCup par-
ticipation for team ER-Force so far. Part of the success stems from the radical
redesign of the game strategy. Like team Mannheim Tigers[2], which entered the
quarter finals for the first time at last RoboCup, we switched from a STP design
to a multi-agent system. The key strength of the system showed up in attack
situations where we maintained a reasonable defense decoupled from the current
move. Also, the passing protocol as described in last year’s TDP proved to work
reliable without any hard coded positions or game sequences.

One of the more challenging problems with this approach is the coordination
of tasks which involve multiple robots like defending the goal at a corner kick.

4.2 Organizing the defense in a multi-agent system

In a situation as shown in figure 6, a crucial requirement is the ability to fol-
low long-term goals like marking opponent robots consistently and being able
to react to unforeseen position changes. At the same time, not only the move-
ment of opponents should be considered but also the coverage of the defense
area. Clearly, this is a problem which is hard to solve by negotiation protocols.
To tackle this issue, there is the trainer component which has an overview of
the available defenders and tries to assign appropriate roles. As described in
last year’s TDP, there is a common communication channel which allows for
application and assignment of roles. To avoid collisions and minimize movement
distances, the trainer computes all destinations near the defense area and as-
signs the robots afterwards. It is important to be independent from the concrete
number of defenders available. The trainer formulates a single goal involving
several robots. This is in contrast to a play of the STP design, which would try

Fig. 6. Corner Kick situation in a RoboCup match against KIKS

to define goals for the whole team and prevent single robots from dissolving into
counterattacks while the rest of the team still pursues the defense task.

5 Path planning

Like with most other teams our path planning is broken up into two steps. First
a collision free path is calculated using the ERRT algorithm. Then the found
path is processed by the motion control to generate the actual move commands.
The following sections detail our usage and modifications of ERRT.

5.1 Modeling

Each robot is handled separately, thus providing no direct coordination between
robots.

The used state space is two-dimensional representing the x and y-dimension.
The orientation φ is not included. As long as the robot is moving freely on
the field, this causes are no drawbacks. However the situation changes when
approaching the ball, as the robot dribbler is flat. That allows the ball to get
nearer to the robots center without actually colliding with the robot hull. Thus
additional obstacles and modifications to the robot radius are required.

As the modeling does not include time, an optimal generated path would be
the shortest path. This does not necessarily imply that it is also the fastest path.

The obstacle space consists of circles, line segments with round caps and a
given width and axis aligned rectangles. As the state space does not contain
time, all obstacles are assumed to be at a fixed position. A robot is modeled
as a circle with a radius of radiusrobotA + bound(0, |speedrobotA − speedrobotB | ∗
0.05, 0.05). For opponent robots whose future movement is unknown a larger
safety margin is added. Calculating the safety margin between robots based on
the speed differences ensures that robots with different movement directions do
not collide while allowing two robots moving into the same direction to get as
close as possible.

The goal is modeled using line segments, whereas the keeper area is set up
with two circles connected with a rectangle. While the stop command is issued
by the referee, an extra circle is added around the ball enforcing the minimum
distance from the ball.

Fig. 7. Robot hunting a ball rolling away from it

During a game the ball is usually added as an obstacle for each robot. In case
the robot is chasing the ball like in figure 7, no obstacle is added. This allows
planning a straight path to the ball without trying to plan a path around the
current ball position.

In order to allow the robot to move next to the ball, it must be modeled using
a smaller radius. That radius must be the ”shoot radius” which is the distance
of the dribbler mid to the robot center. This would allow the robots sides to
touch the ball without detecting a collision. Thus several obstacles around the
ball forming a cone are added.

5.2 ERRT

The ERRT algorithm (described in [3]) is implemented as bidirectional RRT
with a way point cache and using RRT-Connect (see [4]). The bidirectional
RRT grows two trees starting at the start and end point. Using RRT-Connect
these are not only extended towards the random state but also towards each
other.

A kD-Tree is used to speed up the calculations. The simple case that a
robot can move straight towards its target is checked first to avoid unnecessary
calculations. Just returning the start and end points as a path while being valid
is incorrect. This would skip the way point cache what will cause unstable paths
whenever an obstacle enters the free path. Thus our implementation splits the
line into several small segments using the step size used by the ERRT algorithm.
These way points are used to update the cache.

5.3 Obstacle handling

RRT based algorithms are designed to find a path from start to end without
colliding with obstacles. Due to the dynamic environment and sensor or actuator
noise a robot may enter an obstacle which requires special handling.

