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Abstract 
 

Due to low intra- and inter-rater reliability, perceptual voice evaluation should be supported by 

objective, automatic methods. In this study, text-based, computer-aided prosodic analysis and 

measurements of connected speech were combined in order to model perceptual evaluation of the 

German Roughness-Breathiness-Hoarseness (RBH) scheme. 58 connected speech samples (43 

women, 15 men; 48.7±17.8 years) containing the German version of the text “The North Wind and 

the Sun” were evaluated perceptually by 19 speech and voice therapy students according to the 

RBH scale. For the human-machine correlation, Support Vector Regression with measurements of 

the vocal fold cycle irregularities (CFx) and the closed phases of vocal fold vibration (CQx) of the 

Laryngograph®, and 33 features from a prosodic analysis module were used to model the listeners’ 

ratings. The best human-machine results for roughness were obtained from a combination of six 

prosodic features and CFx (r=0.71, ρ=0.57). These correlations were approximately the same as the 

inter-rater agreement among human raters (r=0.65, ρ=0.61). CQx was one of the substantial features 

of the hoarseness model. For hoarseness and breathiness, the human-machine agreement was 

substantially lower. Nevertheless, the automatic analysis method can serve as the basis for a 

meaningful objective support for perceptual analysis. 
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1. Introduction  

 

Voice is a perceptual phenomenon, and perceptual evaluation is therefore regarded as a gold 

standard for voice assessment [1,2]. Hence, perception-based methods are the basis for the 

evaluation of voice pathologies in clinical routine, although they are too inconsistent among single 

raters to establish a standardized and unified classification [3,4]. With this background of 

methodological shortcomings, simple rating criteria for perceptual evaluation have been established. 

Five of them have been combined to form the GRBAS scale [5] (grade, roughness, breathiness, 

asthenia, strain). However, the choice of criteria has been criticized: asthenia (A) and breathiness 

(B) correlated very highly with each other in a study by Nawka et al., and the evaluation of the 

strain (S) criterion showed a much higher variation than the other criteria. For these reasons, the 

mentioned working group had developed a reduced version of GRBAS, the Roughness-Breathiness-

Hoarseness (RBH) evaluation scheme [6]. It has become an established means for perceptual voice 

assessment in German-speaking countries.  

 

Automatic, i.e. computer-based, assessment may be helpful as an objective support for the 

subjective evaluation, since it omits the problem of intra- and inter-rater variation. Perception 

experiments are often applied to spontaneous speech, standard sentences, or standard texts. About 

automatic analysis, Maryn et al. reported that 18 out of 25 reviewed studies examined sustained 

vowels exclusively, four only speech, and three both vowels and speech [7]. For the analysis of 

speech, mostly one sentence of the English “rainbow passage” was used. Speech recordings have 

the advantage that they contain onsets, variations of F0, and pauses [8]. The impression of 

roughness, for instance, is influenced by the vowel onset fragments [9]. In general, hoarseness is 

more present and perceptible in long vowels, especially in open vowels, vowels in voiced context, 

vowels after glottal closure, or in strained vowels [10]. Hence, perceptual evaluation of a vowel and 

speech can only be adequately compared when the entire vowel with onset is evaluated [11,12]. For 

automatic evaluation, some researchers recommend examine only the stable part of an isolated 

vowel [13], but following these recommendations means that a substantial portion of persons whose 

phonation is highly irregular cannot be evaluated at all. In particular, the rapid movements of the 

articulatory organs that are essential for the production of efficient speech require methods of 

analysis that go beyond the sole use of sustained vowels [14]. In order to diminish this problem, the 

Laryngograph® has been designed to allow vocal fold closure to be monitored, most notably giving 

a basis for the measurement of aspects of vocal fold vibration which occur during voiced sounds 

[15]. 

 

In order to achieve a more global analysis of speech, the analysis of speech samples should be 

extended to methods that do not only evaluate voiced sounds. Also unvoiced sounds, words, the 

speaking rate, the duration and position of pauses within spoken phrases, the fundamental frequency 

and loudness and their variations contribute to the complex phenomenon of speech. The analysis of 

these aspects has been subject of our working group in the field of automatic speech processing and 

understanding (identification of what was said and what it means) and also in automatic evaluation 

of voice and speech disorders (computer-based analysis of voice quality and speech properties, such 

as intelligibility). This analysis is achieved by a program package called the prosody module 

[16,17,18]. The goal of this work is to identify a computer-based equivalent for the subjective 

ratings of roughness, breathiness, and hoarseness from speech recordings, which are representative 

for communication by voice. This is achieved by means of the Laryngograph® and prosodic 

analysis. Both systems of measurement are completely independent from each other.  
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Binary classification in the two classes “normal speech” and “pathologic speech” was not the goal 

of this study. Instead, the continuum of degrees of pathology and the continuum of human ratings 

were supposed to be modeled. 

