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Abstract. Dense motion estimation in X-ray fluoroscopy is challenging
due to low soft-tissue contrast and the transparent projection of 3-D in-
formation to 2-D. Motion layers have been introduced as an intermediate
representation, but so far failed to generate plausible motions because
their estimation is ill-posed. To attain plausible motions, we include prior
information for each motion layer in the form of a surrogate signal. In
particular, we extract a respiratory signal from the images using manifold
learning and use it to define a surrogate-driven motion model. The model
is incorporated into an energy minimization framework with smoothness
priors to enable motion estimation.

Experimentally, our method estimates 48% of the 2-D motion field on
XCAT phantom data. On real X-ray sequences, the target registration
error of manually annotated landmarks is reduced by 52%. In addition,
we qualitatively show that a meaningful separation into motion layers is
achieved.

1 Introduction

X-ray fluoroscopy is an important modality for guidance of minimally-invasive
interventions. It has good spatial and temporal resolution and clearly visualizes
interventional devices and bones. However, the contrast of soft tissue is low and
3-D information is lost due to the transparent projection to 2-D. In this paper,
we deal with dense motion estimation in X-ray images. There are many clinical
applications of fluoroscopy for which this is beneficial. Temporal denoising al-
gorithms depend on accurate motion estimates [1]. Coronary DSA requires the
compensation of cardiac and respiratory motion occurring between the mask and
the contrasted image [14]. In thoracic and abdominal interventions, fusion of X-
ray images with previously acquired roadmap overlays, created from contrasted
images, CT, MR, or C-arm CT, requires motion compensation to correctly dis-
play the overlays on the live fluoroscopic images [4,15].
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There are two major challenges for motion estimation in fluoroscopy. First,
the low soft-tissue contrast complicates intensity-based image registration, be-
cause common similarity measures are dominated by high-contrast structures.
Second, the estimation of 2-D motion in X-ray fluoroscopy is ill-posed due to the
transparent projection of differently moving 3-D structures to 2-D. To alleviate
the transparency problem, motion layers have been introduced [11]. The goal of
motion estimation is then to compute a separate 2-D motion field for each layer.

Two approaches have been proposed for this problem. The first approach
avoids to compute motion layers and directly estimates multiple 2-D motions
for each pixel. Assuming locally constant motion in space and time in each
layer, the common brightness constancy assumption can be extended to the
transparent setting [1,11]. Alternatively, certain special motion types can be es-
timated in transparency, e.g., parametric motions [3] or a single non-static layer
[15]. However, these assumptions are restrictive and cumbersome for more than
two layers. The second approach is estimation of layers and motions. This leads
to a chicken-and-egg problem, i.e., it is easy to compute the layers when the
motion is known and vice versa. Szeliski et al. assume parametric motion to
simplify the problem [12]. Preston et al. introduce a layer gradient penalty for
the layers and a smoothness prior for the motions [9]. However, the motions and
layers are not physiologically meaningful, restricting their usefulness to applica-
tions where the layers and motions are recombined, e.g., frame interpolation or
denoising. Surrogate signals are commonly used in respiratory motion models
[8]. For example, Martin et al. estimate a surrogate-driven 3-D motion field in
motion-compensated C-arm CT reconstruction [7] .

In this work, we propose to enhance layered motion estimation using a sepa-
rate surrogate signal for each layer. In particular, we use a static layer without
motion and a respiratory layer with motion proportional to a respiratory surro-
gate signal. The respiratory surrogate signal is extracted from the X-ray sequence
using manifold learning. Together with smoothness priors for layers and motions,
this enables us to retrospectively estimate physiologically plausible layers and
motions in an energy formulation. The proposed method is especially suited for
building 2-D respiratory motion models, as the dependence of the motion on
the surrogate signals is required anyways. We quantify the estimation error of
the proposed method on simulated X-ray images by comparing the estimated
to the ground truth motion. On clinical sequences, we evaluate quantitatively
using manual annotations and qualitatively show that the respiratory motion is
accurately captured and that the motion layers are separated.