To allow the path planner to leave obstacles a modified collision check is
used:
A position is considered free if the robot (modeled as a circle with configurable
radius) can be placed there without intersecting with an obstacle. In case the
position is obstructed, that is not free, a path to a new position is valid if equation
4 holds.

startObstacles = {o ∈ Obstacles|o collides with posstart} (1)

otherObstacles = Obstacles \ startObstacles (2)

distInObstacle(pos) =∑
o∈startObstacles

min (−distance(o, pos) + robot radius, 2 · robot radius) (3)

∀p ∈ [posstart, posend] : distInObstacle(p) ≤ distInObstacle(posstart)
∧ ¬ (posend collides with otherObstacles) (4)

[posstart, posend] denotes every point on the line segment between posstart and
posend. The implementation just checks a point every 2 millimeters on the line
segment. This is sufficient as even the smallest obstacles, the goal sides, are a
magnitude larger.

Calculation of distance(obstacle, pos):

• For a circle: |centerobstacle − pos| − radiusobstacle

• For a line: distance to linesegment(obstacle, pos)− radiusobstacle
• For a rectangle (axis-aligned):{

smallest distance to side or corner pos outside obstacle

negative distance to nearest side otherwise

The check using distInObstacle ensures that it is not possible to enter further
into an obstacle. The second part of equation 4 ensures that no new obstacles
are entered.

x

Fig. 8. Two paths a robot could use to leave an obstacle

The construction of equation 4 allows sliding along an obstacle. Two possible
paths are shown in figure 8. If the new added path segments were infinitesimal
short, it would be possible to move along a circle inside an obstacle. As this is
very unlikely to happen, each new point will be further outside the obstacle than
its predecessor. Allowing small movements inside an obstacle can be beneficiary
when trying to keep the required distance to the ball during stop. If the shortest
path out of that obstacle is blocked by other robots, an alternative can be found.

While the robot has fully entered an obstacle, it is allowed to move freely
within it. This case should only occur if a new obstacle suddenly appears, like
the blocked zone near the ball during stop. By limiting the intersection distance
the chances to find a path towards the preferred direction are increased. The
obstacle used to represent other robots is small enough to prevent the current
robot from being fully covered by it. Thus the planned path is always pointing
away from the other robot in case of a collision.

If the robot gets moved outside the play field, a similar calculation is used.
This allows the robot to reenter the field after leaving.

The condition is applied on both trees thus allowing a bidirectional search
even with the end point being inside an obstacle. For extracting the path once
both trees touch, care has to be taken to not include points of the tree grown
from the target which are inside an obstacle. To allow moving as near as possible
to an obstacle, a binary search is used between the last point outside and the
first point inside the obstacles. By implementing obstacle handling for the start

and end point RRT is also more likely to find a path within the given iterations
limit, thus decreasing the average worst case latency.

Handling the leaving of obstacles directly within RRT however has a draw-
back. The point where the path leaves the obstacles near the start point or
enters them near the end point exhibits some random movement. At the start
point this is handled by the path post-processing using a simple modification.
Improving the end point is more complicated: As end points inside obstacles are
cutoff the new end point is noisy and cannot be smoothed that way. This could
be mitigated by smoothing the whole path before cutting of the end part inside
the obstacle. We have found that the simple cutoff is sufficient, if some care is
taken during target generation.

5.4 Path smoothing

RRT generates jagged paths that require some post-processing. Our implemen-
tation uses a simplification and a corner cutting algorithm. Both algorithms are
in turn executed three times followed by a final simplification run. This creates
smooth paths like the one in figure 9.

Fig. 9. Smoothed path

Simplification is done using the following algorithm. path is the list of way
points.

• for pA in path:

◦ for pB in reversed(path starting after pA):

∗ if the line segment between pA and pB does not collide with any
obstacle, then remove all points in between from path

The collision check uses the modifications described in the previous section. The
simplification algorithm just tries to generate straight lines that skip as many
points as possible.

In order to generate a smooth and short path around obstacles the following
algorithm is used:

• for pB in path:
◦ Get predecessor pA and successor pC of point pB
◦ Calculate dist = min(|pB − pA|, |pC − pB|)
◦ Find largest l ∈ [0, dist] with binary search for which the line segment
pB + pA−pB

|pA−pB| · l, pB + pC−pB
|pC−pB| · l does not collide with any obstacle

◦ replace pB with these two points

The algorithm cuts off corners symmetrically. This ensures that smoothing does
not differ if the path direction is flipped.