 

The questions addressed are: 

 

How does the combination of prosodic analysis and Laryngograph measurements correspond with 

the perception-based RBH evaluation by “trained” listeners? 

How do the results change when the Laryngograph measurements are left out or used as the only 

features for modeling the listeners’ ratings?  

 

2. Materials and Methods 

 

2.1. Samples 

58 speech samples (43 samples of female and 15 samples of male voices) were used in this study. 

The age of the persons was between 12.2 and 81.9 years, the average age was 48.7 years with a 

standard deviation of 17.8 years. The age distribution is shown in Fig. 1. The speech samples were 

recorded at the Medical University Hannover, Department of phoniatrics and pedaudiology, within 

an interval of three months. Only the set of recordings, that was acquired during the first visit at the 

clinics, was used of each person. The collection of samples was supposed to be representative, so no 

further selection was made. For this reason, the database contained deviated voices and also 

“normal” voices (Table 1). The most frequent pathology was dysphagia (n=16). The subjects were 

examined by experienced laryngologists and phoniatricians following the standard protocol of the 

European Laryngological Society [19]. 

 

The speech samples contained connected speech, namely the standard text “Der Nordwind und die 

Sonne” (“The North Wind and the Sun”) [20] which is frequently used in medical speech evaluation 

in German-speaking countries. The version used for this study consisted of 109 words. The 

recordings were made with components of the Laryngograph® system [21]. The headset of the 

system was placed at a distance of 10 cm in front of the reader’s mouth. The speech data were 

recorded with a sampling frequency of 44.1 kHz and a 16 bit amplitude resolution. For automatic 

speech analysis, the data were re-sampled with a 16 kHz sampling frequency. In order to obtain the 

other Laryngograph measurements, two electrodes were placed superficially on either side of the 

neck of the subject at the level of the larynx, and a constant amplitude high-frequency voltage (3 

MHz) was applied. This setup was chosen in order to ensure conditions which are usual in clinical 

applications.  

 

The study has respected the principles of the World Medical Association (WMA) Declaration of 

Helsinki on ethical principles for medical research involving human subjects. All patients had given 

written consent to the anonymized use of their data for research purposes before the recordings.  

 

2.2. Perceptual Evaluation 

The perceptual evaluation of the text recordings according to clinical standards was done by 19 

speech and voice therapy students (3rd year female students, study course on speech therapy at the 

Fresenius University of Applied Sciences, Idstein, Germany) using the RBH scale [6]. The students 

had learned about the RBH scheme from the beginning of their education. In the third year, they 

have sufficient theoretical and practical knowledge about voice evaluation, the ability to interpret 

larynx-related diagnoses, and practical experience, since they have also undergone practical training 

including therapy lessons by themselves under supervision. 
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Before the listening task, detailed instruction was given to the students by the study tutors. During 

the task, no further information was given, however. The raters listened to each speech sample 

once. This was sufficient since the duration of one recoding was 46 seconds on the average. 

Between two samples, there was a pause to note down the results. The students were not allowed to 

discuss their impression with the other raters. 

 

For one speech sample, each of the RBH criteria, i.e. roughness, breathiness, and hoarseness, can be 

evaluated on a 4-point scale where ‘0’ means “absent” and ‘3’ means “high degree”. Originally it 

was believed that hoarseness is distinct of the other two categories, roughness and breathiness [22]. 

The RBH instead assumes that hoarseness is a superclass of them [23]. In order to capture the fact 

that hoarseness is the superclass, the H rating value must usually be at least as high as R and B. For 

this study, however, this latter rule was not applied, and the students were told to evaluate 

hoarseness on the 4-point scale just by their impression of the re-played speech. This procedure has 

already been performed in several other studies in Germany [24,25,26]. 

