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Abstract. Current state-of-the-art techniques for fast and robust pars-
ing of volumetric medical image data exploit large annotated image
databases and are typically based on machine learning methods. Two
main challenges to be solved are the low efficiency in scanning large
volumetric input images and the need for manual engineering of image
features. This work proposes Marginal Space Deep Learning (MSDL)
as an effective solution, that combines the strengths of efficient object
parametrization in hierarchical marginal spaces with the automated fea-
ture design of Deep Learning (DL) network architectures. Representation
learning through DL automatically identifies, disentangles and learns ex-
planatory factors directly from low-level image data. However, the direct
application of DL to volumetric data results in a very high complexity,
due to the increased number of transformation parameters. For example,
the number of parameters defining a similarity transformation increases
to 9 in 3D (3 for location, 3 for orientation and 3 for scale). The mecha-
nism of marginal space learning provides excellent run-time performance
by learning classifiers in high probability regions in spaces of gradually in-
creasing dimensionality, for example starting from location only (3D) to
location and orientation (6D) and full parameter space (9D). In addition,
for parametrized feature computation, we propose to simplify the net-
work by replacing the standard, pre-determined feature sampling pattern
with a sparse, adaptive, self-learned pattern. The MSDL framework is
evaluated on detecting the aortic heart valve in 3D ultrasound data. The
dataset contains 3795 volumes from 150 patients. Our method outper-
forms the state-of-the-art with an improvement of 36%, running in less
than one second. To our knowledge this is the first successful demonstra-
tion of the DL potential to detection in full 3D data with parametrized
representations.

1 Introduction

Effective data representation is essential for the performance of machine learning
algorithms [1]. This motivates a large effort invested into handcrafting features,
which encompass the underlying observation in a learning space easy to tackle.
For this purpose, complex data preprocessing and transformation pipelines are
used to design representations that can ensure an effective learning process.
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This type of approach is however subject to severe limitations, since it targets
exclusively human ingenuity to disentangle and understand prior information
hidden in the data and then use such knowledge for feature engineering [2, 3].

Representation learning through Deep Learning (DL) addresses these limi-
tations and is aimed to expand the scope and general applicability of machine
learning algorithms [1]. This is achieved by applying a mechanism that sup-
ports the joint learning of the underlying phenomena and the required features.
The capability of automatically identifying and disentangling data-describing
attributes directly from low-level image data eliminates the need for complex,
manual prerequisites. Hierarchical representations encoded by deep neural net-
works (NN) [1, 4] are used to effectively model this learning approach. Such
deep architectures outperform state-of-the-art classifiers on a variety of publicly
available benchmark tests [5–8]. Nonetheless, the current applications of these
architectures concentrate on 2D data, with no generic extension to any 3D image
modality. Capturing the complex appearance of a 3D object and supporting the
efficient scanning of high-dimensional spaces are not straightforward, given the
increased number of parameters (9 to describe a rigid transformation in 3D).

In this work we propose novel sparse deep neural networks for learning
parametrized representations from 3D medical image modalities and support-
ing the effective parsing of volumetric medical image data. We use the concept
of network simplification through sparsity injection to replace the standard, pre-
determined sampling pattern used for handcrafted features, with an adaptive,
sparse, self-learned pattern. This brings a considerable increase in computational
performance and also serves as regularization against overfitting. Our method
for imposing sparsity is based on an iterative learning process using a greedy ap-
proach. In order to address the problem of efficiently scanning large parameter
spaces for detecting objects in 3D images, we propose MSDL, a novel integra-
tion of our sparse deep neural network into the Marginal Space Learning (MSL)
pipeline [3]. The Probabilistic Boosting Tree (PBT) classifier [9] used in the MSL
framework is replaced with our generic, sparse feature-learning engine, which we
apply in marginal spaces of increasing dimensionality to estimate the rigid trans-
formation parameters of the target object. The proposed framework combines
the computational efficiency of MSL with the potential of DL architectures. We
evaluate the framework for the problem of detecting the pose of a bounding box
enclosing the aortic valve in 3D ultrasound images of the heart (see Figure 1).