2 Methods

2.1 Image Formation Model

We are interested in separating X-ray images I (x, t), t ∈ {1, . . . , T} into different
motion layers Ll (x), where each layer may undergo independent non-parametric
2-D motion vl (x, t) ∈ IR2. x ∈ IR2 is the image pixel position. A motion layer
can roughly be assigned to each source of motion, e.g., breathing, heartbeat, and



background. The images are created additively from the transformed layers as

I (x, t) =

N∑
l=1

Ll (x− vl (x, t)) + η , (1)

where η ∈ IR is introduced to account for model errors and observation noise
in the log-transformed X-ray model [9]. In this paper, we restrict the number of
layers in the image sequence to N = 2, a static and a respiratory layer.

2.2 Surrogate-Driven Motion Model

The surrogate-driven model for layered motion is defined as

vl (x, t) = sl (t) · νl (x) , (2)

where sl (t) ∈ IR is a surrogate signal that is used to scale the base motion
νl (x) ∈ IR2. The surrogate-driven motion model is crucial to achieve physiolog-
ically plausible motions. It reduces the number of motion parameters by a factor
of T −1 compared to unconstrained motion fields, because νl (x) is defined only
for one point in time and extended to other times using Eq. (2), whereas uncon-
strained motion fields are defined for all points in time except t = 0. Thus, the
parameter space is constrained to the subspace where the motion fields agree
with the surrogate signals and thus with the underlying physiological processes.

In our application, the static layer with a constant surrogate signal s1 (t) = 0
is required to describe the static components of the X-ray sequence. The respi-
ratory surrogate signal s2 (t) can in principle be acquired by any means, e.g.,
spirometry or respiratory belt. In this work, we derive the respiratory signal
directly from the intensities of the X-ray images using manifold learning. It has
proven to be effective for X-ray fluoroscopy [5]. The advantage for our appli-
cation is that the signal is based on the same images that are used for motion
estimation, thus facilitating the proportionality assumption in Eq. (2).

2.3 Motion and Layer Estimation

To define a tractable optimization problem for joint motion and layer estimation,
we include Eq. (1) and Eq. (2) into an energy formulation

E (L,V) = D (L,V) + λLR (L) + λνR (V) , (3)

where D (L,V) is the data term, R (L) and R (V) are regularization terms for
the layers and motions and λL, λν ∈ IR are their weights. L is the set of all layers
Ll and V is the set of all base motions νl.

The data term penalizes deviations from Eq. (1). Since the image formation
model is only an inaccurate representation of the true X-ray generation process,
robustness to outliers in the data term

D (L,V) =

T∑
t=1

∫
Ω

ψ

(
I (x, t)−

N∑
l=1

Ll (x− vl (x, t))

)
dx (4)



is mandatory, where Ω is the image domain and ψ is a robust penalty function.
We use the Charbonnier penalty ψ (z) =

√
(ε2 + z2) − ε with ε = 0.01 as a

differentiable approximation of the L1-norm.
The regularization term for the layers is designed to favor spatially smooth

layers, while still allowing for edges. Similar to denoising and reconstruction, we
use a differentiable approximation of the isotropic total variation (TV) regular-
ization

R (L) =

N∑
l=1

∫
Ω

ψ (‖∇Ll (x)‖2) dx , (5)

where ∇ = (∂x, ∂y)
T

is the spatial gradient. Preston et al. adapt the TV regular-
ization to the image gradients [9]. In our experience, this does not improve the
results, because Eq. (5) is already edge-preserving, and is much more expensive
to compute, because all images must be warped to t = 1.

A similar spatial smoothness constraint is employed for the motions

R (V) =

N∑
l=1

∫
Ω

ψ

(√
‖∇νxl (x)‖2

2
+ ‖∇νyl (x)‖2

2

)
dx , (6)

where νxl , ν
y
l are the horizontal and vertical motions, respectively. Here, the

robust penalty allows for motion boundaries. In addition, it is computationally
less expensive than regularizing a full 2-D+t motion field for each layer, because
it must be computed only for one point in time. In general, motion estimation
benefits from regularization along the time-domain. However, this is already
covered by the surrogate-driven motion model. In this sense, Eq. (2) is a strong
regularization of the motion field along the surrogate signal.