 

2.3. Laryngograph Measurements 

The Laryngograph® measures the time and degree of contact between the vocal folds by the 

application of two electrodes which are placed on the neck. The electroglottogram serves as the 

basis for the computation of several measures. Two of them have been used in this study and will be 

explained below. Although the voiced excitation of the vocal tract is a complex activity, it has two 

main time-dependent characteristics. The first one is derived from the duration of excitation of the 

vocal tract, when the closure of the vocal folds produces its main acoustic signal; the second one 

relates to the period during which the vocal folds are effectively closed [21]. The fundamental 

frequency (F0) is usually estimated from short-time windows and based on average values from 

several vocal fold cycles, which may also be fragmented at the boundaries of the analysis window. 

A period-synchronous analysis is more exact since it takes into account only full cycles and can also 

consider period-to-period variations that are often of perceptual importance. These variations of the 

period frequency values Fx are denoted as CFx in the Laryngograph software. Another measuring 

factor, which provides information about perceived voice quality, are the changes CQx of the 

contact phase Qx. The latter is directly related to the ratio of the closed phase of vocal fold vibration 

to the total period of time between two successive epochs of excitation [21]. In this study, CFx and 

CQx were used in combination with prosodic features to describe voice quality. Both values are 

given in percent. 

 

2.4. Prosodic Features 

The computation of the prosodic features is independent from the Laryngograph®. A speech 

recognition system [27] detects the spoken words and their positions in the speech recordings. Then 

the prosodic analysis module [16] computes a vector of prosodic features for each word. There are 

three basic groups of features. Duration features represent word and pause durations. Energy 

features contain information about maximum and minimum energy, their respective positions in the 

word, the energy regression coefficient, and the mean square error. Similarly, the F0 features, based 

on the detected fundamental frequency, comprise information about the extreme F0 values and their 

positions, voice onset and offset with their positions, and also the regression coefficient and the 

mean square error of the F0 trajectory. Duration, energy, and F0 values are stored as absolute and as 

normalized values. The basic features are computed in different contexts, i.e. in intervals containing 

a single word or pause only or a word-pause-word interval. In this way, 33 features were computed 

for each word (see Table 2) [17,28,29]. 
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Besides the 33 local features per word, 15 “global” features were computed for intervals of 15 

words length each. They were derived from jitter (fluctuations of F0), shimmer (fluctuations of 

intensity), and the number of detected voiced and unvoiced sections in the speech signal [28]. They 

covered the means and standard deviations of jitter and shimmer, the number, length and maximum 

length of voiced and unvoiced sections, the ratio of the numbers of voiced and unvoiced sections, 

the ratio of the length of the voiced sections to the length of the signal, and the same for unvoiced 

sections. The last feature was the standard deviation of F0.  

 

The listeners gave ratings for the entire text. In order to receive also one single value for each 

feature that could be compared to the human ratings, the average of each prosodic feature over the 

entire recording served as final feature value.  

 

2.5. Support Vector Regression 

A Support Vector Machine (SVM) performs a binary classification based on a hyperplane 

separation between two class areas in a multi-dimensional feature space. SVMs can also be used for 

Support Vector Regression (SVR) [30]. The general idea of regression is to use the element vectors 

of the training set to approximate a function which tries to predict the target value of a given vector 

of the test set. In this study, the sequential minimal optimization algorithm (SMO) [30] of the Weka 

toolbox [31] was applied for this purpose. The automatically computed prosodic features and the 

CFx and CQx values served as the training set for the regression, and the test set consisted of the 

perceptually assessed RBH scores. For each of R, B, and H, one separate regression was computed. 

 

In order to find the best subset of the computed features to model the subjective ratings, a 

correlation-based feature selection method [32, pp. 59-61] was applied in a 10-fold cross-validation 

manner. The features with the highest ranks were then used as the input for the SVR. 

 

2.6. Human-Machine Correlation 

Statistical analysis was performed using Weka and in-house programs. The inter-rater reliability for 

the entire rater group was measured using Krippendorff’s α [33]. Many studies use Cronbach’s α, 

but this measure eliminates the influences of different tendencies in rating since the mean values are 

neglected. In order to examine human-machine correlation, the automatic measurement for each 

rating criterion of each recording was compared to the average value of the 19 raters’ evaluation. 

