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Abstract—Three-dimensional (3-D) reconstruction of histo-
logical slice sequences offers great benefits in the investigation
of different morphologies. It features very high-resolution
which is still unmatched by in-vivo 3-D imaging modalities,
and tissue staining further enhances visibility and contrast.
One important step during reconstruction is the reversal of
slice deformations introduced during histological slice prepa-
ration, a process also called image unwarping. Most methods
use an external reference, or rely on conservative stopping
criteria during the unwarping optimization to prevent straight-
ening of naturally curved morphology. Our approach shows
that the problem of unwarping is based on the superposition of
low-frequency anatomy and high-frequency errors. We present
an iterative scheme that transfers the ideas of the Gauss-Seidel
method to image stacks to separate the anatomy from the
deformation. In particular, the scheme is universally applicable
without restriction to a specific unwarping method, and uses
no external reference. The deformation artifacts are effectively
reduced in the resulting histology volumes, while the natural
curvature of the anatomy is preserved. The validity of our
method is shown on synthetic data, simulated histology data
using a CT data set and real histology data. In the case of the
simulated histology where the ground truth was known, the
mean Target Registration Error (TRE) between the unwarped
and original volume could be reduced to less than 1 pixel on
average after 6 iterations of our proposed method. 1

Index Terms—3-D Histology, Reconstruction, Registration,
Reference-free, Gauss-Seidel

I. INTRODUCTION

A. Biomedical Motivation

Imaging modalities that are able to directly visualize 3-D
objects, e.g., µ-CTs/MRs, only recently achieve resolution
values of about 0.7 µm. However, they still do not match
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the high resolution of conventional light microscopes,
and lack the possibility to stain structures of interest to
enhance the contrast and thus their visibility. Therefore,
the investigation of histological image sequences to gain
insight into 3-D morphological structures is still a regular
task in biomedical laboratories.

Especially when the spatial relationship between
anatomical structures and their progression has to be
investigated, a significant disadvantage is that the spatial
connectivity of structures is lost during histological slice
preparation. Envisioning a 3-D structure from an image
sequence is challenging, especially for large data sets. In
contrast to that, looking at a 3-D object from different
angles helps to infer spatial relationships very fast. In
addition, the extraction of quantitative values is often
easier and more reliably done using volumetric data.

A possibility to combine the advantages of 3-D imaging
with the staining and high-resolution properties of light
microscopy is to create a 3-D reconstruction of the original
tissue from the histological image sequence. Restoring the
anatomy such that it closely recovers the original in-vivo
tissue sample can tremendously facilitate the perception
of the morphology and spatial relations. As both the
slice preparation and digitizing process introduce artifacts,
however, merely stacking the 2-D images is not an option.
The reconstruction routine – consisting of all processing
steps that are necessary to achieve the reconstruction – is
therefore closely related to the histological slice prepara-
tion process.

B. Histological Slice Preparation and Preprocessing

To generate a sequence of digital histology images,
an extensive procedure is necessary. After extraction, the
tissue is fixed and embedded into a synthetic material.
Depending on the specific synthetic that is used, this
block is then cut into slices, typically with a thickness of
about 0.5− 20µm. The slice thickness is usually chosen
such that the structure of interest varies slowly with
the number of sections, to be able to investigate the
structure morphology. After the slices were placed on an
object plate, the embedding synthetic is removed. Then,
the histological staining is applied, typically a series of
chemical treatments with histological dyes, alcohol and
distilled water at different temperatures. This procedure
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Figure 1: Left: Smooth, undisturbed volume rendering of the hippocampal region showing the pyramidal layer and
dentate gyrus of a T2*-weighted MRI of a mouse brain [1]. Middle: Structures after stacking the rigidly aligned, but
still deformed histological slices [2]. Deformations (red/dashed) within the slice plane show low to moderate curvature,
while the deformation of the anatomy along the stack corresponds to high-frequency errors. Right: Reconstruction
result using our approach. For references regarding color be referred to the web version of our article.

greatly enhances the visibility of the anatomical structures
of interest. Finally the stained slices are viewed under a
microscope, and digitized using a microscope-mounted
camera. Alternatively semi-automatic systems capable of
focusing, capturing and stitching several partial images to
the final image covering the object of interest are used.

Unfortunately, each of the aforementioned steps intro-
duces artifacts which degrade the quality of the resulting
digital images representing the original tissue slice. While,
e.g., tissue shrinking during fixation and embedding is as-
sumed to be small and therefore negligible, other artifacts
have to be addressed to ensure that the 3-D reconstruction
result is as similar to the original in-vivo tissue sample as
possible. Therefore, most reconstruction methods include
a preprocessing stage, linear alignment as well as a strategy
to reverse the slice deformations.

Consequently, the first step is to normalize the slice in-
tensities. Inconsistent lighting conditions during digitizing
lead to an intensity bias on every image. They are usually
brighter in the center region than at the borders of the im-
age, which has to be corrected [3], [4]. Varying conditions
during the staining procedure lead to differently distinct
colorings of the tissue slices, such that the same tissue
class shows a different color in different images. Different
procedures were suggested to normalize these intensities
[5], [6], [7].

The most severe artifacts, however, stem from the cut-
ting procedure, as it introduces tissue deformations - or
warps - within the slice plane, and generally destroys the
spatial relationship between slices and thus the connec-
tivity of the original anatomy.

Therefore, one crucial step in reconstruction is the
global alignment of the slices. Its task is to rigidly trans-
form the sections such that translational offset and rota-
tion differences between slice images are compensated.
This will restore the global true shape of the original

tissue sample, which is a prerequisite for an accurate
reconstruction. Global shape here means the large-scale
overall form of the structure of interest, not accounting for
the smaller-scale distortions still contained in the images.
In the absence of ground-truth reference information,
there is unfortunately no guarantee that the calculated
global shape will represent the actual shape.

Still, there are different approaches how to achieve good
results. First, the actual structure of interest is quite often
embedded in surrounding tissue, which can regularize
the rigid registration of slices such that the global shape
corresponds to the real tissue shape without the need of
further correction. A second possibility is the use of an
atlas image as external reference, which might be helpful
to recover a realistic global shape. Sometimes, fiducial
markers were used for alignment. Finally, due to the lower
number of degrees of freedom in rigid registration as
compared to non-rigid registration, manual refinement
of an automatically created rigidly registered volume is
also an option. You can find more information about this
crucial step in the references of section I-D

Our article focuses on a strategy for reversal of slice
deformations, also called image unwarping. We therefore
assume for the sake of this article that all previous steps,
i.e., preprocessing and linear alignment, have already been
taken. For more detailed information about these steps,
also refer to [8], [9], [10], [11] and references therein.

C. Problem Definition

To justify the approach we are taking for slice unwarp-
ing, one has to take a closer look at the problem at hand.
When cutting the tissue into slices, section thickness is
chosen such that the structure of interest varies slowly with
the number of sections. If done otherwise, the shape of the
structure might be undersampled, and any investigation
of the morphology obsolete. The natural morphological
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structure along the stack is therefore comparable to a
function with low or moderate spatial frequency, sampled
at the slice locations.

In addition, depending on the robustness of the tissue
and diligence during the preparation process, the slice
preparation leads to artifacts such as tears, foldings and
gaps corresponding to sharp local deformations. While we
included an elaboration of the impact and treatment of
these defects later in this article, the focus of our work are
the more global, smooth in-plane deformations that are
inevitably present in the final tissue slices.

As these smooth deformations are different for each
slice, merely stacking the rigidly registered slice im-
ages leads to high-frequency disturbances of the original
anatomy along the stack. They present the main reason
linearly aligned reconstructions appear jagged and discon-
tinuous.

Along the stack, the slowly oscillating “anatomic func-
tion” is basically superimposed with the highly oscillat-
ing disturbances due to the slice deformations. Figure
1 visually illustrates this fact. The actual problem one
has to solve in histological image unwarping is then to
eliminate the high-frequency components from the defor-
mation while preserving the low frequency components
representing the natural anatomy. This has to be achieved
by unwarping the individual histology images, emulating
the smooth in-plane deformation imposed during cutting.

D. Related Work

3-D reconstruction of slice images has a long tradi-
tion, going back as far as 1883 [12]. The invention and
steady advancement of computer technology enabled the
development of more and more sophisticated methods
for spatial restoration of disassembled anatomical struc-
tures. For an extensive review of the history and different
methodologies developed for 3-D histological image re-
construction see [8] and [13].

Many techniques rely on prior knowledge about the
undeformed, original structure to guide the reconstruc-
tions. How this knowledge is incorporated differs, and in-
cludes mostly fiducial markers (e.g., in [14], [15]), blockface
photographs (e.g., [16], [17]), or volume images acquired
using 3-D imaging modalities (e.g., [18], [19]). While ex-
ternal knowledge undeniably helps to restore the original
shape and connectivity, it also has to be stated that this
information is often not available. The reasons for this are
manifold.

Blockface photographs require the acquisition of an im-
age of the unstained surface of the embedded tissue block.
On the one hand this is tedious, as this has to be done
for each individual slice, interrupting the regular workflow.
On the other hand, this is only possible for certain types
of staining, as it has to be applied on-the-fly on each
individual slice after one slice is cut from the block. Prior
acquisition of a volume image, e.g., from a µ-CT/µ-MR, is
often not possible as the devices are not available, and
the resolution is mostly still too small to visualize the

relevant structures. Apart from that, histological staining
might be necessary to make the structures of interest
visible in the first place, which of course is not possible in
this case. As stated above, while the usage of an atlas as
external reference may be sufficient to recover a realistic
global shape, it certainly would not be appropriate for
performing a non-rigid correction. Last, there is a large
pool of highly valuable historical slice sequences, where
naturally a reference is not available. Any reconstruction
method that aims to reconstruct one of these sequences
has to be able to forgo such a reference.

