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Abstract. Language-independent and alignment-free phonologica/pdone-
mic features were applied for automatic age estimationcdaseoice and speech
properties. 110 persons (average: 75.7 years) read theaBesnsion of the text
“The North Wind and the Sun”. For comparison with the autdmapproach,
five listeners estimated the speakers’ age perceptualhp@tiVector Regression
and feature selection were used to compute the best modgirgf.al his model
was found to use the following features: (a) the percentégeioed frames, (b)
eight phonological features, representing vowel heighsality in consonants,
turbulence, and position of the lips, and finally, (c) sevhargemic features. The
latter features might be relevant due to altered articuteliecause of dentures.
The mean absolute error between computed and chronolagealas 5.2 years
(RMSE: 7.0). It was 7.7 years (RMSE: 9.6) for an optimisticiad estimator and
10.5 years (RMSE: 11.9) for the average listener.
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1 Introduction

In speech science, increasing attention is given to agertbgnt characteristics of
speech, as life expectancy and the percentage of elderlyqtam are growing fast, es-
pecially in Europe and North America. Better understandinaging effects on speech
performance will provide better insight into models of thtomical, physiological,
and linguistic consequences of aging. The accuracy of a hiedeocal aging can be
tested by classifying a speaker’s age automatically. Aquevgth a large discrepancy
between chronological and perceived or computed age shewsamined more in de-
tail in order to reveal possible symptoms of beginning diesaThe analysis of healthy
speech may provide key contributions to the early diagrafsisurodegenerative disor-
ders, such as shown for Parkinson’s disease [1]. In othewsios, age-specific recog-
nition systems can be applied, when the user’'s age has bterates automatically,
for instance by choosing specific speed, volume, or musisystem prompts.
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The focus of many papers in that field is on the disambiguaifanly a few age
classes of practical relevance. Our work concentrates erdévelopment of a large
feature vector that allows to estimate an adult speakegsagrecisely as possible.

Phonological and phonemic features capture many voicelaodpeech properties.
They were successfully used for language-independenttitaieof voice quality and
speech intelligibility and can even be used to visualize¢hespects [2—4]. Hence, we
regarded them also suitable for automatic estimation ofsgoés age from speech.

This paper is organized as follows: Section 2 introducesspieech data used for
the experiments, Sect. 3 describes the features compuoiadiie data and the Support
Vector Regression for creating the aging model. The reutilltbe discussed in Sect. 4.

2 Test Data and Subjective Evaluation

110 German persons (31 men, 79 women) without voice or spgeditems and be-
tween 50 and 94 years of age participated in this study. Teeage age was 75.7
years with a standard deviation of 9.6 years (Fig. 1, Tahl&2¢y were recruited from
senior community centers, senior meetings, and assistied) facilities. Persons re-
ceiving voice-related medical treatment, in need of sdtilleirsing care and/or with
relevant cognitive limitations (e.g. dementia) were edeld from the study [5]. Each
person read the phonetically rich text “Der Nordwind undSisene” (“The North Wind
and the Sun”, [6]), which is frequently used in medical sfeeealuation in German-
speaking countries. It contains 108 words (71 distincthwviiv2 syllables. The data
were recorded with a sampling frequency of 16 kHz and 16 bjplaute resolution.
The study respected the World Medical Association (WMA) Reation of Helsinki
on ethical principles for medical research involving hunsabjects and has been ap-
proved by the ethics committee of the University Erlangdirberg (FAU).

One female and four male raters evaluated the audio dategestly by assigning
the age to each speaker after listening to the respectivie aathple. One male rater
was speaking German as a second language, the others wigge@Gatman speakers.
They did not know about the distribution and the range of aghé data in advance.