The correlations between different measurements and rating criteria were computed using Pearson’s 

correlation coefficient r and Spearman’s rank-order correlation coefficient ρ. Other measures, like 

Cohen’s κ or Krippendorff’s α, were not used for this purpose due to the different domains of 

human and machine evaluation. This means, for instance, that continuous intervals of the prosodic 

features or the Laryngograph values would have to be mapped to the discrete values {0,1,2,3} of the 

RBH components, which is another possible source of error [34]. 

 

3. Results 

 

3.1. Perceptual Data 

The average values for the perceptual rating criteria are given in Table 3. The data showed a broad 

range of persons with minimal values of Rmin=0.05, Bmin=0.00, Hmin=0.05, respectively, to 

maximum values for R, B, and H around 2. A large variety in the evaluation results was observed 

within the rater group as well (Figs. 2-4). The inter-rater values for the 19 listeners were α=0.45 for 

roughness, α=0.33 for breathiness, and α=0.36 for hoarseness (Table 3). Correlations between the 

rating criteria are given in Table 4. The criteria roughness and breathiness correlate only moderately 

with each other. The strongest correlation is between breathiness and hoarseness (r=0.53, ρ=0.67). 
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3.2. Human-Machine Correlation 

The correlations between the perceptual evaluation and the automatic measurements after the SVR 

are given in Table 5. The best set for roughness (Rbest,I) achieves r=0.71 (ρ=0.57). It contains the 

duration of a word-pause-word interval (DurNormWPW), the mean and minimum F0 within a word 

(F0MeanW, F0MinW), mean jitter and shimmer averaged on 15-word sections (MeanJitter, 

MeanShimmer), the number of sections detected as voiced (#+Voiced), and CFx. Without CFx, 

only r=0.66 (ρ=0.49) is reached (set Rbest,I w/o CFx). The duration feature can also be left out 

without changing the correlations significantly (sets Rbest,II and Rbest,II w/o CFx). The same feature is 

in the best set for breathiness modeling (Bbest), which, however, was far less successful in modeling 

the reference with r=0.36 (ρ=0.27). Still, this correlation is highly significant. Neither CFx nor CQx 

are included in the breathiness model. For hoarseness, there are four different results, denoted Hbest,I 

to Hbest,IV. The best correlation is r=0.53 (ρ=0.54) for a combination of word duration (DurNormW), 

the voice offset position within single words (F0OffPosW), the normalized energy within words 

(EnNormW), the “global” number of voiced sections in the recording (#+Voiced), and the ratio 

between the numbers of voiced and unvoiced sections (RelNum+/-Voiced). CQx is also essential 

for the best feature set for hoarseness. Without CQx, the set Hbest,I reaches only human-machine 

correlations of about 0.35; with CFx instead of CQx, the highest values are below 0.5. Figs. 5-7 

show the perceptual evaluations, i.e. the average of the 19 raters, and the regression values of the 

SVR for the best feature sets.  

 

Table 6 shows the human-machine correlations for combinations of CFx and CQx only. These two 

measures can model the perceptual impression of hoarseness moderately (r=0.44, ρ=0.48), while 

they are only weakly correlated with roughness and breathiness. The distribution of these 

measurements is shown in Figs. 8-10.  

  

4. Discussion 

 

The Laryngograph® is an established means of voice evaluation [14,35]. The main purpose of this 

study was to determine the correlation between the German RBH evaluation scheme and a 

combination of text-based prosodic features and measurements from the Laryngograph. The best 

combination of features yielded a human-machine correlation for roughness of r=0.71 (ρ=0.57). The 

inter-rater correlation for one rater against the average of all others was r=0.65 (ρ=0.61). Hence, the 

automatic analysis can evaluate roughness as reliable as an “average” rater from the group of the 19 

speech and voice therapy students. For hoarseness, the automatic method reached almost the same 

correlation with the reference as the listeners among themselves. Only the breathiness rating could 

not be modeled satisfactorily. Additionally, dropping one of the feature sets from the automatic 

evaluation lead to significantly worse results. 

 

For the modeling of roughness, the duration of a word-pause-word interval (DurNormWPW) may 

contribute to the most successful set of features because the anatomic alterations, which are the 

reason for the deviated voice, may also cause a greater speaking effort. This effect has been shown 

for substitute voices of laryngectomized persons [17], and it might also be valid for the data in this 

study. The contribution of DurNormWPW to the regression sum is, however, very small.  