There have been some attempts to achieve an anatom-
ically sound reconstruction without the use of an ex-
ternal reference. Braumann et al. [20] use a series of
three registration steps for reconstruction. After initial rigid
alignment, the slices are registered using a polynomial
non-linear registration, and later the alignment is refined
using a curvature-based registration approach. Ju et al.
[2] propose to calculate pairwise warps between adjacent,
bilaterally filtered slices, and the final warp for an image
is then given by a binomially weighted sum of the warps
from that image to images in a certain neighborhood of
size d . Wirtz et al. [21] optimize an objective function mea-
suring the elastic potential of the deformation field, which
is extended for image stacks. Similarly, Schmitt et al. [8]
achieve global alignment using a principal axes transform
and optimizing rotation and shearing. This is followed
by an elastic non-rigid registration routine. Chakravarty
et al. developed two different approaches. In [22] they
used slice-to-slice non-linear registration, minimizing the
mean distance between segmented contours. Their second
approach [23] extends their previous work, and similarly to
Ju et al. [2], uses an average deformation field calculated
from the deformations to the four predecessing and four
successing slices. Pitiot et al. [24], [25] use block-matching
to estimate a displacement field between neighboring
images. They then use regularization with adaptable rigid-
ity, incorporating also the geometry and topology of the
images. The image stack is processed starting with a
manually chosen reference slice. Bağci et al. [26] propose
to map the histological images into a feature space called
edgeness space, and use elastic registration of the slices in
this feature space, starting with an automatically chosen
best reference slice. Scheibe et al. [27] use non-rigid
registration based on an intensity similarity measure and
regularization of the deformation based on the optical
flow. Slices are registered to their respective predecessor
in a forward-backward iteration scheme. Finally, Cifor et
al. [13] propose a smoothness-driven method, calculating a
min-max curvature flow restricted to 2-D planes. From the
flow, arbitrarily flexible transformations can be calculated.

E. Contribution

First, we define the goal of histological image unwarping
to separate superimposed functions of different frequen-
cies, as stated in section I-C. We introduce a non-rigid
registration scheme that transfers the iterative Gauss-
Seidel method to images. That way we can reverse the
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artificially introduced slice deformations and restore the
smooth spatial connectivity of the tissue morphology,
while preserving the natural curvature of structures. In
particular, we achieve this without the use of an external
reference. While most approaches dealing with histological
image unwarping present a method for the unwarping
method itself, i.e., emulating the deformation, we instead
focus on how this method has to be applied on an image
stack to achieve the desired result. The user is therefore
not bound to a specific type of non-rigid registration, but
instead is able to use whatever method works best for the
data at hand.

F. Outline

The article is organized as follows. In section II, we
describe the employed methods we use for reference-free
histological image reconstruction. First, we explain the
non-rigid, non-parametric image registration method we
use for image unwarping in Section II-A. We then give a
short explanation of the iteration scheme and convergence
behavior of the Gauss-Seidel method, which our recon-
struction scheme is based on, in Section II-B1. In Section
II-C, we transfer the previously described mathematical
concepts into the domain of images and image registra-
tion, and finalize the section with an algorithmic overview
of our approach. Section III describes the data and ex-
periments that were used to evaluate our method, and
shows qualitative and quantitative results on simulated
and real data. The article is concluded with a summary
and discussion in section IV.

II. METHODS

The unwarping strategy of an entire histological image
stack requires the reversal of the artificial deformation of
each individual section. This process is guided by several
assumptions and requirements.

As stated before, one prerequisite for a truthful recon-
struction is that the global shape of the original tissue was
correctly recovered in the initial linear alignment step. A
failed linear alignment of the slices, e.g., a global rotation
or tilt, corresponds to a low frequency error. Since our
method is specifically targeted at high frequency artifacts,
it will not be able to restore errors of the global shape.

Assumptions regarding the slice deformations itself are
that they are smooth in accordance with the elasticity
of organic material, are restricted to deformations within
the plane, and deformations of one slice are independent
from deformations of neighboring slices. An additional
requirement is that the connectivity and run of anatomical
structures along the stack is assumed to be smooth after
reversing the deformation of each individual slice. And
last, the natural curvature of the anatomy along the stack
has to be preserved.

While the assumptions about the nature of the deforma-
tions are mostly relevant for unwarping individual slices,
the requirements of smooth progression of structures and
preservation of the natural curvature demand to take

into account the neighborhood of the sections that are
currently processed, or even the entire stack of images, and
therefore require global optimization strategies. In fact, a
common and well-known problem in histological image
reconstruction is known as aperture or banana problem
[8], [28], [2], [26]. It stems from the fact that individual
treatment of the slices according to the first and second
assumption – i.e., reversing the deformation within the
slice plane such that the connectivity of structures along
the stack is restored and smooth – often lead to results
that violate the third criterion, basically straightening the
natural curvature. Note that this effect can also occur
during the linear alignment of the slices, which is why
this step has to be performed with great care. Therefore,
it is important to ensure that all assumptions and require-
ments are simultaneously fulfilled, as this is the only way
to achieve an anatomically correct reconstruction of the
entire histological image sequence.

A. In-plane Deformations

The most challenging part in histological image recon-
struction is the reversal of the tissue slice deformations.
Beside the cutting direction during slice preparation –
and therefore a possible bias of the deformation in one
direction – the individual deformations of slices are con-
sidered to be independent of each other. A commonly used
strategy to reverse these deformations is 2-D non-rigid
registration. It can be used to compensate motion between
images such that corresponding content is mapped onto
each other. The types of transforms, and the optimization
strategies that are used, however, differ significantly, and
are often tailored to the data at hand. Similar to [8],
we will employ a non-rigid, non-parametric registration
formulation in a custom implementation[29].

Mathematically, the aim of a 2-D image registration is to
find a mapping u :R2→R2 between a reference image R
and a template image T , such that the deformed template
image Tu(x) = T (x−u(x)) is similar to R . The similarity of
the images is measured by a distance measure D, which
is minimal if the similarity is maximal. Additionally we
require the deformation u to be constrained in some
sense, which in our case means we want it to be smooth
according to the elastic deformation of the tissue.

The smoothness is measured by the regularizer R . All
in all, we thus want to solve

u∗ = argmin
u

D(R , Tu) +αR(u) :=NPREG (R , T ) , (1)

where α is a weighting parameter that decides whether
we prefer a better match or a smoother deformation.
Throughout this article, NPREG is used as an abbreviation
for non-rigid, non-parametric image registration between
images R and T .

As we only have to deal with mono-modal registration
problems in this work, we employ the well known sum-
of-squared differences (SSD) as distance measure. It is
defined as

DSSD(R , Tu) =
1

|Ω |
ˆ
Ω

(R (x)−Tu(x))
2dx ,
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where Ω is the computational domain of the registration
and |Ω| its area. As regularizer we employ the curvature
regularization, popularized in [30]:

RCURV(u) =
1

|Ω |
ˆ
Ω

‖∆u(x) ‖2
2 dx .

The curvature regularizer minimizes the norm of the
second order derivatives of the deformation field u, given
by the Laplace operator ∆. We choose the curvature regu-
larizer, because it does not penalize affine transformations.
This can be an advantage in the context of histological
image unwarping, as the non-linear transform between
reference and template images might additionally contain
an affine component. For a more in-depth discussion
please refer to [31], [29] and [32].

This non-rigid registration method gives us a means to
generate a deformation field that is in general able to
emulate (or therefore reverse) the smooth global defor-
mations that were imposed on the slices during cutting.
Although the individual slice deformations are deemed
independent from each other, as we do not have an
external reference, we need to take the neighborhood into
account. The specific deformations can therefore only be
calculated when the anatomical smoothness along the
stack is considered.

B. Elimination of High-Frequency Errors

As was shown in Figure 1, the deformations within the
slice plane lead to high-frequency disturbances of the orig-
inally smooth structures along the stack. Mathematically,
high frequencies correspond to high curvature, i.e., large
values for the second derivative of a function. As stated in
section I-C, the problem to solve is therefore to eliminate
high-curvature components from a function where low
and high curvature components are superimposed. To
reverse this, our reconstruction scheme is based on a
Gauss-Seidel iteration scheme. We take advantage of the
smoothing property of Gauss-Seidel to eliminate the high-
frequency deformations of our digital histology volume
to restore the original, smooth progression and curvature
of the in-vivo anatomical structures. We will first explain
the idea and properties we exploit on a fictional 1-D
model problem, introducing the iterative Jacobi, weighted
Jacobi and Gauss-Seidel methods, and later reformulate
the equations in terms of images and deformation fields.

1) Model Problem: In the following section we will
demonstrate the effect of the employed iterative solu-
tion schemes on different frequency components of a
given function f when these methods are applied. For
this purpose, we assume for the moment that the ideal
function f ? : [0, 1]→ R we would like to restore given an
initial function f has a minimal absolute curvature. In the
ideal case, this corresponds to a second-order differential
equation

f ?′′ (x ) = 0 0< x < 1 (2)

on a domain Ω ∈ (0, 1). For simplicity we assume Dirichlet
boundary conditions, i.e., boundary values that are known
and therefore fixed,

f (0) = f (1) = 0 .

The function domain Ω is first discretized into m subin-
tervals of uniform width h = 1/m , resulting in m + 1 grid
points xi = i ·h , i := {i ∈N |0≤ i ≤m}. At each of the m−1
interior grid points xi , the second derivative of f can be
expressed by the central-difference approximation

f ′′ (xi ) =
f (xi−1)−2 f (xi )+ f (xi+1)

h 2

!= 0 . (3)

Eliminating h 2 by multiplication, we solve each i -th equa-
tion for the i -th unknown. Every discretized function value
can therefore be expressed as linear combination of its
neighbors

f (xi ) =
1

2

�
f (xi−1) + f (xi+1)

�
, (4)

and we can generate a vector of discrete values approxi-
mating our function,

f =
�
f (x1), f (x2), . . . , f (xm−1)

�T
=
�
f1, f2, . . . , fm−1

�T
.

Starting with the discretized values f (0)i of given function
f , we can iteratively update these values using Eq. (4),
which after t iterations are given by

f (t )i =
1

2

�
f (t−1)

i−1 + f (t−1)
i+1

�
. (5)

This can be interpreted such that for the current iteration
neighboring values are assumed to be correct, and are
used to calculate a better approximation for the grid point
in between. All values of f are either simultaneously or
subsequently updated, and the next iteration is started.
This iterative scheme is a special form of the well-known
Jacobi method [33].

A popular modification of this scheme is to use the up-
dated value of Eq. (5) just as intermediate value f (t )i , i n t e r m .

The final update value f (t )i is then a weighted combination
of the old function value f (t−1)

i and this intermediate value,
i.e.,

f (t )i = (1−ω) f (t−1)
i +ω f (t )i , i n t e r m . (6)

Adjusting the weight ω can lead to faster or slower conver-
gence, and can be tailored to the specific type of problem
at hand.

To investigate the convergence and smoothing prop-
erties, it is useful to look into the methods in matrix
notation. Multiplied with −1 for optimization reasons, Eq.
(3) is equivalent to a system of linear equations




2 −1 0 · · ·
−1 2 −1

0
...