2.4 Implementation

As the manifold learning method to extract the respiratory signal from the in-
tensities of the entire X-ray image, we use Isomap [5,13], with k = 20 neighbors
to construct the k-nearest-neighbors graph. To reduce noise and the influence of
other motions, a third-order Butterworth low-pass filter with a cut-off frequency
of 1.5 Hz is applied to the surrogate signal retrospectively.

The energy function Eq. (3) is minimized in a coarse-to-fine pyramid. This
speeds up the optimization and avoids local minima. We use a downsampling
factor of 0.5 and choose the number of levels such that the coarsest level has a size
of ∼ 20 pixels in each dimension. The base motions V and layers L are initialized
randomly at the coarsest level. At each level, the energy function is minimized
in an alternation scheme, i.e., minimization w.r.t. V while keeping L fixed, and
then vice versa. This scheme is repeated 10 times on each level. A L-BFGS-B
optimizer with up to 1000 iterations is used in each minimization. It is initialized
with the solution of the previous alternation. The layers are constrained to be
non-negative and bounded above by the image intensity maximum [12]. For non-
integer positions x, bilinear interpolation is used to compute intensities.

Note that vl (x, t) is defined in the time-dependent coordinate system of
I (x, t) in Eq. (2). Intuitively, it would be preferable to model the motion of a



certain structure over time as scaled versions of a base motion by defining it in
the fixed coordinate system of Ll (x). However, this would require the inversion
of vl (x, t) in each optimizer iteration to evaluate Eq. (4), which is very inefficient.

3 Experiments and Results

In the experiments, we evaluate the proposed method (REG-SL) on simulated
and clinical X-ray sequences. The baseline method is a static layer (STAT), i.e.,
no motion. As alternatives, conventional 2-D/2-D registration (REG-2D) and
layered motion estimation without surrogate signals (REG-L) are employed. All
methods optimize the same energy Eq. (3). However, for REG-L and REG-2D,
Eq. (6) is computed for each point in time and the curvature of the motion
fields is regularized over time, with the weight parameter λτ ∈ IR. This reduces
potential bias in the evaluation, because it substitutes the inherent smoothness
of the proposed surrogate-driven motion model. The parameters are empirically
set to λL = 0.05, λν = 0.025, and λτ = 0.001 such that the computed motions
are visually reasonable for all methods in a pilot experiment.

3.1 Simulated Data

In order to densely evaluate the computed motion, simulated X-ray sequences
are created by transforming two layers using known 2-D motion fields. The layers
are rendered using the XCAT phantom [10] with a material-resolved renderer
from CONRAD [6], where each material is assigned to a single layer. The 4-D
XCAT phantom is not used directly, because then no ground truth 2-D motions
would be known. The 2-D motion field of the respiratory layer is created using
Eq. (2), where the base motion ν2 is a thin-plate spline interpolation of manually
annotated point motions. In the end, Gaussian and Laplacian noise with stan-
dard deviation of 1% of the image intensity range is added. The eight simulated
sequences each consist of T = 10 images of 128× 128 pixels with different layers
and motions. An exemplary sequence with its constituents is shown in Figs. 1b
to 1d. The ground truth motion of the respiratory layer is compared to the com-
puted motion using the endpoint error (EE) [2]. Pixels with zero intensity in the
ground-truth layer are excluded due to their unidentifiable motion, see Fig. 1c.

Table 1 shows the results of this experiment. The proposed REG-SL has the
lowest EE of 2.0 mm averaged over all sequences and compensates 48% of the
total motion in the images, which is represented by STAT. REG-2D and REG-L
are only able to slightly decrease the EE compared to STAT. We additionally
estimate the motion using the ground truth respiratory signal in the surrogate-
driven motion model (REG-SL-GT), see Fig. 1a. As the EE is not substantially
reduced further, the chosen method for surrogate signal extraction is validated
for this application. The runtime of the methods, implemented in Python and
C++, was measured on a notebook with a Core i7-3720QM processor. STAT
is of course fastest, because it requires no processing. Among the registration
methods, REG-2D is faster than the others with an average runtime of 33 s,
because it does not need to iterate between layer and motion estimation.
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(a) Surrogate signals (b) Static layer (c) Respiratory layer (d) Image

Fig. 1: Surrogate signals (true - -, estimated –), layers with overlaid motion (↑),
and simulated image of XCAT experiments (best viewed in color).