 

The impact of the values F0MinW and F0MeanW can be explained by the properties of the F0 

detection algorithm, which does a voiced-unvoiced decision first. On all of the 16 ms speech frames 

that were classified as voiced, the program performed F0 detection. The algorithm by Bagshaw and 

Medan [36] that was used for the task is very robust against distortions. However, noisy speech may 
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result in octave errors, i.e. instead of the real fundamental frequency the double, triple, or half of the 

actual value is found. More “noisy” speech influences the F0 trajectory and thus the correlation with 

the subjective results [18]. 

 

A similar case is the relevance of text-based jitter and shimmer for the model of the roughness 

evaluations. Both are well-known detectors for voice problems, and the number of segments in the 

recording that were detected as voiced corresponds with these findings. If a voice is very irregular, 

then the number of segments detected as voiced by the prosody module will be very low. A 

difficulty for the comparison of these results with other studies, however, is that the terms “jitter” 

and “shimmer” disguise a plethora of different algorithms, across many different software vendors 

and research groups [37]. Many studies give no algorithm details. Additionally, irregularity 

measures from sustained, isolated vowels and running speech cannot be directly compared due to 

coarticulatory effects and differences in voice onset and offset.  

 

In this study, also the CFx value appeared to be essential for the good human-machine correlation 

for roughness. When it was missing, the correlation dropped down to r=0.66 (ρ=0.49). CFx is also 

related to variations of F0, but it is period-synchronous instead of based on fixed-length windows. 

That is on the one hand an advantage against the traditional computation of jitter. On the other 

hand, the low correlation between CFx and jitter values (Table 7) indicates that both are containing 

important, but independent information. 

 

Breathiness can be modeled only weakly by the available features. While the human-human 

correlation was r=0.58 (ρ=0.50), the maximum for the automatic analysis was r=0.36 (ρ=0.27). 

Here, the duration of a word-pause-word interval contributes very strongly. The reason may be that 

the continuous leaking of air at the glottis leads to longer or more frequent pauses. 

 

The contribution of the F0 value at voice onset (F0OnsetW) may be based upon octave errors by the 

F0 detection algorithm again. So far, it is not clear why only the beginning of voiced sections causes 

a noticeable effect. There may be a connection to changes in the airstream between the beginning 

and end of words or phrases. It may have its reason in the high speaking effort in the dysphonic 

voice which leads to more irregularities especially in these positions, but this has to be confirmed 

by more detailed experiments on larger and homogeneous databases.  

 

The influence of the normalized energy in the breathiness model was only relevant when it was 

measured within one word (EnNormW) and not in a word-pause-word interval. Hence, breathing 

noise in pauses does not contribute to the result, although the duration of the pauses may be 

important, as pointed out above. The sign of the weighting factor (-0.247) is negative, so the 

breathier the voice, the weaker it is and the higher the human B evaluation. 

 

Jitter is also an important factor for the evaluation of breathiness; however, not all authors of other 

studies agree [38,39]. Shimmer shows only a very low contribution, but the standard deviation of 

shimmer within longer text passages, i.e. the fluctuations of the fluctuations of energy, seem to be 

characteristic for breathiness. 

 

Neither CFx nor CQx were in the optimal set for breathiness evaluation. 

 

For hoarseness, many features were in the best subsets that were also relevant for roughness and 

breathiness. This supports the assumption of Nawka et al. that hoarseness is a superclass of the 

other two criteria [6], although the students did not evaluate the data with this rule in mind 
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explicitly. The feature set modeling the raters’ decisions best reached a correlation of r=0.53 

(ρ=0.54) to that reference, the inter-rater correlation was r=0.59 (ρ=0.57). Like for breathiness, the 

duration is important, but only on single words, not on word-pause-word intervals. Replacing the 

feature with the latter variant yields much worse correlations (Table 5, column Hbest,III), as did using 

the word-based feature for modeling roughness.  

 

The normalized energy within words (EnNormW) is, like for breathiness, another important feature. 

Replacing it with the word-pause-word variant (EnNormWPW) was not successful (Table 5, 

columns Hbest,II and Hbest,IV). 

 

The average of jitter contributes to the hoarseness model even more than to the two other 

categories. 

 

The position of the voice offset within a word (F0OffPosW), which did not occur in the roughness 

and breathiness modeling, is a non-negligible factor for hoarseness evaluation. This has already 

been detected in a previous study with chronically hoarse persons who were evaluated by five voice 

experts [18]. The reason is very probably the F0 detection algorithm and its decisions regarding 

voiced and unvoiced sections again.  