...
−1 2







f1

f2
...

fm−1


 =




0
0
...
0




Af= 0.

The symmetric, positive definite Matrix A is decomposed
into its components - diagonal matrix D, lower and upper
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triangular matrices L and U - and the iteration scheme of
the Jacobi method can be rewritten as

f(t ) =D−1 (L+U)︸ ︷︷ ︸
R

f(t−1)

with iteration matrix R. For the weighted Jacobi method
(Eq. 6), the iteration matrix changes to

Rω = (1−ω)I+ωR .

2) Smoothing and convergence: As the iterative Jacobi
and Gauss-Seidel methods were invented in the early 19th
century, their convergence and smoothing properties are
well understood, e.g., compare [34] and references therein.
Therefore we will only provide a brief overview about the
main parts of the theory related to our problem.

In general, the remaining error of our original model
problem (2) after t iterations is defined as the difference
between the ground-truth solution f? and the current
approximation f(t )

e= f?− f(t ).

The iteration scheme says that a new approximation is
given by

f(1) =Rf(0).

The real solution f? is a fixed point of the iteration process,
i.e., f? = Rf?, which means that after convergence, further
iterations do not change the solution anymore. The error
of the iteration scheme after the first iteration is therefore
given by

e(1) =Re(0),

and after t iterations

e(t ) =Rt e(0). (7)

Note that the superscript t without brackets denotes an
exponent rather than just indicating the iteration number,
which is given in brackets.

Using, e.g., the L2 vector and matrix norms, one can
show that the error is bound by

‖e(t )‖2 ≤ ‖R‖t
2 ‖e(0)‖2.

The method will converge for lim
t→∞Rt = 0, which is the case

if and only if the spectral radius of the matrix

ρ (R) := max
1≤k≤m−1

|λk (R) |< 1,

that is, if the largest eigenvalue of the iteration matrix
is smaller than 1. The eigenvalues of the Jacobi iteration
matrix R and weighted Jacobi method Rω are given by [34]

λk (R) = 1−2 sin2
�

kπ

2m

�
,

λk (Rω) = 1−2ωsin2
�

kπ

2m

�
,

for 1 ≤ k ≤ m − 1, and the k corresponding eigenvectors
can be given by their j -th components [35]

wk , j = sin
�

j kπ

m

�
, 1≤ k ≤m −1, 0≤ j ≤m .

6
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Figure 2: Initial guesses, corresponding to the initial er-
rors, are functions of different frequencies (given by wave
number k ). Plotted is the number of iterations required
to reduce the error by a factor of at least 100 for a model
problem with m = 64. For the weighted Jacobi and Gauss-
Seidel method, high frequencies (k ≥ m

2 ) are reduced
rapidly, while low frequencies need a considerably larger
number of iterations to be reduced by the same factor.
Adapted from [34].

for 1 ≤ k ≤ m − 1, and the k corresponding eigenvectors
can be given by their j -th components [35]

wk , j = sin
�

j kπ

m

�
, 1≤ k ≤m −1, 0≤ j ≤m .

The eigenvectors therefore simply correspond to different
frequencies (or modes), depending on the so-called wave
number k , which indicates the number of half-sine waves
the eigenvectors consist of over the m +1 subintervals.

The error of our model problem can be expressed as
weighted linear combination of these eigenvectors,

e(0) =
m−1∑
k=1

ck wk ,

with weights ck ∈R, and using Eq. 7, it can be rearranged
to see that after t iterations, the error is given by

e(t ) =
m−1∑
k=1

ck (λk )
t wk .

The frequency component in the error given by wk is
therefore reduced by a factor of (λk )

t after t iterations,
and the smaller the eigenvalue, the faster this process is.
Of interest here is especially the weighted Jacobi method.
The proper choice of weight ω guarantees optimal conver-
gence, and it can be shown that the ideal weight for that
purpose is ω= 2

3 [34]. Then, about half of the eigenvalues –
those corresponding to the high-frequency wave numbers
k ≥ m

2 – are of low magnitude. These high frequencies
are therefore reduced rapidly, while lower frequencies are
damped slowly, cmp. also Fig. 2.

Figure 2: Initial guesses, corresponding to the initial er-
rors, are functions of different frequencies (given by wave
number k ). Plotted is the number of iterations required
to reduce the error by a factor of at least 100 for a model
problem with m = 64. For the weighted Jacobi and Gauss-
Seidel method, high frequencies (k ≥ m

2 ) are reduced
rapidly, while low frequencies need a considerably larger
number of iterations to be reduced by the same factor.
Adapted from [34].

The eigenvectors therefore simply correspond to different
frequencies (or modes), depending on the so-called wave
number k , which indicates the number of half-sine waves
the eigenvectors consist of over the m +1 subintervals.

The error of our model problem can be expressed as
weighted linear combination of these eigenvectors,

e(0) =
m−1∑
k=1

ck wk ,

with weights ck ∈R, and using Eq. 7, it can be rearranged
to see that after t iterations, the error is given by

e(t ) =
m−1∑
k=1

ck (λk )
t wk .

The frequency component in the error given by wk is
therefore reduced by a factor of (λk )

t after t iterations,
and the smaller the eigenvalue, the faster this process is.
Of interest here is especially the weighted Jacobi method.
The proper choice of weight ω guarantees optimal conver-
gence, and it can be shown that the ideal weight for that
purpose is ω= 2

3 [34]. Then, about half of the eigenvalues –
those corresponding to the high-frequency wave numbers
k ≥ m

2 – are of low magnitude. These high frequencies
are therefore reduced rapidly, while lower frequencies are
damped slowly, cmp. also Fig. 2.

3) 1-D Gauss-Seidel Method: The Gauss-Seidel method
differs from the Jacobi scheme outlined above in Eq. 5 such
that it uses the already updated function value f (t )i−1 instead
of f (t−1)

i−1 . The resulting method is called Gauss-Seidel
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Figure 3: Evolution of functions when applying the Gauss-
Seidel method on the 1-D model problem. Initial guesses
consisted of functions of different frequencies correspond-
ing to wave number k = 10 (top row) and superimposed
frequencies with wave number k1 = 4, k2 = 20 (bottom
row). The evolution of the functions is shown for iterations
5, 10 and 30.

3) 1-D Gauss-Seidel Method: The Gauss-Seidel method
differs from the Jacobi scheme outlined above in Eq. 5 such
that it uses the already updated function value f (t )i−1 instead
of f (t−1)

i−1 . The resulting method is called Gauss-Seidel
method, and the update scheme is modified accordingly
to

f (t )i =
1

2

�
f (t )i−1+ f (t−1)

i+1

�
, (8)

and in matrix notation

f(t ) = (D−L)−1 U︸ ︷︷ ︸
RG

f(t−1).

As outlined in [35], the eigenvalues and eigenvectors
change to

λk (RG ) = cos2
�

kπ

m

�
, 1≤ k ≤m −1

and

wk , j = [λk (RG )]
j
2 sin

�
j kπ

m

�
=
�
cos

�
kπ

m

�� j

sin
�

j kπ

m

�
.

Although different frequencies are mixed here, the general
property that smooth modes are damped slowly, while
the high-frequency modes are eliminated rapidly remains
unchanged for the Gauss-Seidel method [34]. This is also
demonstrated in Fig. 2, where the Jacobi, weighted Jacobi
(for the optimal weight w = 2

3 ) and the Gauss-Seidel
method were applied to functions of different frequencies,
defined by wave number k . Shown is the number of
iterations that are needed to reduce the error by a factor
of at least 100.

C. Reformulation of Gauss-Seidel for Image Stacks

First, it is important to note again that – unlike assumed
for the model problem 2 – it is not our goal to minimize
the curvature such that f ” (x ) = 0. This would corre-
spond to eliminating any curvature of structures in our
anatomical volume. Instead, we merely use the property of
Gauss-Seidel to degrade high-frequency variances very fast
while mostly preserving low frequencies to our advantage.
Furthermore, applying the Gauss-Seidel method on image
sequences requires some adjustments of the operations
and the notation. A side-by-side view comparing the op-
erations used for the 1-D model problem and as used in
the context of image sequences is depicted in Fig. 4.

1) Transfer of properties and operations to image se-
quences: The discrete function values fi are from now
on replaced by the histological images Ii . As stated
above, minimizing the curvature now means that the
high-frequency disturbances perpendicular to the slice
planes should be eliminated, while preserving the lower
frequency progression of the anatomical structures along
the stack. More important, however, is that the difference
or offset di , j between function values - which in the 1-D
case could easily be calculated by subtraction of neighbor-
ing function values - has to be defined for images. This
requires more in-depth discussion, as the application of
the subtraction operator to digital images imposes certain
constraints.

The offset di , j modifies a function value f j such that
it is most similar (or equal) to another function value
fi . For our histology images, this offset is defined as the
deformation field u(x , y ) = u (x) as defined in section II-A,
relocating the pixels of one image I j such that it is most
similar to another image Ii , Ii = I j (x−u (x)) =: I j ◦ u. In
contrast to the 1-D real case, however, where correcting a
function value by the offset lets it assume an exactly cal-
culated value, a real image transformed by a deformation
field will never exactly look like the image it was registered
to. This is because the deformation is restricted such that
it mimics the deformations that are imposed on the tissue
slices during cutting.

2) Iteration scheme: To express the Gauss-Seidel itera-
tive update scheme in Eq. 8 such that it can be transferred
to images and deformation fields, we expand and reformu-
late it,

f (t )i =
1

2

�
f (t )i−1+ f (t−1)

i+1

�

=
1

2

�
f (t )i−1+ f (t )i−1− f (t )i−1+ f (t−1)

i+1

�

=
1

2


 f (t )i−1+ f (t )i−1+

�
f (t−1)

i+1 − f (t )i−1

�
︸ ︷︷ ︸

:=di−1,i+1




=
1

2

�
2 · f (t )i−1+di−1,i+1

�

= f (t )i−1+
1

2
di−1,i+1, (9)

Figure 3: Evolution of functions when applying the Gauss-
Seidel method on the 1-D model problem. Initial guesses
consisted of functions of different frequencies correspond-
ing to wave number k = 10 (top row) and superimposed
frequencies with wave number k1 = 4, k2 = 20 (bottom
row). The evolution of the functions is shown for iterations
5, 10 and 30.
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Although different frequencies are mixed here, the general
property that smooth modes are damped slowly, while
the high-frequency modes are eliminated rapidly remains
unchanged for the Gauss-Seidel method [34]. This is also
demonstrated in Fig. 2, where the Jacobi, weighted Jacobi
(for the optimal weight w = 2

3 ) and the Gauss-Seidel
method were applied to functions of different frequencies,
defined by wave number k . Shown is the number of
iterations that are needed to reduce the error by a factor
of at least 100.
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First, it is important to note again that – unlike assumed
for the model problem 2 – it is not our goal to minimize
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spond to eliminating any curvature of structures in our
anatomical volume. Instead, we merely use the property of
Gauss-Seidel to degrade high-frequency variances very fast
while mostly preserving low frequencies to our advantage.
Furthermore, applying the Gauss-Seidel method on image
sequences requires some adjustments of the operations
and the notation. A side-by-side view comparing the op-
erations used for the 1-D model problem and as used in
the context of image sequences is depicted in Fig. 4.