6 Software Framework

An important change in the rules of the SSL was made 2012 with the restriction
of ball velocity to a maximum speed of 8m

s . From this point robots were not able
anymore to score from any place on the pitch. This led to a profound change
in the strategy of the teams from programmed static situations towards more
dynamic game plays like passing. A problem which arose from the change of
the rules was the necessity of a appropriate system to measure the ball veloc-
ity. Different systems have been used by the teams on the last years RoboCup
competitions. Self designed light barriers were brought to the competitions by
the teams. We found that they have great disadvantages. The main problem is,
that these devices only can be used before a game for the purpose of calibration.
During the game they are inappropriate for monitoring the ball velocity. Thus
it was a hard job for the referee to decide by eye whether the ball speed was
higher or lower than the permitted limit. So we came to the conclusion that only
a system using the images delivered by the cameras to calculate the ball velocity
would fit into the requirements for an adequate surveillance system.

Some teams already had implemented software to calculate and show ball
velocity on RoboCup 2014 in Brazil. But none of these systems was capable to
become a common system for the whole SSL, because most of them were part
of the teams frameworks. The system of ER-Force became a commonly trusted
and accepted system on RoboCup 2014. Thus we decided to publish our software
framework, named Ra, this year, excluding of course our strategy software. We
published Ra with regard to the GNU General Public License 3. The software
can be downloaded through the following link:

https://www.robotics-erlangen.de/publications/autoref

A brief introduction to the most important components of Ra will be given
in the following.

https://www.robotics-erlangen.de/publications/autoref

6.1 Introduction into the framework

Besides the feature of measuring the ball velocity, Ra offers many other opportu-
nities to the teams of SSL. Connected to SSL Vision, Ra will handle the Vision
packages and display them appropriately. Furthermore an AI runtime, imple-
mented in Lua, is included as well so that a team can load its own strategies.
Another important feature is the simulation tool. One invaluable treasure for
ER-Force team was the game logger. We could investigate our strategies deci-
sions after a logged game simply by watching it in the Logplayer, included in
the software package as well. Figure 10 shows the graphical user interface of the
software with a zoom to the small strip with buttons at the top. With Button (1)
one can switch on simulation. Button (2) is to turn on the internal referee. After
pressing Button (3) the plot window will show up with a lot of plot functions,
including the ball velocity. Note that the ball velocity is not only calculated by
simply looking at the positions delivered by SSL Vision. A Kalman filter is used
to reliably filter the noise of the camera. Button (4) is used to toggle the logger.
The file automatically created during a game can be loaded with the logplayer.

Fig. 10. Screenshot of Ra

7 Conclusion

Having published a first version of the automatic referee system, we would ap-
preciate the support of other teams in order to establish a better method to
obtain fast and correct decisions. The challenge opens a complete new field of
research possibilities for the teams. Having said that, we are very happy to help
new teams having any issues with published system parts. New teams entering
the league are crucial for the survival of SSL, so we invite everyone to contact
us with any requests.

In the past, the characteristics of SSL have been pointed out over and over
again - entry league, many students. This applies to our team as well. The
number of lessons learned by building a SSL team is by far higher than it is
in traditional lectures. Unfortunately, many students are not given any credit
points by their universities. This leads to the uncomfortable situation of doubled
workload by traditional classes and the approach of RoboCup deadlines, reducing
quality of the SSL systems. We would welcome a push of the RoboCup committee
into this direction.

References

1. Bayerlein, H., Danzer, A., Eischer, M., Hauck, A., Hoffmann, M., Kallwies, P.,
Lieret, M.: Team Description Paper for RoboCup 2014 (2014)

2. Ryll, A., Ommer, N., Geiger, M., Jauer, M., Theis, J.: Tigers Mannheim TDP for
RoboCup 2014 (2014)

3. Bruce, J., Veloso, M.: Real-time randomized path planning for robot navigation.
In: IEEE International Conference on Intelligent Robotics and Systems, IROS ’02,
Switzerland (2002)

4. Kuffner, J., LaValle, S.: Rrt-connect: An efficient approach to single-query path
planning. In: IEEE International Conference on Robotics and Automation, ICRA
’00, 2000. Volume 2., USA (2000) pp. 995–1001

	ER-Force Extended Team Description Paper RoboCup 2015