3 Features Computed from the Speech Data

Since itis expected that speech of elderly persons is ngtadfdcted by voice aging but
also by changes in articulation, we use phonological anagheimic features to capture
these effects. They were designed for Flemish, but in restadtes [2, 4] they have been
also successfully used for German. The pre-processing s¢dgrns 12 Mel-frequency
cepstral coefficients (MFCCs) and an energy value for each2§peech frame (frame
shift: 20ms). From this spectro-temporal representatfdh@acoustic signal, speaker
features are extracted which constitute a compact chaizatien of the speech of the
tested person. Based on the stream of MFCCs, two text-imdiegpe feature extraction
methods, focusing on phonological and phonemic aspeats,tieen explored.
Alignment-free phonological features (ALF-PLFs): First described in [7], these fea-
tures follow from a tracking of the temporal evolutions oé tindividual outputs of an
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Fig. 1. Distribution of age and dentures among the 31 male and 79léespeakers; for one
woman, no information about the dental status was available

artificial neural network that was trained (see [3, 7] for endetails) to generate 14
phonological properties per frame. These properties descr

— vocal source: voicing

— manner of articulation: silence, consonant-nasality,elemasality, turbulence (re-
ferring to fricative and plosive sounds)

— place of consonant articulation: labial, labio-dentalgalar, velar, glottal, palatal

— vowel features: vowel height, vowel place, vowel rounding

Every phonological property is analyzed by two sub-netwofkne of them deter-
mines whether the property is relevant at a given time (&ig.rot relevant to investi-
gate vowel place during utterance of a consonant); the otiedetermines whether the
characteristic (e.g. “labial”) is actually present or nbhhe hypothesis is that temporal
fluctuations in the network outputs can reveal articulattefjciencies, regardless of the
exact phonetic content of the text that was read, at least@sds this text is sufficiently
rich in phonetic content. The temporal analysis of each agtwutput generates a set
of parameters, such as the mean and standard deviatioreittenpage of the time the
output is high (above 0.66), intermediate or low (below ,38spectively, the mean
height of the peaks (maxima), and the mean time it takes teraakansition from low
to high. The overall number of output features is 504, arslatknowledged that several
of them may carry similar information. These speaker festare computed without
knowledge of the text that was read. Hence, we expect thera text-independent.
Alignment-free phonemic features (ALF-PMFs): The features, introduced in [3], were
originally based on the hypothesis that intelligibilitygiadation is correlated with
problems in realizing a certaitombination of phonological classes that is needed for
the production of a certain phone. Therefore, the ALF-PMHsd from a plain analy-
sis of posterior phone probabilities. Considering all fesrfor which the maximal prob-
ability is assigned to a particular phone, one computes #rand standard deviation
of that probability, and the mean of the peaks (maxima) aad#tieys (minima) found
in its temporal evolution. In addition, the percentage &ftime a frame is assigned to
the phone, and the mean probability of this phone over athémare computed. Clearly,
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Table 1. The AMPEX features (for details, see [10])

|featurddescription

PVF |percentage of all frames in the recording that were labebéckd
PVS |percentage of speech frames that were labeled voiced

AVE |average voicing evidence in voiced frames

PVFU |percentage of voiced frames with an unreliable

Jit averageFy-jitter in voiced frames

Jc averageFy-jitter in voiced frames with a reliabl&j

VL90 |90™ percentile (in seconds) of the voiced fragment durations
Tmax |duration (in seconds) of the longest speech fragment (tetrirpted by a pausg)

these features are computed without any knowledge of thehakwas read and can
therefore be expected to be text-independent. There ardifféfent ALF-PMFs.