1) Transfer of properties and operations to image
sequences: The discrete function values fi are from now
on replaced by the histological images Ii . As stated
above, minimizing the curvature now means that the
high-frequency disturbances perpendicular to the slice
planes should be eliminated, while preserving the lower
frequency progression of the anatomical structures along
the stack. More important, however, is that the difference
or offset di , j between function values - which in the
1-D case could easily be calculated by subtraction of
neighboring function values - has to be defined for
images. This requires more in-depth discussion, as the
application of the subtraction operator to digital images
imposes certain constraints.

The offset di , j modifies a function value f j such that
it is most similar (or equal) to another function value
fi . For our histology images, this offset is defined as the
deformation field u(x , y ) = u (x) as defined in section II-A,
relocating the pixels of one image I j such that it is most
similar to another image Ii , Ii = I j (x−u (x)) =: I j ◦ u. In
contrast to the 1-D real case, however, where correcting a
function value by the offset lets it assume an exactly cal-
culated value, a real image transformed by a deformation
field will never exactly look like the image it was registered
to. This is because the deformation is restricted such that
it mimics the deformations that are imposed on the tissue
slices during cutting.

2) Iteration scheme: To express the Gauss-Seidel itera-
tive update scheme in Eq. 8 such that it can be transferred
to images and deformation fields, we expand and reformu-
late it,

f (t )i =
1

2
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f (t )i−1+ f (t−1)

i+1
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=
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where di , j denotes the difference between the current best
approximations of the function values fi and f j , which
in R1 corresponds to a simple subtraction di , j = f j − fi .
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Figure 4: Comparison of corresponding components and
operations for 1-D model problem (left column) and image
sequence (right column) when the Gauss-Seidel method
is applied. Row 1, Input: in case of the model problem a
sequence of discretized function values fi ∈R1, and in our
case an image sequence Ii ∈ Ru×v . Row 2, difference di j

between two input elements: calculated by subtraction in
the model problem. For images, the element transforming
one image into the other image – corresponding to the
difference – is given by the deformation field u i j cal-
culated using non-rigid registration. Row 3, application
of difference di j : by simple addition in fi ∈ R1, while a
deformation field to transform image Ii to image I j is
applied via resampling. Row 4, Gauss-Seidel update: for
the model problem achieved by relocating the current
value to the midpoint between its neighbors (by adding
half the difference between these neighbors). In our case,
an image is updated by transforming it into the mean
shape of its neighbors, which first requires the creation
of an interpolated intermediate image Îz .

where di , j denotes the difference between the current best
approximations of the function values fi and f j , which
in R1 corresponds to a simple subtraction di , j = f j − fi .
The current function value f (t )i is given by the previous
function value, plus half the distance from that to the
following function value, i.e., simple linear interpolation.

Equation (9) basically says that the new updated value
is given by the preceding value, plus half the difference
between the preceding and succeeding value. In terms of
images and deformation fields, this update is equivalent to
changing an image by half the deformation transforming
the preceding image to the succeeding image, please refer
also to Fig. 4.

Therefore, the Gauss-Seidel update formula as applied
to images is given by

I (t )z = I (t )z−1 ◦
�

1

2
·uz−1,z+1

�
(10)

Here, Iz (x , y ) =: Iz is the digital image at position z of
the image sequence. As detailed above, the difference
uz−1,z+1

�
x , y

�
=: uz−1,z+1 – effectively the corresponding

concept to the difference di , j of the model problem – is
defined as the deformation field that transforms image
I (t−1)

z+1 into image I (t )z−1, and is obtained using non-rigid
registration between these two images. Unfortunately this
would discard any tissue information that was originally
contained in slice Iz which is currently updated. Therefore
another adjustment has to be made to ensure that all
anatomical information that is contained in the slice
images is used for reconstruction. The t th approximation
of image Iz is not given by merely deforming the previous
image, as indicated in Eq. (10), but instead this approx-
imation is used as interpolated intermediate image Îz

(t )
,

as described in [36]. This intermediate image is then used
as reference, to which the original histology image is non-
rigidly registered. In this way, the anatomy contained in
the original slice image Iz is preserved, but deformed to
match the interpolated image calculated by Gauss-Seidel
iteration in Eq. (10).

The iteration scheme is therefore modified to

Îz = I (t )z−1 ◦
�

1

2
·uz−1,z+1

�
(11)

with Îz
(t )

indicating the artificial, interpolated image using
the neighboring images of the t -th iteration, and the actual
new image at position z is given by

I (t )z = I (t−1)
z ◦uẑ ,z (12)

where uẑ ,z is the deformation field between the original
image at position z of iteration t −1 and the interpolated
image Îz .

3) Boundary conditions: In general, boundary condi-
tions specify the values or the behavior of the solution
to a (partial) differential equation at the boundaries of
the domain. Two of the most commonly used types of
boundary conditions are Dirichlet boundary conditions,
which define specific function values of the solution at

Figure 4: Comparison of corresponding components and
operations for 1-D model problem (left column) and image
sequence (right column) when the Gauss-Seidel method
is applied. Row 1, Input: in case of the model problem a
sequence of discretized function values fi ∈R1, and in our
case an image sequence Ii ∈ Ru×v . Row 2, difference di j

between two input elements: calculated by subtraction in
the model problem. For images, the element transforming
one image into the other image – corresponding to the
difference – is given by the deformation field u i j cal-
culated using non-rigid registration. Row 3, application
of difference di j : by simple addition in fi ∈ R1, while a
deformation field to transform image Ii to image I j is
applied via resampling. Row 4, Gauss-Seidel update: for
the model problem achieved by relocating the current
value to the midpoint between its neighbors (by adding
half the difference between these neighbors). In our case,
an image is updated by transforming it into the mean
shape of its neighbors, which first requires the creation
of an interpolated intermediate image Îz .

The current function value f (t )i is given by the previous
function value, plus half the distance from that to the
following function value, i.e., simple linear interpolation.

Equation (9) basically says that the new updated value
is given by the preceding value, plus half the difference

between the preceding and succeeding value. In terms of
images and deformation fields, this update is equivalent to
changing an image by half the deformation transforming
the preceding image to the succeeding image, please refer
also to Fig. 4.

Therefore, the Gauss-Seidel update formula as applied
to images is given by

I (t )z = I (t )z−1 ◦
�

1

2
·uz−1,z+1

�
(10)

Here, Iz (x , y ) =: Iz is the digital image at position z of
the image sequence. As detailed above, the difference
uz−1,z+1

�
x , y

�
=: uz−1,z+1 – effectively the corresponding

concept to the difference di , j of the model problem – is
defined as the deformation field that transforms image
I (t−1)

z+1 into image I (t )z−1, and is obtained using non-rigid
registration between these two images. Unfortunately this
would discard any tissue information that was originally
contained in slice Iz which is currently updated. Therefore
another adjustment has to be made to ensure that all
anatomical information that is contained in the slice
images is used for reconstruction. The t -th approximation
of image Iz is not given by merely deforming the previous
image, as indicated in Eq. (10), but instead this approx-
imation is used as interpolated intermediate image Îz

(t )
,

as described in [36]. This intermediate image is then used
as reference, to which the original histology image is non-
rigidly registered. In this way, the anatomy contained in
the original slice image Iz is preserved, but deformed to
match the interpolated image calculated by Gauss-Seidel
iteration in Eq. (10).

The iteration scheme is therefore modified to

Îz = I (t )z−1 ◦
�

1

2
·uz−1,z+1

�
(11)

with Îz
(t )

indicating the artificial, interpolated image using
the neighboring images of the t -th iteration, and the actual
new image at position z is given by

I (t )z = I (t−1)
z ◦uẑ ,z (12)

where uẑ ,z is the deformation field between the original
image at position z of iteration t −1 and the interpolated
image Îz .

3) Boundary conditions: In general, boundary condi-
tions specify the values or the behavior of the solution
to a (partial) differential equation at the boundaries of
the domain. Two of the most commonly used types of
boundary conditions are Dirichlet boundary conditions,
which define specific function values of the solution at
the boundary, or Neumann boundary conditions, impos-
ing constraints on the derivative of the function at the
boundary. In both cases, these values or derivatives are
known in advance.

In our case, the function values at the boundary of our
domain, i.e., the corrected and unwarped images at the
beginning and the end of the image stack, are unknown. As
we do not use any prior information via reference volumes,
we also cannot reliably assume any specific behavior of
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the “anatomic function” at these positions. In addition,
the images at the boundaries of the image stack also have
to be unwarped during the optimization routine.

To achieve this, our domain is enlarged at both ends
by one image respectively. Which kind of image is used
depends on the boundary condition one wants to assume.

Dirichlet boundary conditions correspond to copying
one image - e.g., the original histological image prior to
unwarping - as fixed boundary value. This works well
if it is known that the images at the borders do not
show strong deformations. After t iterations, the prob-
lem domain then consists of the updated images and
the original boundary images as boundary conditions,
Ω(t ) :=

�
I (0)1 =: I (t )0 , I (t )1 , I (t )2 , . . . , I (t )Z , I (t )Z+1 := I (0)Z

�
. However, a

mostly artifact-free image can generally not be guaranteed,
and in extreme cases such an outlier could adversely affect
a significant portion at the end of the stack.

To at least dampen the effect of such a possible outlier
slice, we choose to use Neumann boundary conditions.
Here, the derivative of the function is set to zero. This
is achieved by copying the last updated version of the
boundary images of the image stack as new boundary
condition images after each iteration of the optimization
routine. After t iterations, the problem domain is then
given by Ω(t ) :=

�
I (t )1 =: I (t )0 , I (t )1 , I (t )2 , . . . , I (t )Z , I (t )Z+1 := I (t )Z

�
.