Fig. 1. Planar cuts displaying the bounding box of the aortic valve in a transesophageal
ultrasound volume, as well as the 3D geometry of the valve depicted in the last image.
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2 Related work

Representation learning, also known under the header of deep learning or fea-
ture learning, is a rapidly developing field in the machine learning community.
Correlated with the increase in computational power, recent publications show
remarkable result improvements for tasks ranging from speech recognition, ob-
ject recognition, natural language processing to transfer learning.

For the generic task of object recognition/tracking the impact of this tech-
nology started with the break of supremacy of the support vector machines
on the MNIST image classification problem [5, 6]. This motivated a further im-
provement through the introduction of multi-column deep neural networks [8] or
state-of-the-art network regularization techniques based on a random dropping of
units [7]. For more specific tasks within the medical imaging field, stacked sparse
autoencoders are applied for multiple organ detection and classification [10]. Us-
ing the same pixel-based classification approach, deep neural architectures are
also used for the segmentation of brain structures [11]. More recent publications
present solutions to emulate 3D learning tasks using 2D feature fusion from
predetermined planar cuts [12] or representation sets from random observations.

All investigated methods are devised for 2D or hybrid image modalities,
with no extension or direct solution for parsing 3D data. The application of
deep learning for object detection with high-dimensional representations is, to
the best of our knowledge, not attempted yet.

3 Method

In the following we present our Marginal Space Deep Learning architecture for
efficiently estimating the anisotropic similarity transformation parameters of an
object in a 3D image. We model the pose of the sought object by using a bounding
box, defined by 9 parameters: T = (tx, ty, tz) for the translation, R = (φx, φy, φz)
for the orientation and S = (sx, sy, sz) for the anisotropic scale of the object
(see Figure 1 for the aortic valve examples). We tackle the object detection
problem with machine learning, by training a classifier which can decide if a
given parametrized volume patch contains the target object or not.

3.1 Sparse Deep Learning Architectures

A deep Neural Network (NN) is a powerful feature-learning engine, built on hi-
erarchies of data representations [4]. Structurally, the network architecture can
be divided into multiple layers, organized and connected hierarchically. In such
networks, data representations are obtained by applying learned filters or ker-
nels over representations defined in the previous layer. The same holds for fully
connected layers, where the kernel size is restricted to the size of the underlying
representation map. As such, a deep NN can be defined by the parameters (w, b),
where w = (w(1),w(2), · · · ,w(n))> represents the list of concatenated kernel pa-
rameters over n layers and b encodes the biases of all neurons contained in the
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Algorithm 1 Learning algorithm with iterative threshold-enforced sparsity

1: Pre-training stage using all weights (small # epochs)
2: for # iterations do
3: for all filter i with sparsity do
4: p - proportion of absolute smallest non-zero w

(i)
j ← 0

5: Re-normalize to preserve ‖w(i)‖1
6: end for
7: Train network on active coefficients (small # epochs)
8: end for

network. The underlying learning problem is supervised, meaning that for a
given set of input patches X (i.e. observations), we are given a corresponding
set of class assignments y, specifying if the patches contain the target object or
not. Considering the independence of the input observations, using the Maxi-
mum Likelihood Estimation (MLE) method, we learn the network parameters
in order to maximize the likelihood function:(

ŵ, b̂
)

= arg max
w,b
L(w, b) = arg max

w,b

m∏
i=1

p(y(i)|x(i);w, b), (1)

where m represents the number of training samples. For a linear regression model
this is equivalent to minimizing the least square distance between the estimated
output ŷ and the ground truth reference y [4]. We solve this with the Stochastic
Gradient Descent (SGD) method, based on the back-propagation algorithm to
update the network coefficients according to the computed gradient [13].

As presented in [4], it is conjectured that most networks are oversized for the
underlying task. Starting from this observation and the need for optimal run-
time performance, we propose a novel network simplification technique based on
the injection of sparsity. Defining the network response function as R( · ;w, b),
we aim to find a sparsity map s over the network parameters, such that the
response residual ε given by:

ε = ‖R(X;w, b)−R(X;w � s, b)‖, where si ∈ R+,∀i, (2)

is minimal, where � denotes the element-wise multiplication of vectors. For this,
we apply an iterative learning process, enforcing sparsity in a gradual manner
in the layers of the neural network by removing weights with smallest absolute
value, in other words with minimal impact on the network response. Algorithm
1 presents the training method.