All the neural networks for the computation of ALF-PLFs andFAPMFs had been
trained with Flemish speech data and were now used with Getest data. Their
general independence of the language had been shown b2fdie [

Prosodic features (AMPEX): They originate from a holistic analysis of the frame-
level volume, fundamental frequency, and voicing eviden@éis analysis can be con-
ducted on arbitrary speech, irrespective of the languagtddispoken. The frame-level
prosodic features are converted into 8 AMPEX features [Bg Voicing evidence and
the signal loudness (see [9, 10]) are used to label the frasesiced/unvoiced and as
speech/silence, and to locate pauses, defined as intefvalsre than 200 ms long.
Based on these classifications, the AMPEX feature extramiorputes the features
listed in Table 1. They can be grouped into voicing-relatathmeters (e.g. the per-
centage of speech frames classified as voiced)lancklated features (e.g. average
jitter of the fundamental frequendy}, in voiced frames). They were computed for the
whole length of each speech sample. In earlier studies)em@mting phonological fea-
tures with these-and-voicing related speaker characteristics enhandelligibility
prediction [3]. We assumed that they may also support auiorage estimation.

Support Vector Regression (SVR): In order to determine the best subset of all phonolog-
ical, phonemic, and prosodic features to model the chrayicdd age, Support Vector
Regression (SVR, [11]) was used. The underlying SVM usedealikernel. The com-
plexity constantC' for the SVR was set to 0.01 after a short series of experinwveitits
heuristic changes t6' by powers of 10. Each training example for the regression con
sisted of a set of features (the inputs) and a chronologg=ithe target output). The
sequential minimal optimization algorithm (SMO, [11]) tiet Weka toolbox [12] was
applied in a 10-fold cross-validation manner.

For the selection of the attributes, the Greedy Stepwiserititgn was applied. The
standard settings were not changed. All input features staredardized (mean value:
=0, standard deviatiow=1) for the analysis. For the final regression, the most egiev
features were used, precisely those who had been seledwwddre7 and 10 times
during the 10 folds of the process.
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4 Results and Discussion

For the final set of the aging model (Table 3), one AMPEX fea{t®VF) was selected.
Eight phonological features were in the best feature set.ribst relevant (selected 9
and 10 times) are:

— highlow_presence_meanmin: the mean minimum probability of the vowel height
throughout all vowels in the text

— highlow_presence_tneg: the mean duration (in number of frames) of a segment in
which a low vowel is present

— consonantnasality_presence_meanneg: the mean probability of nasality in a conso-
nant that sounds non-nasal

— consonantnasality_relevance_negdeltal: the time needed to do a transition from
consonant to vowel

Concerning the vowel height, or the vowel trapezium in gahéhere is no proof
that the measured effects are caused by anatomical changes @ging. Instead of
the voice, altered articulation may be the reason. Eadigtiss reported that the pro-
nunciation of phones can change during time due to changés ilanguage, or in the
way one speaker uses a language [13, 14]. Hence, also thésjpaee, i.e. the area en-
closed by the vowel trapezium, can change. Older speaké&msglish were reported to
undergo a shift in the speaker space roughly along a diagotta phonetic heighk
backness plane [15]. It is not sure so far that these findiagde generalized to other
languages, however. Nevertheless, we regard our resybisriant for age estimation
from speech — as opposed to age estimation from voice whiehlass information.

Transitions, as represented égnsonantnasality_relevance negdeltal, mightin ol-
der people be slower. The negative sign in the regressioghiérable 3) supports
this assumption. The weights are very low, however. Difiemgeights for men and
women in the formulae, especially fhighlow_presence_meanmin, might be related to
the differentFy or to a more rapidly fallingy in women as result of aging processes.

One feature in the set is related to the position of the lip®imels (mean of negative
relevance ofoundedspread). Three features are related to turbulence in the voice.

The most relevant phonemic features (Table 3) refer to nahimaximal, and mean
probabilities of some phones. The mean and maximum pratebibf /s/ over all
frames where it was recognized, and the percentage of ywsgitesence values for
/Z] (as in French ‘journal’; SAMPA notation) may indicatdeaked articulation due to
dentures. This is an important aspect to consider when astigrage from speech. The
same reason may hold for the occurrence of /n/, v/, antitheénposis the mean pos-
itive value for the presence of /I/). /Y/ denotes the shodnalaut. Its role in the set is
currently unclear.