4) Convergence: Regarding the convergence, note that
the theoretical convergence behavior in practice is affected
by the regularization of the deformation within the slice
plane x-y and the severity of the deformations. Conver-
gence will therefore be slower than what theory predicts.
In addition, the assumption of uniform subintervals -
equivalent to equally spaced histology slices - might not
be fulfilled, since tissue slices often get lost or are severely
disrupted such that they are not suitable to be used for
reconstruction. Just removing such an image from the
stack is not an option, since this would compress the
anatomy at this position. Instead, we use interpolation of
slices as outlined in [36] to fill the gap. This restores the
uniformity of the subintervals, and therefore the conver-
gence requirements outlined above.

5) Algorithm: To prevent repeated propagation of pos-
sible defects in the slices along the stack, the Gauss-
Seidel scheme is iteratively applied to the stack, with alter-
nating directions (also known as symmetric Gauss-Seidel
method). This also effectively reduces any bias effect that
non-rigid registration methods often show when they are
applied, depending on the direction along the stack. After
a first update of the entire stack, including the boundary
condition images, the scheme is repeated in reverse order,
starting with the images that were updated last in the
previous iteration. The algorithm for our proposed image
unwarping strategy is depicted in Algorithm 1. To prevent
artifacts from repeated interpolation during the update
step, we accumulate all calculated update deformation
fields for a specific image I j into one deformation field
u(t )j , a c c u = u(t−1)

j ◦ ... ◦ u(0)j , which is finally applied to the

original image I (0)j to generate the image I (t )j after t

Algorithm 1 Proposed method for image unwarping using
a Gauss-Seidel iteration scheme and Neumann boundary
conditions.

Input

I (0)1 , ..., I (0)Z histological image sequence
N number of iterations

Expand image domain by Neumann b.c.
I (0)0 ← I (0)1 , I (0)Z+1← I (0)Z

for iteration t = 1, ..., N

for image j = 1, ..., Z

u j−1, j+1 =NPREG
�
I (t )j−1, I (t−1)

j+1

�

Î j = I (t−1)
j+1 ◦

�
1
2 ·u j−1, j+1

�

u? =NPREG
�
Î j , I (t−1)

j

�

u(t )j , a c c u = u(t−1)
j , a c c u ◦u?

I (t )j = I (0)j ◦u(t )j , a c c u update
end

I (t )0 ← I (t )1 , I (t )Z+1← I (t )Z

reverse sequence
�
I (t )0 , I (t )1 , ..., I (t )Z , I (t )Z+1

�

end

Output

I (N )1 , ..., I (N )Z unwarped image sequence

iterations. As was already mentioned before, this algorithm
can be used with other registration methods tailored
to the reconstruction problem at hand. Note however
that our algorithm requires the scaling and composition
of calculated slice transforms. If the chosen registration
method does not directly offer this possibility, we propose
to create a dense deformation field from the calculated
slice transformation, which should be possible regardless
of the choice of deformation model.

III. EVALUATION AND RESULTS

To evaluate the performance of our reconstruction
method, it is tested on synthetic and real data sets. Each
of the experiments was designed to evaluate a different
characteristic of our method.

The applicability of the Gauss-Seidel method in the
context of images and deformation fields, and the conver-
gence and smoothing properties for different frequencies
is demonstrated using synthetic slice data sets. The sec-
ond experiment uses a CT slice sequence that was non-
rigidly transformed to quantify the error reduction over
the number of iterations for more complex data for which
the ground truth is known. Finally, we show the quality
of our reconstructions using a real histology data set. We
compared our results to atlas and MR images, and recon-
struction results by [2], who provide their reconstructions
online.
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(a) Wave number k = 10.

(b) Superimposed wave numbers k1 = 4 and k2 = 20.

Figure 5: Volume renderings of data sets with different
frequencies, defined by the wave number k , evolving over
time. Shown are the original data sets, and after 5, 10, 15,
20, 25 and 30 iterations. Note the similarity of the results
to the results shown for the 1-D model problem (fig. 3).

A. Synthetic Data

Every data set consists of n = 100 images of size 121×
121. A white circle with a diameter of 21 pixels is placed on
black background. The circle center changes its position
along the image sequence according to a sinusoidal func-
tion. Starting at the first image with center

�
xc , yc

�
, the

coordinates of the circle center with coordinates
�
xc c , yc c

�
on slice z is given by

�
xc c , yc c

�
z
=
�
xc , yc

�−a · sin
�

z kπ

n

�
.

Here, a denotes the amplitude of the sinusoid, and
was chosen as a = 10. k denotes the wave number
of the desired frequency, which corresponds to k half
sine waves along the entire slice sequence. This emu-
lates a smoothly varying anatomical structure. Several
data sets were prepared in this manner, with frequencies
k = {4, 10, 20, 40, 60, 80, 90}. In addition, data sets with two
superimposed frequencies - one low frequency of k1 = 4
and a high frequency with k2 = 20 resp. k2 = 40 were
generated using

�
xc c , yc c

�
z
=
�
xc , yc

�−a ·
�
sin

�
z k1π

n

�
+ sin

�
z k2π

n

��
.

To measure the effect of the Gauss-Seidel registration
scheme on the different frequency components in the
slice volumes, the mean squared error (MSE) between the
respective volumes and a reference volume consisting of
a centered cylinder is calculated. As the largest part of the
convergence happens during the first iterations, the MSE
was calculated for each of the first 10 iterations, and every
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ond experiment uses a CT slice sequence that was non-
rigidly transformed to quantify the error reduction over
the number of iterations for more complex data for which
the ground truth is known. Finally, we show the quality
of our reconstructions using a real histology data set. We
compared our results to atlas and MR images, and recon-
struction results by [2], who provide their reconstructions
online.

(a) Wave number k = 10.

(b) Superimposed wave numbers k1 = 4 and k2 = 20.

Figure 5: Volume renderings of data sets with different
frequencies, defined by the wave number k , evolving over
time. Shown are the original data sets, and after 5, 10, 15,
20, 25 and 30 iterations. Note the similarity of the results
to the results shown for the 1-D model problem (fig. 3).

A. Synthetic Data

Every data set consists of n = 100 images of size 121×
121. A white circle with a diameter of 21 pixels is placed on
black background. The circle center changes its position
along the image sequence according to a sinusoidal func-
tion. Starting at the first image with center
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on slice z is given by
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Here, a denotes the amplitude of the sinusoid, and
was chosen as a = 10. k denotes the wave number
of the desired frequency, which corresponds to k half
sine waves along the entire slice sequence. This emu-
lates a smoothly varying anatomical structure. Several
data sets were prepared in this manner, with frequencies
k = {4, 10, 20, 40, 60, 80, 90}. In addition, data sets with two
superimposed frequencies - one low frequency of k1 = 4

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

0 5 10 15 20 25 30

Cylinder volume
= 4/20
= 4/40
= 4

= 10
= 20
= 40
= 60
= 80

Convergence of synthetic sinusoidal data sets

Iterations

M
ea

n
Sq

u
ar

ed
E

rr
o

r

for different wave numbers k

k
k

k

k
k
k
k
k

Figure 6: Reduction of MSE for volumes of different fre-
quencies. The horizontal dashed line represents the MSE
between the cylindrical volume and a rigidly registered
version of itself that was shifted by 2.5 pixels in x and y .

and a high frequency with k2 = 20 resp. k2 = 40 were
generated using
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To measure the effect of the Gauss-Seidel registration
scheme on the different frequency components in the
slice volumes, the mean squared error (MSE) between the
respective volumes and a reference volume consisting of
a centered cylinder is calculated. As the largest part of the
convergence happens during the first iterations, the MSE
was calculated for each of the first 10 iterations, and every
5th after that, for a total of 30 iterations. You can see the
differences in convergence for volumes with different wave
numbers in fig. 6. To help interpret the magnitude of the
MSE values, the MSE between the original volume and a
rigidly registered shifted version of the original volume (by
2.5 pixels in x and y ) is plotted as horizontal line.

Figure 5 visually shows volume renderings after several
iterations for two different data sets. The first one was
created with a moderate wave number k = 10. The fre-
quency is gradually decreased, and still slightly visible after
30 iterations. The second data shows two superimposed
frequencies with wave numbers k1 = 4 and k2 = 20. Here,
the high frequency component is eliminated after about 15
iterations, while the low-frequency component is mostly
preserved even after 30 iterations. The slightly flattened
appearance at the upper and lower ends of this data
set is an effect of the boundary condition, which kind
of propagates the zero derivative condition into the data
set. However, this experiment quantitatively as well as
visually confirms the theory that the low frequencies are
mostly preserved, while the high frequencies are efficiently
eliminated, even when frequencies are superimposed. In
addition, we could show that the Gauss-Seidel method is
applicable in the domain of images and deformation fields,

Figure 6: Reduction of MSE for volumes of different fre-
quencies. The horizontal dashed line represents the MSE
between the cylindrical volume and a rigidly registered
version of itself that was shifted by 2.5 pixels in x and y .

5th after that, for a total of 30 iterations. You can see the
differences in convergence for volumes with different wave
numbers in fig. 6. To help interpret the magnitude of the
MSE values, the MSE between the original volume and a
rigidly registered shifted version of the original volume (by
2.5 pixels in x and y ) is plotted as horizontal line.

Figure 5 visually shows volume renderings after several
iterations for two different data sets. The first one was
created with a moderate wave number k = 10. The fre-
quency is gradually decreased, and still slightly visible after
30 iterations. The second data shows two superimposed
frequencies with wave numbers k1 = 4 and k2 = 20. Here,
the high frequency component is eliminated after about 15
iterations, while the low-frequency component is mostly
preserved even after 30 iterations. The slightly flattened
appearance at the upper and lower ends of this data
set is an effect of the boundary condition, which kind
of propagates the zero derivative condition into the data
set. However, this experiment quantitatively as well as
visually confirms the theory that the low frequencies are
mostly preserved, while the high frequencies are efficiently
eliminated, even when frequencies are superimposed. In
addition, we could show that the Gauss-Seidel method is
applicable in the domain of images and deformation fields,
while featuring the same smoothing properties as for real
functions.

To justify our decision to use the Gauss-Seidel method,
we repeated the experiment on three data sets represent-
ing low (k = 4/20), medium (k = 10) and high frequency
(k = 80) functions using the Jacobi method instead of
Gauss-Seidel. Here, the calculation of the interpolated
intermediate slice Îz in Eq. 11 depends not on the already
updated slice I (t )z−1, but on the previous iteration t−1, I (t−1)

z−1 .
Beside this difference, all other parts of the algorithm
were identical to our experiment using the Gauss-Seidel
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Figure 7: Reduction of MSE for selected volumes, re-
constructed using the Gauss-Seidel method (GS) and the
Jacobi method (Jac).

while featuring the same smoothing properties as for real
functions.

