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ABSTRACT
The popularity of skateboarding continuously grows for ath-
letes performing the sport and for spectators following com-
petitions. The presentation and the assessment of the ath-
letes’ performance can be supported by state-of-the-art mo-
tion analysis and pattern recognition methods. In this pa-
per, we present a trick classification analysis based on mo-
tion data of inertial measurement units. Six tricks were per-
formed by seven skateboarders. A trick event detection algo-
rithm and four different classification methods were applied
to the collected data. A sensitivity of the event detection
of 94.2 % was achieved. The classification of correctly de-
tected trick events provides an accuracy of 97.8 % for the
best performing classifiers. The proposed algorithm holds
the potential to be extended to a real-time application that
could be used to make competitions fairer, to better present
the assessment to spectators and to support the training of
athletes.

Categories and Subject Descriptors
I.5.4 [Pattern Recognition]: Applications

Keywords
activity recognition, IMU, wearable sensors, sports

1. INTRODUCTION
The increasing interest in skateboarding as a competitive

sport (e.g. by Street League Skateboarding [1]) requires
new methods of motion analysis and innovative ways of pre-
senting the performance of athletes. State-of-the-art signal
processing technologies could offer an interdisciplinary de-
velopment in skateboarding. The motion of the board can
be captured by wearable sensors and analyzed in order to
automatically detect and classify performed tricks. A trick
classification system can be applied to competitions to sup-
port judges at the trick and scoring decision or to visualize
the performance to the spectators. In addition, the system
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can find its application for non-professional skateboarders
by providing feedback about their trick performance.
For the development of a trick-detection and classification
system, sophisticated pattern recognition procedures are nec-
essary. These methods are applied to the motion data which
are often acquired by inertial measurement units (IMU). In
contrast to video-based methods, IMUs do not require any
external equipment and the acquisition is not confined to a
specified area.
The first known approach to apply pattern recognition meth-
ods to skateboarding was proposed by Anlauff et al. [2].
They developed a real-time skateboarding game Tilt ’n’ Roll
for a Nokia N900 smartphone. No specific event detection
algorithm for the real-time algorithm was implemented. In-
stead, all time stamps of the 70 Hz-sampled signal were con-
sidered as possible start of a trick and processed by the clas-
sification algorithm. The classification was based on linear
discriminant analysis and was able to classify two skateboard
tricks. An extension of the project was described by Reynell
et al. [8]. They improved the hardware components of the
system and visualized the skateboard movement based on
accelerometer data. Further approaches for motion classifi-
cation in the field of board sports were proposed consider-
ing several aspects. Harding et al. [6] developed a system
to automatically calculate the number of rotations of half-
pipe snowboarding tricks. Holleczek at al. [7] established a
turn recognition for snowboarding. Based on specified gyro-
scope signal conditions, they distinguished between several
snowboarding characteristics including the stance direction,
turns and riding techniques. Sadi and Klukas [10] evaluated
algorithms to detect jumps in snow sports including snow-
boarding. In a follow-up work, Sadi et al. [11] established a
method to determine the air time of detected jumps.
All aforementioned approaches applied IMU signal process-
ing methods to board sports with the objective to detect or
classify specified activities. Most of them were established
heuristically without applying machine learning algorithms.
The only work containing machine learning algorithms in
the field of skateboarding is the approach of Anlauff et al.
It contained a two-trick classification based on one classifier
without prior event detection. However, there was no com-
parison to other classifiers. In addition, the lack of an event
detection could lead to unfeasible high computation times,
especially for faster tricks that require a higher sampling
rate than 70 Hz. In this work, we present a trick recognition
pipeline containing an event detection and subsequent clas-
sification. Four different classifiers were applied to all trick
events and compared for accuracy and computational effort.



2. METHODS

2.1 Data acquisition

2.1.1 Sensor hardware
The data for this study were collected with the sensor

system miPod (Blank et al. [3]). The miPod system con-
tains among others an inertial measurement unit (triaxial
accelerometer and gyroscope). The accelerometer range was
set to ± 16 g, the gyroscope was set to ± 2000 ◦/s. Measure-
ments of both were obtained with a 16-bit resolution per
axis. In addition, the internal real-time clock provided a
timestamp with a synchronization accuracy of 150 ms. Data
were collected with a sampling rate of 200 Hz. The data ac-
quisition was video recorded with a Panasonic Lumix DMC-
FT5 digital camera with a resolution of 640 x 480 pixels and
a frame rate of 25 fps. The skateboards that were used
for the data acquisition were provided by the skateboard-
ers who participated in the study. One inertial sensor was
attached behind the front axis of each board and adhered by
3MTM Dual LockTM Reclosable Fasteners. By the attach-
ment, the sensor-skateboard coordinate system was defined
by the board’s longitudinal axis x, the lateral axis y and the
vertical axis z (Fig. 1).