By using this kind of approach we learn adaptive, sparse features, more
specifically in the first layer we learn an adaptive sampling pattern over the
input. This is used to replace the standard uniform sampling pattern defined in
handcrafted features, eliminating the need for feature engineering. The sparsity
enforcement is essential for efficient feature computation under different trans-
formations, bringing a speed-wise improvement of two orders of magnitude. Also,
by simplifying the model, the network is more robust against overfitting.
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Fig. 2. Scheme depicting the Marginal Space Deep Learning pipeline.

3.2 Marginal Space Deep Learning

In order to perform the detection with the introduced classifier in a given volu-
metric image I, we aim to find the parameters (T ,R,S) such that we maximize
the posterior probability p(T ,R,S|I ) over the space of all possible transforma-
tions, namely: (

T̂ , R̂, Ŝ
)

= arg max
T ,R,S

p(T ,R,S|I ). (3)

Due to the exponential increase of the number of pose hypotheses with re-
spect to the dimensionality of the pose parameter space, an exhaustive search is
impractical. To address this we propose Marginal Space Deep Learning, a frame-
work combining the concept of Marginal Space Learning [3] with the presented
sparse DL architecture. We split the parameter space in marginal sub-spaces of
increasing dimensionality, learning the underlying classifier only in high proba-
bility regions, estimating consequently the translation, orientation and scale of
the target object. This approach is expressed by the factorization of the posterior
probability as:

p(T ,R,S|I ) = p(T |I )p(R|T , I )p(S|T ,R, I ). (4)

We use our sparse DL-based classifier to estimate in turn the posterior probabil-
ities p(T |I), p(T ,R|I) and p(T ,R,S|I) which are then used to obtain the factors

contained in Eq. 4, using the relations: p(R|T , I) = p(T ,R|I )
p(T |I ) and p(S|T ,R, I ) =

p(T ,R,S|I )
p(T ,R|I ) . Using this kind of approach, as shown in [3], we achieve a speed-up

of 6 orders of magnitude compared to the exhaustive search.
A challenge arising with the use of deep neural networks as discriminating

engine in each stage of the marginal space pipeline, is the high class imbalance.
This imbalance can reach ratios of 1 : 1000 positive to negative samples. A deep
architecture cannot be trained with an SGD approach on such an unbalanced set
and simply re-weighting the penalties for the network cost function further wors-
ens the vanishing gradient effect. Instead, we propose to use a negative filtering
cascade of classifiers to hierarchically eliminate as many negatives as possible,
while preserving the positive samples across cascade stages. More specifically, in
each stage of the cascade we employ a simple, shallow, sparse neural network
and manually tune its decision boundary to eliminate the maximum number of
true negatives. The remaining samples are propagated through to the next cas-
cade stage where the same filtering procedure is repeated, unless we achieve a
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balanced sample set. In order to train a network within the cascade, we iterate at
epoch level over the complete positive sample set, while at each batch level, we
randomly sample the negative space to obtain a balanced training batch. Figure
2 shows a schematic visualization of the complete framework.

4 Experimental Results

For a comprehensive evaluation, we refer to the problem of detecting the aortic
valve in 3D Ultrasound volumes and compare the results to the reference state-of-
the-art MSL approach [3]. We model the pose of the aortic valve using a bounding
box defined in a 9-dimensional parameter space (see Section 3). The dataset used
for evaluation stems from 150 patients. Over multiple acquisitions and time
frames we extracted a set of 3795 volumes. The size of the frames present a high
variation between 100×100×50 and 250×250×150 voxels, at an original isotropic
resolution of 0.75 mm, adjusted to 3 mm for our experiments. The intensity of
each volume is normalized to unit range and annotated with the ground truth
box, enclosing the aortic valve at an average scale of 32 × 32 × 28 mm [14].
To set up the training environment for both the proposed MSDL pipeline and
the reference MSL approach, the dataset is split randomly at patient level in a
90%−10% proportion to determine the training set and the validation examples
for testing.