Table 1: Evaluation of motion estimation methods on simulated data using run-
time and endpoint error (EE) and on clinical data using TRE (mean ± std).

STAT REG-2D REG-L REG-SL REG-SL-GT

Runtime [s] 0.0 33 ± 3.5 136 ± 46 48 ± 6.8 54 ± 18
EE [mm] 3.8 ± 5.0 3.1 ± 3.9 3.5 ± 4.1 2.0 ± 2.5 1.9± 3.0
TRE [mm] 4.6 ± 4.9 3.9 ± 5.2 3.8 ± 4.3 2.2± 3.0 -

3.2 Clinical Data

On clinical X-ray data, quantitative evaluation of dense 2-D motion fields or
layers is challenging due to the absence of ground truth. Therefore, we resort to
measuring the target registration error (TRE) at certain structures of interest.
This has the drawback that the validity of the 2-D motion fields is measured
only sparsely. As the target anatomy, we manually annotate structures that are
known to correspond to respiratory motion, e.g., diaphragm or guidewires. The
TRE is measured as the tracking error mink ‖C(s)− CGT(k)‖2 between each
point s on the computed curve C and the annotated curve CGT in mm on the
detector. This experiment is performed on 6 sequences of in total 818 images with
sizes of 193−1024 pixels and pixel size of 0.18−0.43 mm in each dimension. The
images are downsampled by a multiple of two to ∼ 128 pixels for lower runtime
and memory requirements, but the error is measured in the full resolution.

The results are shown in the last row of Table 1. The total motion of the
annotated structures is 4.6 ± 4.9 mm as represented by STAT. 2-D registration
and layered motion estimation reduce the motion to 3.9 and 3.8 mm, respectively.
For these methods, the extent of the reduction heavily depends on the image
content. If there are few X-ray transparency effects in the region of the annotated
structure, the motion is correctly estimated with REG-2D. The success of REG-
L depends on the computed local minimum of the non-convex energy. REG-SL
has a residual motion of 2.2± 3.0 mm, so 52% of the motion is compensated.

In the sequence of Fig. 2, our REG-SL is superior to the other methods.
Transparency effects of the skin markers and the ribs deteriorate the results of
REG-2D. For REG-L, neither discovered layer is anatomically plausible and thus
the motions are implausible as well. In REG-SL, static structures are suppressed
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Fig. 2: Respiratory layer and motion (Figs. 2c to 2f) between two images (Figs. 2a
and 2b) and TRE (Fig. 2g) on a real X-ray sequence (best viewed in color).

in the respiratory layer, but the diaphragm and some soft tissue is preserved. The
TRE over time in Fig. 2g is most reduced by REG-SL in case of large motion.

4 Conclusion and Outlook

We propose a surrogate-driven motion model for layered motion estimation in
X-ray fluoroscopy. The surrogate signal constrains the ill-posed optimization
problem such that physiologically plausible dense 2-D motion can be estimated
from X-ray images. In general, the method has little requirements. The surrogate
signals can be extracted directly from the images using manifold learning, so no
additional devices or synchronization are necessary. Motion estimation is inde-
pendent of C-arm and table position. It can be used for thoracic or abdominal
sequences, but should cover at least one breathing cycle, such that the manifold
learning gives a useful respiratory signal. A restriction is the linear relationship
between surrogate signal and motion. Nevertheless, its results are superior to
previous approaches in our experiments. The error of 2.2 mm is in a clinically
acceptable scale, e.g., for overlay navigation [4].

In future work, a more complex motion model could relax the linearity as-
sumption, e.g., more surrogate signals per layer or a non-linear dependency be-
tween signal and motion. Another interesting point is to extend the method
for estimating more than two layers. In particular, a layer with cardiac motion
would be beneficial. The runtime is still too long for real-time or interactive
use and should be reduced, e.g., using a GPU implementation. Furthermore,
the usefulness of the computed motion must be validated for a potential clinical
application, since it is only a 2-D approximation of the true 3-D motion.