To justify our decision to use the Gauss-Seidel method,
we repeated the experiment on three data sets represent-
ing low (k = 4/20), medium (k = 10) and high frequency
(k = 80) functions using the Jacobi method instead of
Gauss-Seidel. Here, the calculation of the interpolated
intermediate slice Îz in Eq. 11 depends not on the already
updated slice I (t )z−1, but on the previous iteration t−1, I (t−1)

z−1 .
Beside this difference, all other parts of the algorithm
were identical to our experiment using the Gauss-Seidel
method.

Figure 7 shows a comparison of the convergence using
both methods. Especially for the high-frequency data set
k = 80, the Gauss-Seidel method converges significantly
faster than the Jacobi method in the first iterations, just
as theory predicts, cmp. Fig. 2. For all experiments, the
MSE values using the Gauss-Seidel method are lower than
the MSE values using the Jacobi method. However, the
difference between both methods in the later iterations
is not very substantial, being about 2%. Since our goal is
to eliminate the high-frequency errors as fast as possible,
using the Gauss-Seidel method is a natural choice, and
was therefore exclusively used for the other experiments.
If for some reasons the Jacobi method is used, e.g., due
to simpler parallelization of the method, which will be
discussed in section III-E – the resulting reconstructions
will show a similar quality as those created using the
Gauss-Seidel method.

B. Synthetic Histology Data

To show the efficacy of our approach on more complex
data, we generated a synthetic histological slice sequence
using a CT data set of an armadillo [37]. A subset of
100 CT images, cropped and resized to 464× 387 pixels,
were individually transformed with non-rigid transforms.
As other artifacts typical for digital histology images are

Figure 8: Synthetic CT data set with biased deformations.
Rows 1-4: Deformed data set, and after 5, 10 and 15
iterations. Bottom row: Original CT data.

not present, the reconstruction quality independently of
the preprocessing methods - including the quality of the
linear alignment prior to unwarping - can be evaluated.

The deformations for each image were synthesized using
B-Splines with random offsets at the B-Spline grid points.
The maximum dislocation at a grid point was restricted
to ±10 pixels, which was empirically chosen to yield
deformations that were visually similar to real histological
images. Two experiments were implemented. First, ten
different versions of the deformed CT data set were created
using the mentioned method (these volumes will be called
unbiased volumes).

Second, the process generating the random deforma-
tions was adapted to emphasize offsets in one direction.
This corresponds more to real histology data, which is
more likely deformed along the cutting direction. Again,
ten different volumes were generated, which will be de-
noted biased volumes. The first experiment thus enables
to quantify the error stemming from the reconstruction
algorithm independently from a deformation bias. The
second experiment then demonstrates the effect of the
bias on the reconstruction result.

Qualitatively, as can be seen in Figure 8, the deforma-
tions are immensely reduced after 5 iterations, and after
15 iterations there are barely differences to the original CT
data set visible.

Since the ground truth deformation is known in this
experiment, the Target Registration Error (TRE) as defined
by Fitzpatrick et al. [38] was calculated after each iteration.
The TRE denotes the difference between the true location
of a pixel before it was dislocated using the generated
deformations, and the location of that pixel after our
unwarping strategy was applied, which ideally should be
zero. In case of the datasets that were deformed by a
biased random deformation, the bias leads to the anatomy
being shifted in a certain direction on average. As this

Figure 7: Reduction of MSE for selected volumes, re-
constructed using the Gauss-Seidel method (GS) and the
Jacobi method (Jac).
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Figure 8: Synthetic CT data set with biased deformations.
Rows 1-4: Deformed data set, and after 5, 10 and 15
iterations. Bottom row: Original CT data.

using the mentioned method (these volumes will be called
unbiased volumes).

Second, the process generating the random deforma-
tions was adapted to emphasize offsets in one direction.
This corresponds more to real histology data, which is
more likely deformed along the cutting direction. Again,
ten different volumes were generated, which will be de-
noted biased volumes. The first experiment thus enables
to quantify the error stemming from the reconstruction
algorithm independently from a deformation bias. The
second experiment then demonstrates the effect of the
bias on the reconstruction result.

Qualitatively, as can be seen in Figure 8, the deforma-
tions are immensely reduced after 5 iterations, and after
15 iterations there are barely differences to the original CT
data set visible.

Since the ground truth deformation is known in this
experiment, the Target Registration Error (TRE) as defined
by Fitzpatrick et al. [38] was calculated after each iteration.
The TRE denotes the difference between the true location
of a pixel before it was dislocated using the generated
deformations, and the location of that pixel after our
unwarping strategy was applied, which ideally should be
zero. In case of the datasets that were deformed by a
biased random deformation, the bias leads to the anatomy
being shifted in a certain direction on average. As this
global shift is not relevant for the reconstruction, we have
to subtract the global mean shift µutrue

from the ground
truth deformation. In addition we ignore pixels belonging
to the background (air, pixels outside the volume and field
of view). The background values are determined by simple
thresholding. The resulting mask M(x,y) which is 0 for all
background pixels and 1 otherwise is used together with
the mean shift to calculate the TRE as

TRE=
1

n
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�
x , y
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Figure 9: Mean and standard deviation of the Target Regis-
tration Error TRE, calculated for the two sets of deformed
CT data sets. For more details, please refer to the text.

global shift is not relevant for the reconstruction, we have
to subtract the global mean shift µutrue

from the ground
truth deformation. In addition we ignore pixels belonging
to the background (air, pixels outside the volume and field
of view). The background values are determined by simple
thresholding. The resulting mask M(x,y) which is 0 for all
background pixels and 1 otherwise is used together with
the mean shift to calculate the TRE as

TRE=
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where n denotes the number of pixels in the volume,
uz ,true and uz ,calc denote the ground truth deformation and
calculated deformation of slice image z respectively, and
M
�
x , y

�
is a binary mask image with an entry 1 if there is

anatomy at the corresponding location and 0 otherwise.
In this way, we get the mean offset from the ground truth
location per pixel for a given volume.

Figure 9 shows the mean and standard deviation of the
Target Registration Error, calculated for the two experi-
ments. The TRE converges very fast to an average offset
of about 1 pixel. The reduction in the TRE shows that at
least for the deformed CT data sets our method is able to
reverse a high amount of the actual deformations in the
data sets.

Since the ground truth deformation of histology data
sets is usually not known, we additionally quantify the
achieved smoothness of the reconstructed volume. To do
this, one inevitably has to compare neighboring pixels
and evaluate their similarity. Therefore in theory, every
similarity measure used in image registration can be used
for this purpose (examples of measures used for this
purpose are cross-correlation [39] and Sum of Squared
Distance [21]). Due to their similarity to the optimization
criterion in our non-rigid registration objective function,
these measures are inappropriate for evaluation purposes.
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Figure 10: Mean and standard deviation of the GLCM
contrast feature, calculated for the two sets of deformed
CT data sets.

Another popular measure is the Correspondence Align-
ment Measure (CAM,[40], [26]), which assumes that in an
ideal reconstruction, a specific point lies exactly at the
midpoint between its two neighbors. However, this is also
basically what we optimize via the Gauss-Seidel Measure
and additionally requires the correct identification of cor-
responding points. Last, the calculation of overlap was
used before, e.g., in [39], which requires the segmentation
of the structures of interest

Instead, we choose the contrast feature calculated from
the gray-level co-occurrence matrices (GLCMs) as intro-
duced by Haralick et al. [41] to quantify the achieved
smoothness of the reconstructions, similar to [39] and [13].
Thereby we are independent from correspondence search
and segmentation issues, and avoid a measure too similar
to our optimization criterion.

The GLCM contrast feature measures the amount of
contrast in an image by investigating the frequency of
certain intensity pairings of neighboring pixels. Before
reconstruction, neighboring pixels in axial direction (along
the stack) more likely show high intensity differences – that
is, higher contrast – as opposed to after reconstruction
(cmp. top row and bottom row of Figure 8). Decreasing
contrast therefore corresponds to a better match of neigh-
boring slices, and consequently to smoother morphologi-
cal structures along the stack.

For a given volume, we add up the values calculated for
each volume slice extracted in axial direction. Figure 10
shows the decrease of the contrast GLCM measure over the
iterations. It shows that our unwarping strategy effectively
restores anatomical smoothness for the volume, mostly
over the first few iterations.

As we have already stated in the introduction, a smooth
reconstruction does not guarantee an anatomically cor-
rect reconstruction. Curved structures might be effectively
straightened by the reconstruction method, leading to
extremely good smoothness values, while at the same

Figure 9: Mean and standard deviation of the Target Regis-
tration Error TRE, calculated for the two sets of deformed
CT data sets. For more details, please refer to the text. 12
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Figure 9: Mean and standard deviation of the Target Regis-
tration Error TRE, calculated for the two sets of deformed
CT data sets. For more details, please refer to the text.

global shift is not relevant for the reconstruction, we have
to subtract the global mean shift µutrue

from the ground
truth deformation. In addition we ignore pixels belonging
to the background (air, pixels outside the volume and field
of view). The background values are determined by simple
thresholding. The resulting mask M(x,y) which is 0 for all
background pixels and 1 otherwise is used together with
the mean shift to calculate the TRE as
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where n denotes the number of pixels in the volume,
uz ,true and uz ,calc denote the ground truth deformation and
calculated deformation of slice image z respectively, and
M
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x , y
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is a binary mask image with an entry 1 if there is

anatomy at the corresponding location and 0 otherwise.
In this way, we get the mean offset from the ground truth
location per pixel for a given volume.

Figure 9 shows the mean and standard deviation of the
Target Registration Error, calculated for the two experi-
ments. The TRE converges very fast to an average offset
of about 1 pixel. The reduction in the TRE shows that at
least for the deformed CT data sets our method is able to
reverse a high amount of the actual deformations in the
data sets.