 

Shimmer was not relevant for hoarseness at all in the results, although it showed contributions to 

the regression sum of roughness and breathiness. This supports, in contrast to Nawka’s assumption, 

the hypothesis that hoarseness may be more than just the superclass of the other categories. 

 

As with roughness, the number of sections that are classified as voiced (#+Voiced) is important for 

hoarseness evaluation. Additionally, the ratio of the numbers of voiced and voiceless sections 

(RelNum+/-Voiced) supports the results. 

 

The high correlation of perceptual B and H evaluations shows that for the evaluation of overall 

hoarseness the raters were closer to the breathiness rating than to the roughness rating. This is in 

contrast to another study of our group, where roughness and hoarseness had a higher correlation 

(ρ=0.79) [34]. For that study, however, the restriction H≥max(R,B) was applied, and only five 

speech therapists with several years of experience in voice evaluation had rated the data. In this new 

study, there was also a large variety of ratings among the 19 listeners. Therapists with many years 

of practical experience may show less disagreement [40], but according to the fact that the raters of 

our study had undergone almost three years of practical education before, we believe that they 

already developed a rather stable personal model of voice evaluation. The influence of these factors 

on our particular data has to be examined in future work.  

 

The automatic modeling of the hoarseness and especially the breathiness ratings was not as 

successful as for roughness. The set of available measures and prosodic features was not sufficient 

to depict the various ratings of the large rater group satisfyingly so far. Nevertheless, the method 

presented here may be the basis for a meaningful objective support and an addition to perceptual 

analysis in clinical practice. Another important advantage of the presented method is that it does not 

just classify voices into one of the two categories “normal” and “pathologic”. For quantification of a 

communication disorder in clinical use, this is not sufficient. Instead, the experiments provided 

regression formulae which can be used to translate the obtained measures onto the whole range of 

perceptual ratings. 
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A complete match of subjective and automatic evaluation was not expected. On the one hand, 

disagreement on which acoustic properties or measures represent which perceptual impression may 

still be present, on the other hand the automatic assessment can only be based on a stimulus which 

for perceptual evaluation is further processed within the listener. Hence, the sources of information 

for both methods are different. The process of perception may evaluate more or different 

information than the automatic methods. Additionally, there is also some possible improvement for 

the technical methods which is part of future work. As an example, the speech recognition module, 

which is supposed to provide the word hypotheses graph for the computation of the prosodic 

features, can be improved by adaptive methods to enhance the phoneme models for distorted speech 

[41]. For these reasons, we regard this study as a pilot study. Furthermore, the automatic evaluation 

is not supposed to be a full replacement for the subjective assessment, but an additional source of 

information which yields reproducible results. 

 

5. Conclusions 

 

Combined prosodic and Laryngograph-based analysis corresponds as good with the average 

perception-based roughness evaluation as a group of professional raters themselves on a clinical 

representative group of patients with a broad distribution of voice pathology. It can serve as an 

additional source of knowledge or an objective guideline in the clinics where perceptual evaluations 

are usually performed by a single person only. 
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Tables 
 

TABLE 1: Diagnoses within the speaker group (n=58). 

 

edema  

Reinke’s edema (bilateral) 3 

edge edema 1 

pareses  

vocal fold paresis (right) 8 

vocal fold paresis (left) 3 

vocal fold paresis (bilateral) 2 

benign tumors, pseudotumors  

hyperplasia vocal fold (right) 1 

vocal fold polyp (right) 4 

vocal fold polyp (left) 1 

vocal fold cyst (right) 1 

vocal fold nodules 3 

vocal fold granuloma 1 

larynx papillomatosis 1 

inflammations  

laryngitis 3 

central movement disorders  

spasmodic dysphonia 3 

balbuties 1 

other central disorders 1 

functional dysphonia  

psychogenic dysphonia 1 

dysphagia 16 

normal laryngeal findings 4 
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TABLE 2: Prosodic features and their intervals of computation; 33 prosodic features are based upon 

duration (“Dur”), energy (“En”) and fundamental frequency (“F0”) measures. The context size 

denotes the interval of words on which the features are computed; W: computed on current word, 

WPW: computed in the interval that contains the second and first word before the current word and 

the pause between them. The features are abbreviated as follows:  