Acknowledgments. The authors gratefully acknowledge funding of the Erlangen
Graduate School in Advanced Optical Technologies (SAOT) by the German Re-
search Foundation (DFG) in the framework of the German excellence initiative
and by Siemens Healthcare. The concepts and information presented in this
paper are based on research and are not commercially available.

References

1. Auvray, V., Liénard, J., Bouthemy, P.: Multiresolution parametric estimation of
transparent motions and denoising of fluoroscopic images. In: Duncan, J.S., Gerig,
G. (eds.) MICCAI 2005, Part II. LNCS, vol. 3750, pp. 352–360. Springer (2005)

2. Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M.J., Szeliski, R.: A database
and evaluation methodology for optical flow. Int. J. Comput. Vis. 92(1), 1–31
(2011)

3. Black, M.J., Anandan, P.: The robust estimation of multiple motions: Paramet-
ric and piecewise-smooth flow fields. Comput. Vis. Image Underst. 63(1), 75–104
(1996)

4. Brost, A., Liao, R., Strobel, N., Hornegger, J.: Respiratory motion compensation
by model-based catheter tracking during EP procedures. Med. Image Anal. 14(5),
695–706 (2010)

5. Fischer, P., Pohl, T., Hornegger, J.: Real-time respiratory signal extraction from
x-ray sequences using incremental manifold learning. In: ISBI. pp. 915–918. IEEE
(2014)

6. Maier, A., Hofmann, H., Berger, M., Fischer, P., Schwemmer, C., Wu, H., Müller,
K., Hornegger, J., Choi, J.H., Riess, C., Keil, A., Fahrig, R.: CONRAD - a software
framework for cone-beam imaging in radiology. Med. Phys. 40(11), 111914 (2013)

7. Martin, J., McClelland, J., Champion, B., Hawkes, D.J.: Building surrogate-driven
motion models from cone-beam CT via surrogate-correlated optical flow. In: Stoy-
anov, D., Collins, D., Sakuma, I., Abolmaesumi, P., Jannin, P. (eds.) IPCAI. LNCS,
vol. 8498, pp. 61–67. Springer (2014)

8. McClelland, J.R., Hawkes, D.J., Schaeffter, T., King, A.P.: Respiratory motion
models: a review. Med. Image Anal. 17(1), 19–42 (2013)

9. Preston, J., Rottman, C., Cheryauka, A., Anderton, L., Whitaker, R., Joshi, S.:
Multi-layer deformation estimation for fluoroscopic imaging. In: Gee, J.C., Joshi,
S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds.) IPMI. LNCS, vol. 7917, pp. 123–134.
Springer (2013)

10. Segars, W., Mahesh, M., Beck, T., Frey, E., Tsui, B.: Realistic CT simulation using
the 4d XCAT phantom. Med. Phys. 35(8), 3800–3808 (2008)

11. Shizawa, M., Mase, K.: Simultaneous multiple optical flow estimation. In: ICPR.
vol. 1, pp. 274–278. IEEE (1990)

12. Szeliski, R., Avidan, S., Anandan, P.: Layer extraction from multiple images con-
taining reflections and transparency. In: CVPR. vol. 1, pp. 246–253. IEEE (2000)

13. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for
nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

14. Zhu, Y., Prummer, S., Wang, P., Chen, T., Comaniciu, D., Ostermeier, M.: Dy-
namic layer separation for coronary DSA and enhancement in fluoroscopic se-
quences. In: Yang, G.Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.)
MICCAI 2009, Part II. LNCS, vol. 5762, pp. 877–884. Springer (2009)

15. Zhu, Y., Tsin, Y., Sundar, H., Sauer, F.: Image-based respiratory motion com-
pensation for fluoroscopic coronary roadmapping. In: Jiang, T., Navab, N., Pluim,
J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part III. LNCS, vol. 6363, pp. 287–
294. Springer (2010)