The meta-parameters defining the sub-space sampling and candidate propa-
gation in the MSL pipeline, as well as the network dependent parameters for both
the main classifier and the cascade used in each stage are estimated using a grid
search. For the proposed MSDL approach we distinguish in our experiments
two variants: MSDL-tes (using the gradual sparsity enforcement technique)
and MSDL-full (using all weights in the network). We achieve with 0% false
negative rate the sample balancing, using in each cascade less than 3 shallow
networks. All used networks are composed of fully connected layers of nodes
with sigmoid activation. For all 3 marginal spaces we use the same architecture
for the cascade and main classifier; cascade: 2 layers = 5832 (sparse) × 60 × 1
and main classifier: 4 layers = 5832 (sparse) × 150 × 80 × 50 × 1 hidden units.

Table 1. Comparison of the performance of the state-of-the-art MSL [3] and the pro-
posed MSDL framework. The measures used to quantify the quality of the results w.r.t
to the groundtruth data are the error of the position of the box and mean corner
distance (both measured in millimetres). The superior results are displayed in bold.

Position Error [mm] Corner Error [mm]

Training Data Test Data Training Data Test Data

MSL MSDL MSL MSDL MSL MSDL MSL MSDL

Mean 3.24 1.66 3.52 2.26 5.73 3.29 6.49 4.57

Median 2.91 1.51 3.31 2.04 5.21 3.02 6.22 3.98

STD 1.83 0.99 1.60 1.13 2.58 1.44 2.06 2.07
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Fig. 3. Left: Plot depicting the error progression on the training set and hold-out test
set in the translation stage, with the highlight on the impact of the sparsification
on the accuracy. Centre: Example sparse patterns for translation (top) and full space
(bottom), note more compact representation for the latter due to better data alignment.
Right: Example images showing detection results for different patients from the test
set. In order to capture also the underlying image information (i.e. the anatomy) we
use 2D planar cuts through the volume. Please note that depending on the cutting
plane, the visualized boxes can be viewed as complex polygons (ground-truth shown
in red, detection shown in green).

To quantify the results, we consider the position error of the center of the box
and the mean corner distance error (measuring the estimation accuracy of the
full transformation). The latter measure represents the average distance between
the 8 corners of the detected box and the ground truth box. Table 1 shows the
obtained results. The MSDL approach outperforms the state-of-the-art MSL
method by improving the mean position error by 36%. Figure 3(left) shows the
error measured during training for MSDL-tes and MSDL-full. The error variation
on the training data is explained by the injection of sparsity. As can be seen, the
enforced sparsity acts as regularization on the hold-out test set, preventing the
network from overfitting the data. As such applying sparsity minimally impacts
the accuracy on unseen data. In Figure 3(center) we illustrate an example of the
learned sparse weights showing a more distributed pattern on the translation
stage and more compact (and around the aortic root) on the full parameters
estimation stage, due to better data alignment. Qualitative results are depicted
in Figure 3(right). In terms of time performance, running the full MSDL pipeline
requires under 0.5 seconds compared to 1.9 seconds for MSL (using only CPU).
By imposing sparsity we achieve a speed-up of ×300 compared to MSDL-full,
hence the large computational benefit of the network simplification.

5 Conclusion

This work introduces the MSDL framework for efficient and robust scanning
of 3D volumetric medical image data. We proposed to tackle the parameter
estimation in hierarchical sub-spaces of increasing dimension by using a deep
neural architecture, simplified through sparsity injection. The training of such
a classifier is based on an iterative learning process. Within the pipeline, the
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described learning engine is preceded by a negative sample filtering cascade
of shallow sparse neural networks, which addresses the high class imbalance
associated with each learning space. By using this kind of approach, the need
for complex handcrafted features is eliminated. In terms of performance our
method outperforms the state-of-the-art MSL for the problem of detecting the
aortic valve in 3D ultrasound images. For future work, we plan on evaluating
the framework on more complex problems, with the target of completing the
detection pipeline with the full segmentation of the shape.
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