Since the ground truth deformation of histology data
sets is usually not known, we additionally quantify the
achieved smoothness of the reconstructed volume. To do
this, one inevitably has to compare neighboring pixels
and evaluate their similarity. Therefore in theory, every
similarity measure used in image registration can be used
for this purpose (examples of measures used for this
purpose are cross-correlation [39] and Sum of Squared
Distance [21]). Due to their similarity to the optimization
criterion in our non-rigid registration objective function,
these measures are inappropriate for evaluation purposes.
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Another popular measure is the Correspondence Align-
ment Measure (CAM,[40], [26]), which assumes that in an
ideal reconstruction, a specific point lies exactly at the
midpoint between its two neighbors. However, this is also
basically what we optimize via the Gauss-Seidel Measure
and additionally requires the correct identification of cor-
responding points. Last, the calculation of overlap was
used before, e.g., in [39], which requires the segmentation
of the structures of interest

Instead, we choose the contrast feature calculated from
the gray-level co-occurrence matrices (GLCMs) as intro-
duced by Haralick et al. [41] to quantify the achieved
smoothness of the reconstructions, similar to [39] and [13].
Thereby we are independent from correspondence search
and segmentation issues, and avoid a measure too similar
to our optimization criterion.

The GLCM contrast feature measures the amount of
contrast in an image by investigating the frequency of
certain intensity pairings of neighboring pixels. Before
reconstruction, neighboring pixels in axial direction (along
the stack) more likely show high intensity differences – that
is, higher contrast – as opposed to after reconstruction
(cmp. top row and bottom row of Figure 8). Decreasing
contrast therefore corresponds to a better match of neigh-
boring slices, and consequently to smoother morphologi-
cal structures along the stack.

For a given volume, we add up the values calculated for
each volume slice extracted in axial direction. Figure 10
shows the decrease of the contrast GLCM measure over the
iterations. It shows that our unwarping strategy effectively
restores anatomical smoothness for the volume, mostly
over the first few iterations.

As we have already stated in the introduction, a smooth
reconstruction does not guarantee an anatomically cor-
rect reconstruction. Curved structures might be effectively
straightened by the reconstruction method, leading to
extremely good smoothness values, while at the same
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where n denotes the number of pixels in the volume,
uz ,true and uz ,calc denote the ground truth deformation and
calculated deformation of slice image z respectively, and
M
�
x , y

�
is a binary mask image with an entry 1 if there is

anatomy at the corresponding location and 0 otherwise.
In this way, we get the mean offset from the ground truth
location per pixel for a given volume.

Figure 9 shows the mean and standard deviation of the
Target Registration Error, calculated for the two experi-
ments. The TRE converges very fast to an average offset
of about 1 pixel. The reduction in the TRE shows that at
least for the deformed CT data sets our method is able to
reverse a high amount of the actual deformations in the
data sets.

Since the ground truth deformation of histology data
sets is usually not known, we additionally quantify the

achieved smoothness of the reconstructed volume. To do
this, one inevitably has to compare neighboring pixels
and evaluate their similarity. Therefore in theory, every
similarity measure used in image registration can be used
for this purpose (examples of measures used for this
purpose are cross-correlation [39] and Sum of Squared
Distance [21]). Due to their similarity to the optimization
criterion in our non-rigid registration objective function,
these measures are inappropriate for evaluation purposes.
Another popular measure is the Correspondence Align-
ment Measure (CAM,[40], [26]), which assumes that in an
ideal reconstruction, a specific point lies exactly at the
midpoint between its two neighbors. However, this is also
basically what we optimize via the Gauss-Seidel Measure
and additionally requires the correct identification of cor-
responding points. Last, the calculation of overlap was
used before, e.g., in [39], which requires the segmentation
of the structures of interest

Instead, we choose the contrast feature calculated from
the gray-level co-occurrence matrices (GLCMs) as intro-
duced by Haralick et al. [41] to quantify the achieved
smoothness of the reconstructions, similar to [39] and [13].
Thereby we are independent from correspondence search
and segmentation issues, and avoid a measure too similar
to our optimization criterion.

The GLCM contrast feature measures the amount of
contrast in an image by investigating the frequency of
certain intensity pairings of neighboring pixels. Before
reconstruction, neighboring pixels in axial direction (along
the stack) more likely show high intensity differences – that
is, higher contrast – as opposed to after reconstruction
(cmp. top row and bottom row of Figure 8). Decreasing
contrast therefore corresponds to a better match of neigh-
boring slices, and consequently to smoother morphologi-
cal structures along the stack.

For a given volume, we add up the values calculated for
each volume slice extracted in axial direction. Figure 10
shows the decrease of the contrast GLCM measure over the
iterations. It shows that our unwarping strategy effectively
restores anatomical smoothness for the volume, mostly
over the first few iterations.

As we have already stated in the introduction, a smooth
reconstruction does not guarantee an anatomically cor-
rect reconstruction. Curved structures might be effectively
straightened by the reconstruction method, leading to
extremely good smoothness values, while at the same
time introducing strong unnatural deformations to the
anatomy. However, our experiments show a strong cor-
relation of the GLCM measure with the TRE. The fact that
our method is able to approximate the true deformations
of the slices confirms the intuition that using our method,
smoother looking data sets are indeed closer to the real
anatomy.

C. Histology Data

Finally, we applied our method to a Nissl-stained data
set of a mouse brain, available online from Ju et al. [2]. The
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Figure 11: Convergence of the GLCM contrast feature
calculated for the successive versions of the image stack
over the iterations, for two different deformation models.

time introducing strong unnatural deformations to the
anatomy. However, our experiments show a strong cor-
relation of the GLCM measure with the TRE. The fact that
our method is able to approximate the true deformations
of the slices confirms the intuition that using our method,
smoother looking data sets are indeed closer to the real
anatomy.

C. Histology Data

Finally, we applied our method to a Nissl-stained data
set of a mouse brain, available online from Ju et al. [2]. The
data set consists of 350 coronal, cryo-sectioned and Nissl-
stained histological images with a resolution of 850× 670
pixels, 25 µm slice thickness and 15 µm per pixel.

Ju et al. provide an unaligned, original data set without
intensity normalization but homogeneous illumination, as
well as a rigidly registered and normalized version of the
data, and their reconstruction result.

As this article deals with the reversal of the local defor-
mations of the slices, we applied our method to the aligned
and intensity-normalized data set. The normalization of
the slice intensities also enabled us to employ the sum-
of-squared differences (SSD) measure in our experiment.
It is faster to calculate than, e.g., the multimodal measure
Mutual Information, which would normally be appropriate
in cases with inter-slice intensity differences, and experi-
ments using the MI delivered similar results, while taking
more computation time. Optimal values for the weighting
factor of the regularizer were empirically chosen, as was
the number of 10 iterations for our method.

To show that our initial statement – that our method
works independently from the chosen non-rigid registra-
tion method – is valid, we performed a second reconstruc-
tion of the mouse brain data set. Instead of our presented
non-parametric, non-rigid registration method, we used
a registration method using a parametric B-Spline based

deformation model as proposed by Rueckert et al. [42] and
implemented in the Insight Toolkit [43].

Figure 11 shows the Convergence of the GLCM contrast
feature values, calculated for successive versions of the
image stack over the iterations for both experiments.

In both cases, the contrast values decrease significantly
in the first iterations, indicating an increase in contour
smoothness. The slightly slower convergence of the B-
Spline-based registration can be attributed to the less
flexible deformation in this specific setup as compared to
our non-parametric approach.

To compare our result with other state-of-the-art imag-
ing modalities, we created virtual slices through the re-
constructed volume. Figure 12 shows a direct comparison
of virtual sections to an atlas image from Paxino’s Atlas
[44], and Fig. 13 to a T1-weighted MR volume from the
Waxholm space [1].

Furthermore, we compared our reconstruction result to
Ju’s reconstruction, which is also provided online. As you
can see in Figure 14, the brain structures in general appear
more clearly, and boundaries are significantly smoother
in our reconstruction. In addition, the fiber-like structures
that are barely visible on the left are clearly visible with
our method, but are also visible in the MR volume 13. This
is most likely due to the calculation of the deformation on
the bilaterally filtered images, which in this case prevents
matching of the connected structures. For comparison,
the corresponding slices extracted from the rigidly aligned
input stack are shown in the top row. Even more profound
is the comparison of the original and warped coronal
sections, cmp. Figure 15. The warp filtering approach
clearly introduces unnatural deformations to the slice,
whereas the unwarped slice using our approach appears
unaffected by artificial deformations.

1) Effect of slice defects on reconstruction result: As
mentioned already, due to the severe mechanical stress
that is imposed on the tissue during slice preparation and
staining – e.g., cutting, relocation, heating, etc. – and de-
pending on the robustness of the tissue that is processed,
the final slice images can show different artifacts, which
inevitably have an influence on the reconstruction result.

How severe the effect of the defects on the reconstruc-
tion result is depends on the size of the defect, and the
regularization of the allowed deformation in the non-rigid
registration method. Smaller defects, e.g., small tears or
the bubble-like defects visible in the brain data set, do
not show significant effects in our experiments. The reason
is usually that the change in the calculated deformation
field due to the defect is so local that the regularization
term – which emphasizes smooth non-local deformations
– prevents said deformation.

If the defect is large (e.g., large parts missing from the
slice, or larger folds), the corresponding image parts have
enough weight in the similarity measure part of the non-
rigid registration objective function so that unwanted de-
formations are introduced as far as the regularizer allows
them. Such a defect should therefore always be treated be-
fore reconstruction. Strategies for this include eliminating

Figure 11: Convergence of the GLCM contrast feature
calculated for the successive versions of the image stack
over the iterations, for two different deformation models.

data set consists of 350 coronal, cryo-sectioned and Nissl-
stained histological images with a resolution of 850× 670
pixels, 25 µm slice thickness and 15 µm per pixel.

Ju et al. provide an unaligned, original data set without
intensity normalization but homogeneous illumination, as
well as a rigidly registered and normalized version of the
data, and their reconstruction result.

As this article deals with the reversal of the local defor-
mations of the slices, we applied our method to the aligned
and intensity-normalized data set. The normalization of
the slice intensities also enabled us to employ the sum-
of-squared differences (SSD) measure in our experiment.
It is faster to calculate than, e.g., the multimodal measure
Mutual Information (MI), which would normally be appro-
priate in cases with inter-slice intensity differences. Exper-
iments using the MI delivered similar results, while taking
more computation time. Optimal values for the weighting
factor of the regularizer were empirically chosen, as was
the number of 10 iterations for our method.

To show that our initial statement – that our method
works independently from the chosen non-rigid registra-
tion method – is valid, we performed a second reconstruc-
tion of the mouse brain data set. Instead of our presented
non-parametric, non-rigid registration method, we used
a registration method using a parametric B-Spline based
deformation model as proposed by Rueckert et al. [42] and
implemented in the Insight Toolkit [43].