Figure 1: Sketch of the inertial sensor attachment
including visualization of the sensor axes (not drawn
to scale).

2.1.2 Study design
Seven experienced skateboarders (all male, age [years]:

25± 4, 3 regular, 4 goofy) participated in the data collection
by performing six different tricks each. The given order of
the trick execution was Ollie, Nollie, Kickflip, Heelflip, Pop
Shove-it and 360-Flip (Tab. 1). All tricks were repeated
five times. If one trick execution was not performed cor-
rectly, the subjects could repeat the trick more than five
times or move on to the next trick. The whole procedure was
recorded on video camera as well as documented in a study
protocol. In addition, the protocol contained the stance di-
rection of the skater and the remark of an expert if a trick
was performed correctly or not. A skateboarding glossary
with an overview of relevant skateboard tricks and stance

Table 1: Glossary with skateboard tricks and stance
directions. The according trick signals are visualized
in Fig. 2.

Definition Difference in
regular / goofy

regular stance direction –
front: left, back: right

goofy stance direction –
front: right, back: left

Ollie (O) nose up, tail up none
main rotation: y-axis
(+ y, – y)

Nollie (N) tail up, nose up none
main rotation: y-axis
(– y, + y)

Kickflip (K) / 360◦-rotation x-axis
Heelflip (H) main rotation: x-axis

(kick: – x, heel: + x)
Pop Shove-it 180◦-rotation x-axis
(P) main rotation: z-axis z-axis
360-Flip Kickflip & x-axis
(360) 360◦ - Pop Shove-it z-axis

directions is provided in Tab. 1. The gyroscope signals of
all performed tricks are visualized in Fig. 2. All subjects
gave written consent to participate in the study and for the
collected data to be published.

2.2 Preprocessing
Depending on the stance direction, the obtained motion

signal of some tricks varied. Comparing regular and goofy
skaters, Ollie and Nollie did not change due to the main
rotation about the y-axis. All the other tricks showed sim-
ilarities in the y-axis but a mirrored behavior in the x- and
z-axis (Tab. 1). In order to classify tricks of both types of
skaters, the signals of the x- and z-axis of all goofy datasets
were inverted in the preprocessing step.

2.3 Event detection
An event detection was implemented to determine rele-

vant time intervals that included tricks. That approach was
necessary to reduce the amount of data that were processed
in the subsequent classification. For the event detection, the
acceleration signal was segmented into windows. Based on
considerations about the length of a trick and the duration
of the landing impact, the length of the windows was set to
1 s with an overlap of 0.5 s.
The first step was to identify the landing after a trick. An
event detection method was implemented to select windows
that contained a possible landing impact. Therefore, the en-
ergy of the acceleration signal was calculated for each win-
dow as the sum of squares of all axes. A threshold for the
detection of possible tricks was defined. If a window’s en-
ergy exceeded the threshold, the window was selected for
containing a possible landing impact and thus, for contain-
ing a possible trick. The threshold was determined by man-
ually selecting and analyzing the first three performed Ollies
of each skater. Three Ollies were chosen as threshold deci-
sion because its landing impact is rather small compared to
other tricks and it can be performed by most skateboarders.
The energy values of the windows that contained the three
tricks were calculated and the lowest value was selected. The
threshold was then set to a level of 10 % below the lowest
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Figure 2: Example gyroscope signals of one subject
of all tricks that were used for the classification anal-
ysis.

determined value.
In the next step, the actual trick interval was defined for
each selected window. Therefore, the exact time step tland

of the landing impact was computed as the maximum of
the acceleration signal energy within each selected window.
From the landing time step tland the trick interval was de-
fined from [tland − 1 s] to [tland + 0.5 s] in order to include
the preparation of the trick and the trick itself before the
landing impact and some instances after the landing. The
detected trick intervals were provided for the next processing
step, the feature extraction.