Length of pauses “Pause”: length of silent pause before (before) and after (after), and filled pause 

before (Fill-before) and after (Fill-after) the respective word in context 

Energy features “En”: regression coefficient (RegCoeff) and mean square error (MseReg) of the 

energy curve with respect to the regression curve; mean (Mean) and maximum energy (Max) with 

its position on the time axis (MaxPos); absolute (Abs) and normalized (Norm) energy values 

Duration features “Dur”: absolute (Abs) and normalized (Norm) duration 

F0 features “F0”: regression coefficient (RegCoeff) and the mean square error (MseReg) of the F0 

curve with respect to its regression curve; mean (Mean), maximum (Max), minimum (Min), voice 

onset (On), and offset (Off) values as well as the position of Max (MaxPos), Min (MinPos), On 

(OnPos), and Off (OffPos) on the time axis; all F0 values are normalized. 

 

 

features context size 

 WPW W 

Pause: before, Fill-before, after, Fill-after  • 

En: RegCoeff, MseReg, Abs, Norm, Mean • • 

En: Max, MaxPos  • 

Dur: Abs, Norm • • 

F0: RegCoeff, MseReg • • 

F0: Mean, Max, MaxPos, Min, MinPos, Off, OffPos, On, OnPos    • 

 

 

TABLE 3: Perceptual evaluation results (average, standard deviation, minimal and maximal values) 

and inter-rater agreement expressed as Krippendorff’s α and the correlation coefficients r and ρ 

(n=58). 

 

 average standard dev. min max α r ρ 

R  0.88 0.51 0.05 2.21 0.45 0.65 0.61 

B 0.59 0.47 0.00 2.16 0.33 0.58 0.50 

H 0.81 0.56 0.05 1.89 0.36 0.59 0.57 

 

 

TABLE 4: Correlation r (ρ) between the perceptual ratings (n=58). 

 

 B H 

R 0.13 (0.33) 0.50 (0.53)* 

B  0.53 (0.67)* 

* = correlation is significant on the 0.01 level 
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TABLE 5: Best feature sets for human-machine correlation and their weights in the regression 

formulae. 

 

feature context Rbest,I Rbest,I 

w/o 

CFx 

Rbest,II Rbest,II w/o 

CFx 

 Bbest  Hbest,I Hbest,II Hbest,III Hbest,IV 

DurNorm WPW -0.057 -0.046    0.377   0.499 0.378  

DurNorm W        0.513   0.402 

F0Min W -0.446 -0.458 -0.452 -0.389        

F0Mean W -0.195 -0.226 -0.191 -0.172        

F0Onset W      0.173      

F0OffPos W        0.322 0.120 0.185 0.236 

EnNorm WPW         -0.151  0.343 

EnNorm W      -0.247  -0.315  0.155  

MeanJitter 15W 0.118 0.186 0.113 0.249  0.239  0.366 0.368 0.320 0.208 

MeanShimmer 15W 0.144 0.138 0.145 0.114  -0.031      

StandDevShimmer 15W      -0.163      

#+Voiced 15W 0.321 0.347 0.334 0.324    0.094 -0.133 -0.117 0.122 

RelNum+/-Voiced 15W        -0.164 0.218 0.082 -0.144 

CFx  0.210  0.206         

CQx         0.643 0.495 -0.242 0.506 

r  0.71 0.66 0.71 0.67  0.36  0.53 0.47 0.45 0.49 

ρ  0.57 0.49 0.58 0.49  0.27  0.54 0.46 0.45 0.55 

significance level  <0.001 <0.001 <0.001 <0.001  0.003  <0.001 <0.001 <0.001 <0.001 

contexts: W: word, WPW: word-pause-word, 15W: 15 words (“global” feature). The correlations of 

the respective set to the human reference is given by r (Pearson) and ρ (Spearman). 

 

 

TABLE 6: Weighting factors in the regression sums when the RBH rating is modeled by CFx and 

CQx only, and the human-machine correlation (r, ρ).  

