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Abstract. Motion estimation in X-ray images is a challenging task due
to transparently overlapping structures from different depths. We pro-
pose to separate an X-ray sequence into a static and a dynamic layer to
facilitate motion estimation. The method exploits the idea to use the min-
imum intensity over time and a spatial smoothness prior for both layers.
For numerical optimization, we propose a conditional Markov random
field. In experiments on synthetic data, we achieve a root mean squared
intensity difference of 36.7± 8.4 to the ground truth static layer. In ad-
dition, we show qualitative results that demonstrate an improved layer
separation compared to state-of-the-art algorithms.

1 Introduction

X-ray images are 2-D projection images formed by accumulated attenuation
along a line through a 3-D volume. This leads to a transparency effect that
enables physicians to examine the interior of the human body. However, it also
means that structures from different depths overlap transparently in the images.
In many cases, some of the projected structures are unnecessary or even hinder
interpretation and processing of the images. In particular, motion estimation is
substantially complicated [1]. Many image registration algorithms are based on
intensity similarities. Hence, the estimated motion is dominated by the high-
contrast structures. However, the motion of the soft tissue that is investigated
in the intervention is required. A separation of X-ray images into independent
layers is therefore desired.

In literature, multiple approaches to layer separation in X-ray images have
been proposed. Early methods were restricted to rigid motion of the layers and
separated the layers by averaging the stabilized X-ray sequences [2]. Preston et
al. alternate between non-rigid motion estimation and layer separation [3]. Layer
separation is easier for dual-energy X-ray, where additional spectral information
is available. In this domain, separation can be performed without motion es-
timation based on minimizing the mutual information between the layers [4].
Transparent layer separation has also been treated in computer vision. Szeliski
et al. iteratively estimate parametric motion and layers, using the minimum over
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time to extract the static layer from a stabilized sequence [5]. Weiss separates
the reflectance from the temporally changing illumination using an independence
assumption and the sparsity of natural images in the gradient domain [6].

The contribution of this work is a new method for layer separation. It builds
on the idea to use the pixel-wise minimum over time of a X-ray sequence to
extract layers. However, in some cases the minimum does not correspond to
semantically meaningful images. Prior knowledge, e.g., spatial smoothness and
non-negativity, is useful to restrict the layers. We introduce a combined formula-
tion for spatial smoothness of both transparent layers. The model is formulated
as a conditional Markov random field (CRF). In the experiments, we show that
our method separates X-ray sequences into two motion layers on synthetic data.

2 Materials and Methods

2.1 Layered X-Ray Model

X-ray images are generated by X-ray photons that are attenuated on their path
through an imaged volume. We assume monochromatic X-ray. Attenuation is an
exponential process, which can be transformed to a linear relationship between
image intensities and attenuation using logarithmic processing [7]. We are inter-
ested in separating X-ray images into differently moving layers. Therefore, all
tissues that undergo a similar motion are summarized into a single layer Il. The
image It ∈ [0, 255]W×H at time t ∈ {1, . . . , T} is then computed from the layers
as

It (x) =

L−1
∑

l=0

Itl (x) , (1)

with the image pixel x ∈ IR2 and the number of layers L. In this work, we limit
ourselves to L = 2 transparent layers, a static I0 = S and a dynamic I1 = D

layer. The whole sequence of X-ray images is denoted as I.

2.2 Layer Separation using a Conditional Markov Random Field

The basic assumption of our layer separation model is that the layer S is static.
A straightforward method to remove a static layer from an X-ray sequence is to
compute the pixel-wise minimum over time

Smin (x) = min
t

It (x) , (2)

because the dynamic layer can only increase attenuation. This min-composite
yields an upper bound on the static layer [5]. Its major problem is that artificial
edges are introduced. If an object is larger than the motion it performs in the
sequence, a part of the object is assigned to the static layer (Fig. 1). In particular
in medical images, moving structures are physically a better explanation than
appearing and disappearing structures. To this end, we penalize the creation of
artificial edges by introducing a spatial smoothness prior on both layers.
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(a) (b) (c) (d)

Fig. 1. Visualization of the artificial edge creation problem of the min-composite. The
inputs are a white rectangle moving on a black background (a,b). Areas that are covered
in all images by the rectangle are assigned to static layer for the min-composite (c).
The desired result is a reached by our method (d).

We formulate the layer separation problem in a CRF model. Due to the
assumption of a static layer, it is sufficient to represent each static layer pixel
with a random variable. The intensity of the dynamic layer can be calculated
directly from the static layer and the image

Dt (x) = It (x)− S (x) . (3)

The random variables have discrete labels z ∈ Z representing the intensity zi =
S(xi). The labels of all random variables are denoted as z. Z contains equally
distributed intensities in [0, 255] without loss of generality.

In the CRF, we incorporate unary potentials Φv for nodes v ∈ V and pair-wise
potentials Ψij for edges (i, j) ∈ E

E (z, I) =
∑

v∈V

Φv (zv, I (xv)) +
∑

(i,j)∈E

Ψij (zi, zj , I (xi) , I (xj)) . (4)

The unary potential function

Φv (zv, I (xv)) =

{

αmin
{

β,
∑T

t=1 ‖zv − It (xv) ‖1

}

, if zv ≤ It (xv) ∀t

∞, otherwise
(5)

with parameters α, β ∈ IR penalizes deviations from the min-composite using a
truncated L1-norm. The unary potential ensures the non-negativity constraint
of the X-ray generation model in the dynamic layer. The static layer is non-
negative by definition of the label set Z. Φv prevents the static layer from being
larger than any of the images It (xv) by assigning infinite weight, thus avoiding
a negative dynamic layer. Note that the minimum of the unary potential is
achieved by the min-composite.