2.4 Feature extraction
Feature vectors were calculated for all trick intervals. Sta-

tistical features included mean, variance, skewness and kur-
tosis. Frequency features contained the dominant frequency
and the bandwidth. All features were calculated for the
three acceleration axes, the three gyroscope axes and the
norm of the acceleration and gyroscope signal. In addi-
tion, the x-y-correlation, the x-z-correlation and the y-z-
correlation were calculated for each sensor type. Hence, 54
features were computed for each window in the input data.

2.5 Feature selection and classification
The feature selection and the classification were both per-

formed by the Embedded Classification Software Toolbox

(ECST) [9]. The ECST implementation is partially based
on Weka [5] but additionally provides an analysis of required
arithmetic operations in order to estimate the computational
effort of each classification approach. From the 54 extracted
features, only the best performing ones were used for the
classification. Therefore, a feature selection was performed
by ECST with a best-first forward selection. Four classi-
fiers were compared: Naive Bayes (NB), Partial Decision
Tree (PART), Support Vector Machine (SVM) with a radial
basis kernel and k-nearest neighbor (kNN). For SVM and
kNN, a grid search for the best performing parameters was
executed. SVM was optimized for the parameters γ and C
in the ranges γ ∈ [2−5; 25] and C ∈ [2−5; 25]. kNN was
analyzed for k ∈ {1,3,5}.

2.6 Evaluation
The goal of the trick event detection was to correctly de-

tect trick events and to ignore non-trick time intervals. The
proposed procedure was performed for all subjects. The re-
sulting intervals were compared to manually labeled trick
events in the video recording. For the evaluation, sensitivity
and specificity for the detection of trick events were calcu-
lated in relation to the number of all segmented windows.
In this early stage of the project, the evaluation of the clas-
sification was only based on correctly detected trick events.
Non-trick events that were incorrectly selected by the event
detection algorithm were excluded from further processing.
The trick events were classified by the four classifiers in order
to obtain the accuracy and computational effort (computa-
tion time and required operations for one run without grid
search) of each of them. The evaluation was based on a
leave-one-subject-out cross-validation.

3. RESULTS
The total number of segmented windows for the event

detection was 13542 containing 343 trick windows. The al-
gorithm correctly detected 323 of the 343 events and incor-
rectly detected 13 events that did not contain a trick. This
results in a sensitivity of 94.2 % and a specificity of 99.9 %.
The classification was based on the 323 correctly detected
tricks. The results of the ECST-based analysis of the accu-
racy and computational effort of all classifiers are summa-
rized in Tab. 2. The best overall accuracy was achieved for
Naive Bayes and SVM with 97.8%. The confusion matrix of
the Naive Bayes classification is provided in Tab. 3.

Table 2: Overall accuracy and computational effort
of all classifiers.

NB PART SVM kNN

accuracy [%] 97.8 93.4 97.8 96.0

computation low low high middle

- operations: 360 41 1015 1086

- time [s]: 6.2 10.6 32.7 5.2

4. DISCUSSION
The event detection results show a sensitivity of 94.2 %

and a specificity of 99.9 %. However, it has to be considered,
that the skateboard training was performed for the purpose
of this study and lasted only about 15 minutes per subject.
The subjects were asked to execute the tricks in a regular



Table 3: Confusion matrix of the trick classification
with NB.