 

feature R B H 

CFx 0.303 0.091 0.340 

CQx 0.033 0.117 0.490 

r 0.31 -0.10 0.44 

ρ 0.43 -0.05 0.48 

significance level 0.009 0.228 <0.001 
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TABLE 7: Correlations of prosodic and Laryngograph measures, which were in the best models for 

the human rating, with each other.  

 
feature 
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WPW W W W W W WPW W 15W 15W 15W 15W 15W   

DurNorm WPW  0.02 -0.17 -0.04 0.01 -0.23 0.93 0.03 0.07 -0.03 -0.12 0.01 -0.05 0.20 0.04 
DurNorm W 0.10  -0.30 -0.24 -0.19 -0.30 0.01 0.78 0.22 0.00 -0.03 0.08 0.13 0.13 0.05 

F0Min W 0.02 -0.30  0.53 0.56 0.34 -0.19 -0.11 -0.54 -0.31 -0.14 -0.70 -0.58 -0.26 -0.11 

F0Mean W -0.09 -0.31 0.62  0.68 0.39 -0.02 -0.09 -0.07 -0.32 0.02 -0.17 -0.13 -0.03 0.12 
F0Onset W 0.00 -0.23 0.62 0.62  0.29 0.05 -0.06 -0.01 -0.12 0.07 -0.10 -0.10 0.02 0.06 

F0OffPos W -0.13 -0.32 0.33 0.20 0.27  -0.18 -0.23 -0.04 -0.26 0.08 -0.32 -0.32 -0.01 0.01 

EnNorm WPW 0.92 0.07 0.02 -0.06 0.07 -0.11  0.06 0.14 0.02 -0.10 0.08 0.00 0.14 0.00 

EnNorm W 0.19 0.68 -0.11 -0.13 -0.03 -0.22 0.24  0.15 -0.14 -0.11 -0.02 -0.02 0.07 0.02 

Mean  

Jitter 
15W -0.11 0.18 -0.30 -0.11 0.00 0.08 -0.04 0.03  0.40 0.38 0.62 0.57 0.35 0.23 

Mean  

Shimmer 
15W -0.18 -0.02 -0.27 -0.36 -0.13 -0.23 -0.08 -0.20 0.21  0.75 0.43 0.40 0.15 -0.04 

StandDev  

Shimmer 
15W -0.28 -0.10 -0.10 -0.03 -0.02 -0.03 -0.21 -0.16 0.17 0.75  0.34 0.37 0.15 0.04 

#+Voiced 15W -0.13 0.13 -0.63 -0.29 -0.21 -0.35 -0.06 0.00 0.51 0.34 0.31  0.89 0.30 0.15 
RelNum 

+/-Voiced 
15W -0.14 0.16 -0.56 -0.24 -0.17 -0.30 -0.09 -0.01 0.51 0.31 0.31 0.93  0.20 0.07 

CFx  0.08 0.24 -0.35 -0.07 -0.02 -0.18 0.05 0.10 0.40 0.12 0.00 0.45 0.37  0.65 

CQx  -0.07 0.02 -0.04 0.18 0.07 -0.01 -0.12 -0.04 0.15 -0.03 -0.04 0.11 0.08 0.64  

upper right triangle: Pearson’s r, lower left triangle: Spearman’s ρ 

contexts: W: word, WPW: word-pause-word, 15W: 15 words (“global” feature) 

All r and ρ correlations with an absolute value of larger than 0.25 (0.33) are significant on the 0.05 

(0.01) level. 
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Figures 
 

FIGURE 1: Age distribution of the speaker group (n=58). 

 
 

 

 

FIGURE 2: Perceptual roughness (R) evaluation by 19 listeners (mean value and standard deviation). 
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FIGURE 3: Perceptual breathiness (B) evaluation by 19 listeners (mean value and standard 

deviation). 

 
 

 

 

FIGURE 4: Perceptual hoarseness (H) evaluation by 19 listeners (mean value and standard 

deviation). 
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FIGURE 5: Perceptual roughness (R) evaluation by 19 listeners, the SVR regression values (Rbest,I), 

and their best-fit line. 

 

 
 

 

 

FIGURE 6: Perceptual breathiness (B) evaluation by 19 listeners, the SVR regression values (Bbest), 

and their best-fit line. 
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FIGURE 7: Perceptual hoarseness (H) evaluation by 19 listeners, the SVR regression values (Hbest,I), 

and their best-fit line. 

 
 

 

 

FIGURE 8: Perceptual roughness (R) evaluation by 19 listeners vs. CFx and CQx, respectively. 
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FIGURE 9: Perceptual breathiness (B) evaluation by 19 listeners vs. CFx and CQx, respectively. 

 

 

 
 

 

 

FIGURE 10: Perceptual hoarseness (H) evaluation by 19 listeners vs. CFx and CQx, respectively. 

 

 
 

 