Figure 11 shows the convergence of the GLCM contrast
feature values, calculated for successive versions of the
image stack over the iterations for both experimental
setups.

In both cases, the contrast values decrease significantly
in the first iterations, indicating an increase in contour
smoothness. The slightly slower convergence of the B-
Spline-based registration can be attributed to the less
flexible deformation in this specific setup as compared to
our non-parametric approach.

To compare our result with other state-of-the-art imag-
ing modalities, we created virtual slices through the re-
constructed volume. Figure 12 shows a direct comparison
of virtual sections to an atlas image from Paxino’s Atlas
[44], and Fig. 13 to a T1-weighted MR volume from the
Waxholm space [1].

Furthermore, we compared our reconstruction result to
Ju’s reconstruction, which is also provided online. As you
can see in Figure 14, the brain structures in general appear
more clearly, and boundaries are significantly smoother
in our reconstruction. In addition, the fiber-like structures
that are barely visible on the left are clearly visible with
our method, but are also visible in the MR volume 13. This
is most likely due to the calculation of the deformation on
the bilaterally filtered images, which in this case prevents
matching of the connected structures. For comparison,
the corresponding slices extracted from the rigidly aligned
input stack are shown in the top row. Even more profound
is the comparison of the original and warped coronal
sections, cmp. Figure 15. The warp filtering approach
clearly introduces unnatural deformations to the slice,
whereas the unwarped slice using our approach appears
unaffected by artificial deformations.

1) Effect of slice defects on reconstruction result: As
mentioned already, due to the severe mechanical stress
that is imposed on the tissue during slice preparation and
staining – e.g., cutting, relocation, heating, etc. – and de-
pending on the robustness of the tissue that is processed,
the final slice images can show different artifacts, which
inevitably have an influence on the reconstruction result.

How severe the effect of the defects on the reconstruc-
tion result is depends on the size of the defect, and the
regularization of the allowed deformation in the non-rigid
registration method. Smaller defects, e.g., small tears or
the bubble-like defects visible in the brain data set, do
not show significant effects in our experiments. The reason
is usually that the change in the calculated deformation
field due to the defect is so local that the regularization
term – which emphasizes smooth non-local deformations
– prevents said deformation.

If the defect is large (e.g., large parts missing from the
slice, or larger folds), the corresponding image parts have
enough weight in the similarity measure part of the non-
rigid registration objective function so that unwanted de-
formations are introduced as far as the regularizer allows
them. Such a defect should therefore always be treated be-
fore reconstruction. Strategies for this include eliminating
the slice if the loss of anatomical information is tolerable,
repairing by complete or partial interpolation of the defect
slice, cmp. [45],[36],[27], or by using artifact-tolerant non-
rigid registration methods [46], [47]. For medium-sized
defects, masking the defect image parts in the registration
might also be sufficient to achieve a satisfactory result.

If such a large defect is overlooked, however, the result-
ing unwanted deformations will be propagated along the
stack, spreading to the left and right of the original defect
slice, an effect demonstrated in Figure 16.

We performed an experiment illustrating this effect.
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Figure 12: Left: Virtual section through the reconstructed volume. Right: Real histology slice from Paxino’s Atlas [44]

(a) (b)

Figure 13: a) Virtual section through the reconstructed volume. b) Sagittal section of a T1-weighted MR volume from
the Waxholm space [1].

Here, we manually erased a significant amount of the
tissue of slice 30, simulating a larger defect like it might
occur in histological slice sequences. When unwarping
the volumes once with the corrupt slice, the effect of
propagated distortions of the tissue is clearly visible as
compared to the original reconstruction, cmp. Figure 16.
After 6 iterations, the effect was visible from slices 21 to
39. When replacing the defective slice with an interpolated
one [36] before applying our method, the morphology in
the reconstructed image stack again seems to be intact,
with only small differences to the original reconstruction.

D. Complexity and Convergence

Usually histological image reconstruction is not a time-
critical process. The time that is needed for image unwarp-
ing mostly depends on the non-rigid registration method
that is used, and the image size. The Gauss-Seidel scheme
we employ is generally independent from the type of non-
rigid registration method that is used, but determines the
number of registration operations that are needed. For a
data set consisting of K images (excluding the boundary
condition images) and using N iterations, the number of
non-rigid registrations is given by

#(NPREG) = 2 ·K ·N .
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Figure 14: Virtual axial (left) and sagittal (right) sections. Top: After rigid alignment. Middle: Reconstruction from Ju et
al. [2]. Bottom: Our approach. Inset: Detail image from Paxino’s Atlas (plate 110) [44] showing the fiber bundles in the
caudoputamen region.
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Figure 15: Visualization of the effect of in-plane deformations used for unwarping. Note the middle section of the
images. Left: From Ju et al. [2]. Middle: Original histology slice. Right: Our proposed method.

Figure 16: Visualization of the effect larger defects have on the reconstruction result after 6 iterations. Left: Ground truth
reconstruction with intact slice 30. Middle: Distorted reconstruction for artificially destroyed slice 30. Lines indicate
boundaries of the distorted region. Right: Reconstruction result using an interpolated replacement for slice 30 (top
right).

Depending on the data set at hand, this number can get
quite large. The reconstruction of the mouse brain data
set with its 350 slice images and 10 iterations required in
total 7000 registrations. For the image size of 850 × 670
pixels, one non-rigid registration needed in average 19.7
seconds to finish on a 3.2 GHz workstation with 6 GB
RAM. The total time to reverse the deformations of the
entire image stack therefore was 38:24:11 hh:m:s. Another
advantage of our method is that due to the sequential type
of processing, the memory requirements are low, even for
very highly resolved histology images.
As with any fixed-point iteration method, the decision
of when to stop the iteration process also arises in our
method. Here, we propose to investigate the convergence
of the method as stopping criterion. A fixed-point iteration
method is converged, when the change of the calculated
solution from one to the next iteration is smaller than

a – usually empirically chosen – constant. In our case,
one could calculate the MSD between successive versions
of the image stack over the iterations, cmp., e.g., Figure
17, and falls below a certain limit. Another possibility is,
of course, to let an anatomical expert decide when the
reconstruction result is satisfactory.

E. Parallelization

Due to the potentially high number of images and
therefore registration operations, the parallelization of our
method would potentially lead to a significant acceleration
of the reconstruction process. Since the update of a value
using the Jacobi method depends only on the predecessor
and successor of the same iteration number, paralleliza-
tion is more straight-forward here. One strategy is, e.g., to
assign equal parts of the data set to different processors.
After updating the images within the blocks, only the
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MSD between the rigidly registered volume, and the first
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E. Parallelization

Due to the potentially high number of images and
therefore registration operations, the parallelization of our
method would potentially lead to a significant acceleration
of the reconstruction process. Since the update of a value
using the Jacobi method depends only on the predecessor
and successor of the same iteration number, paralleliza-
tion is more straight-forward here. One strategy is, e.g., to
assign equal parts of the data set to different processors.
After updating the images within the blocks, only the
images at the boundaries of the different blocks have to
be updated, which can also be done in parallel. Since the
update of a value in the classical Gauss-Seidel method
uses an already updated predecessor, parallelization is
not as obvious. Still, it is possible using a method called
Red-Black Gauss-Seidel, in which the data is alternately
distributed into two disjoint subsets, red and black. Within
each of the subsets, the individual update operations
are independent of each other, and can therefore be
performed by several processors [34].

IV. SUMMARY

We could show that the iterative Gauss-Seidel method
is applicable for image unwarping of histological slice
sequences. The methods’ property of quickly eliminating
high-frequency disturbances and degrading low-frequency
components only very slowly is well suited to reverse
the deformations due to slice cutting, while preserving
the naturally smooth curvature of anatomical structures.
The final quality of the reconstruction is comparable to
state-of-the-art technologies like atlases and MR devices.
Furthermore, as we showed in our experiments, our ap-
proach can be applied independently from the non-rigid
registration method that is used, and is therefore highly
versatile.

In principle, both the Jacobi and Gauss-Seidel methods
can be used. While the dampening of high-frequency
artifacts is faster for the Gauss-Seidel method during the
first iterations, the Jacobi method might offer benefits as
it is easier to parallelize than Gauss-Seidel.

However, the reconstruction result strongly depends on
the quality of the global alignment. The overall shape of
the tissue stack will not be altered much during unwarp-
ing, and therefore has to be verified in advance. This is
usually achieved using rigid registration. If corrections of
an automatically achieved alignment are required, manual
refinement is still an option, which in contrast to that is
prohibitive for image unwarping due to the high number
of degrees of freedom that would have to be defined
manually in this case.

Furthermore, our method assumes that the low-
frequency components of the unwanted artificial defor-
mations still have a higher frequency than the high-
frequency components of the anatomical deformations.
Especially extremely curved structures will be subject to
some straightening, although in most cases this effect
should not be of high relevance.

There are always at least partly defective images con-
tained in a histological slice sequence. These defects neg-
atively affect the deformation fields calculated for image
unwarping, e.g., by “pulling” tissue into regions where the
tissue is missing naturally or due to cutting artifacts. This
can then be propagated to neighboring images, leading
to unnaturally deformed parts in a certain neighborhood
around the defect. This might be prevented using repairing
or replacement strategies before unwarping.

To conclude, our approach is able to effectively reverse
the deformations imposed on histological tissue sections
during cutting. Its versatility enables easy adaption to the
specific task at hand. Due to the sequential processing
and the possibilities for parallelization, it is also suitable
for very highly-resolved histology images and image se-
quences consisting of a large number of slices. Therefore
it offers a valuable contribution for the anatomically sound
reconstruction of histological image sequences.
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it is easier to parallelize than Gauss-Seidel.
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the quality of the global alignment. The overall shape of
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of degrees of freedom that would have to be defined
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frequency components of the unwanted artificial defor-
mations still have a higher frequency than the high-
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Especially extremely curved structures will be subject to
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should not be of high relevance.
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atively affect the deformation fields calculated for image
unwarping, e.g., by “pulling” tissue into regions where the
tissue is missing naturally or due to cutting artifacts. This
can then be propagated to neighboring images, leading
to unnaturally deformed parts in a certain neighborhood
around the defect. This might be prevented using repairing
or replacement strategies before unwarping.
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the deformations imposed on histological tissue sections
during cutting. Its versatility enables easy adaption to the
specific task at hand. Due to the sequential processing
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for very highly-resolved histology images and image se-
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