true

predicted O N K H P 360

O 33 1 0 0 0 0

N 2 31 0 0 0 0

K 0 0 36 0 0 1

H 0 0 0 37 0 0

P 0 0 0 0 35 1

360 0 0 0 0 0 49

manner but it can be assumed that a typical skateboarding
training of one or two hours would contain more non-trick
events than this study. This fact might lead to a decreased
specificity in a real training scenario. However, a slightly
lower specificity by detecting more non-trick events might
not influence the system’s final performance considerably.
The best classification results were achieved with Naives
Bayes and SVM with an accuracy of 97.8 %. Classification
errors that can be seen in the confusion matrix occurred for
Ollie and Nollie and for two 360-Flips that were mistakenly
classified as Kickflip and Pop Shove-it. The confusion of Ol-
lie and Nollie can be explained by their similar signals. The
misclassification of the 360-Flips could be a result of the
360-Flip consisting of a combination of Kickflip and Pop
Shove-it (Tab. 1 and Fig. 2). An extension of the extracted
features by trick specific features (e.g. change of orientation)
could solve these issues.
Despite the high classification rate, it has to be considered
that all results were obtained by only processing actual trick
events with correctly performed tricks. Non-trick events
that were mistakenly detected by the event detection (false
positives) were not considered for further processing. In the
final application of the proposed system, a further method
has to be found to overcome this limitation. In addition,
not-correctly performed tricks have to be considered for the
system. Their signal might result in similar features but can
still contain small deviations. Possible solutions for the non-
trick events could be the implementation of a null-class or a
trick/non-trick decision based on the classification probabil-
ity. A similar solution has to be found for the correctly and
not-correctly performed tricks.
Considering a real-time trick classification application, the
computational effort would have to be analyzed in detail [4].
This study already showed the relative behavior of compu-
tation time of different classifiers but an advanced compu-
tation time analysis in comparison to the classification ac-
curacy would be necessary. In addition, the results were
achieved by the classification of only six tricks. For an ac-
tual application, a higher variety of tricks would be required.

5. SUMMARY AND FUTURE WORK
We conducted a study with seven subjects performing six

skateboarding tricks. The data were collected by accelerom-
eter and gyroscope sensors. Possible trick events were deter-
mined by a window-based approach. All correctly detected
trick events were classified by four classifiers. The best per-
formance was obtained with a classification by Naive Bayes
and Support Vector Machine with an accuracy of 97.8 %.

With our study, we provide a reliable base for future work
in further analyzing the performance of a trick recognition
system in skateboarding or board sports in general. Fur-
ther developments could include the implementation of the
system in a real-time application and an extension of the ap-
plication by a trick performance rating. Thereby, competi-
tions could be supported by analyzing, classifying and rating
the skateboard motion. Furthermore, amateur skateboard-
ers could use a classification system as a training device and
to exchange their achieved performance.

6. ACKNOWLEDGMENTS
The authors would like to thank Bretterbude Skateshop,

Erlangen and all participants of the study for their support
during the data collection.

7. REFERENCES
[1] Street League Skateboarding. [Online].

http://www.streetleague.com/

[Accessed: January 31, 2015].

[2] J. Anlauff et al. A method for outdoor skateboarding
video games. In 7th Int. Conf. on Advances in
Computer Entertainment Technology (ACE), pages
40–44, 2010.

[3] P. Blank, P. Kugler, H. Schlarb, and B. Eskofier. A
wearable sensor system for sports and fitness
applications. In 19th Annu. Congr. of the European
College of Sport Science (ECSS), page 703, 2014.

[4] B. Eskofier, M. Oleson, C. DiBenedetto, and
J. Hornegger. Embedded surface classification in
digital sports. Pattern Recognition Letters,
30(16):1448–1456, 2009.

[5] M. Hall et al. The weka data mining software: an
update. ACM SIGKDD explorations newsletter,
11(1):10–18, 2009.

[6] J. W. Harding, C. G. Mackintosh, A. G. Hahn, and
D. A. James. Classification of aerial acrobatics in elite
half-pipe snowboarding using body mounted inertial
sensors (P237). The Engineering of Sport,
7(2):447–456, 2008.

[7] T. Holleczek, J. Schoch, B. Arnrich, and G. Troster.
Recognizing turns and other snowboarding activities
with a gyroscope. In 14th Int. Symp. on Wearable
Computers (ISWC), pages 1–8, 2010.

[8] E. Reynell and H. Thinyane. Hardware and software
for skateboard trick visualisation on a mobile phone.
In Conf. of the South African Institute for Computer
Scientists and Information Technologists (SAICSIT),
pages 253–261, 2012.

[9] M. Ring, U. Jensen, P. Kugler, and B. Eskofier.
Software-based performance and complexity analysis
for the design of embedded classification systems. In
21st Int. Conf. on Pattern Recognition (ICPR), pages
2266–2269, 2012.

[10] F. Sadi and R. Klukas. Reliable jump detection for
snow sports with low-cost mems inertial sensors.
Sports Technology, 4(1-2):88–105, 2011.

[11] F. Sadi, R. Klukas, and R. Hoskinson. Precise air time
determination of athletic jumps with low-cost MEMS
inertial sensors using multiple attribute decision
making. Sports Technology, 6(2):63–77, 2013.