The potential Ψij consists of pair-wise terms (i, j) ∈ E in a 4-neighborhood

Ψij (zi, zj , I (xi) , I (xj)) = ‖zi − zj‖1 +

T
∑

t=1

∥

∥(zi − zj)−
(

It (xi)− It (xj)
)∥

∥

1
. (6)
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A common image prior is to penalize gradients, e.g., using the L1-norm to pro-
mote sparsity. Eq. 6 jointly encodes smoothness of both layers. This is straight-
forward for the static layer using ‖zi − zj‖1. It needs to be added only once,
because the pixel values of the static layer are perfectly statistically depen-
dent p (S(x)) = p (S(x)) over time. For the dynamic layer, we reformulate
‖Dt (xi)−Dt (xj)‖1 using Eq. 3, thus removing the need to directly model
Dt. Assuming statistical independence of the gradients over time p (D(x)) =
∏T

t=1 p (D
t(x)), different time steps can be combined by summation in the en-

ergy. With the assumption of independence of the static and the dynamic layer
p (S(x),D(x)) = p (S(x)) · p (D(x)), the individual layer contributions can be
added (Eq. 6). Note that the minimum of the pair-wise potential is achieved by
the median gradient over time [6].

To perform the layer separation in a new X-ray sequence, the maximum a
posteriori (MAP) estimate of the CRF model is obtained by

z
∗ = argmin

z

E (z, I) . (7)

This yields the statistically optimal layer under this model given the input se-
quence. For inference, sequential tree-reweighted message passing (TRWS) [8] in
the OpenGM framework is used [9].

2.3 Experiments

In the experiments, we compare the proposed algorithm to the min-composite
[5] and Weiss method [6]. Min-composite and Weiss method do not have any
parameters. The parameters of our method were set empirically to α = 0.1, β =
10. TRWS optimization is run for 40 iterations, using ‖Z‖ = 256 labels.

As experimental data, we use four simulated X-ray sequences. Simulated
images resemble real X-ray images, but ground truth is still available. They are
created by adding two independent layers, where one is static and the other
one dynamic. Layers are created by segmenting 3-D volumes and projecting the
parts independently to 2-D. The 3-D volumes are created by clinical CT scanners
or simulations using CONRAD [10]. The dynamic layer is transformed with
artificial motions, which are interpolated from manually specified control point
motions using thin-plate splines. The error is computed as the root mean squared
difference (RMSD) of the image intensities. Before the RMSD, we subtract the
mean from the compared layers, because it cannot be uniquely determined and
is not relevant for motion estimation.

3 Results

The RMSD error for the min-composite is 42.1 ± 8.4, for the Weiss method
42.2 ± 6.9, and for our method 36.7 ± 8.4 (mean ± standard deviation). These
results indicate a better performance of our method compared to the others.
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Fig. 2. Qualitative results on simulated X-ray sequences are shown, one per row: two
images of the input sequence (a,b), a dynamic layer extracted using our (c), min-
composite (d), and Weiss (e) method. Contrast is enhanced for better display.

Two X-ray sequences from different views including the spine, diaphragm,
ribs, heart, and lungs are depicted in Fig. 2. The images are already preprocessed
to fit the additive model. The sequence in the first row is created using CONRAD.
Note that the static structures are removed from the dynamic layer in all cases.
The main difference is how well the soft tissue is preserved. There, the problem
of artificial edges is clearly visible in the min-composite. In the second sequence
created from a 3-D CT, more structure is present in the soft tissue. Nevertheless,
the same problems occur in the min-composite. Our approach and Weiss method
perform similarly well. Both have problems with inconsistent gradient estimates,
e.g., visible in the liver in the first sequence. The main differences is that Weiss
method does not ensure non-negativity of the dynamic layer, which corresponds
to physically impossible negative attenuations. Non-negativity of the static layer
can be achieved by simple postprocessing. Another difference is an offset of the
mean intensity, which cannot be uniquely determined from gradient information
alone, but is irrelevant for subsequent motion estimation.

The runtime of the method depends linearly on the number of pixels. For
images of size W = H = 256 and a sequence of length T = 50, the runtime is
about 200 s.

4 Discussion

We propose a novel approach to separate an X-ray image sequence into static and
dynamic layers. This intermediate representation can facilitate further process-
ing. In particular, soft tissue motion estimation would not be possible without
it due to overlapping structures from different depths. The separation is based
on the min-composite, which is only an upper bound on the static layer. Our
method adds a smoothness term to suppress artificial edges in either layer.
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The current runtime of the method is not yet sufficient for clinical use. How-
ever, real-time performance is not feasible by design, as a whole image sequence
is postprocessed. The goal can only be to reduce the latency to a minimum.

In future work, the method needs to be transferred to and tested on clini-
cal X-ray data. The validity of a static layer is questionable for clinical X-ray
images. Some structures, e.g., ribs, move slightly, although from an application
point of view they should be in the static layer. Additionally, patient body mo-
tion is possible. Consequently, the robustness of the method to these challenges
needs to be evaluated. In the future, the use of the dynamic layer for motion
estimation should be investigated. Furthermore, substantial speed ups of the
method are possible for example using an inference method that is amenable to
parallelization and a GPU implementation.
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