The absolute error between the automatically estimatedr@dhronological age
was 5.2 years for all speakers together (root mean squaneRMSE: 7.0), for men and
women separately, it was slightly higher (Table 3). A ti\datimator optimizing with
respect to the mean absolute error would have had an errov gears (RMSE: 9.6).
Hence, our results show an error which is lower by more thanytears. The average
human rater estimated with an absolute error of 10.5 yed¥tsS(R 11.9). The greatest
mismatch occurred for a woman who was estimated 42 yearggolny rater 3.
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Table 2. Chronological age, perceived age for single raters and #dverage, and automatically
determined age (SVR)i(|e|) denotes mean absolute error, min/neadenotes minimal/maximal
error; perceptual ratings were given in integer numbergh@at decimal places)

all speakers women men
(age)u(le])|min e|max e||i(age)(|e|)|min e/max e (age] u(le]) |min e|max e
chron. [757] — [ — [ —[[763] — [ —[ —[[740] — [ —] — |
rater 1 729 | 7.2| -34| 27 73.0| 7.1|-34| 18 728| 76| -14| 27
rater 2 745| 66| 22| 22 || 756| 6.6 22| 20 || 71.9| 6.7| -15| 22
rater 3 57.3(119.1| -42| 11 57.9|18.9| -42| 11 56.9|19.7| -39 | 11
rater 4 63.5(13.3| -34| 25 || 63.0|13.9| -34 9 || 64.7| 12.0| -24| 25
rater 5 63.4(139| -31| 24 || 63.7|14.1| 31| 15 || 62.6| 13.5| -25| 24
rater avg| 66.3 | 10.5(-24.0 19.2 || 66.6 | 10.4|-24.0 7.4 || 65.6| 10.7|-19.2 18.4
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Fig. 2. Average chronological vs. perceiv@dft graphics) and computed aggight graphics)

The correlation of the automatically estimated and themblagical age wag=0.72
for all speakers;=0.73 for men, and=0.69 for women only. The average human rating
showed a correlation 0f=0.65 to the ‘real’ age of the whole speaker group. No single
rater performed as good as the machine (ratexQ:41; 2:r=0.66; 3:r=0.59; 4:r=0.43;
5:r=0.30). The inter-rater agreement on all the data, i.e. tieetation of one rater
against the average of the others, wa6.69 for three of the raters=0.62 for rater 1,
andr=0.48 for rater 5. The chronological, perceived, and comghage are also shown
in Fig. 2. The smaller range of the computed values is caugéugeerror minimization
during the SVR training. Without the somewhat optimistiatfee selection, the human-
machine correlation was=0.52 (mean error: 6.5 years, RMSE: 8.6) for all speakers.

Studies on age estimation have been presented before. $stande, Schotz [16]
used prosodic and spectral features, suchigdormants, energy, jitter, shimmer, and
duration, for age estimation by Classification And Regms3irees (CARTS). The av-
erage error in the classified age was above 15 years on 24espdakn two age classes
(18to 31 and 60 to 82 yeard)y, the formantd to F, and prosodic features were also
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Table 3. Regression weights for the best feature set when appliell dpeakers, to women and
men separately, respectively. The human-machine caoelahd the respective errors between
computed and chronological age are given in the lower patefable

|feature | type [chosefl all |womer men |
PVF AMPEX 7 |(-0.097-0.121-0.009
Y_min ALF-PMF| 7 |[-0.097-0.052-0.019
| _meanpos ALF-PMF 7 1(-0.175-0.118-0.090
n_min ALF-PMF| 8 |[-0.169-0.163-0.054
s.mean ALF-PMF| 8 ||-0.066—-0.060-0.071
s.max ALF-PMF 9 |(-0.131-0.1271-0.069
v_min ALF-PMF| 7 |[-0.055-0.074-0.050
Z_posperc ALF-PMF| 9 0.13§ 0.147 0.08§

consonantnasality_relevance_negdeltal|| ALF-PLF| 10 |(|-0.048-0.034—-0.023
consonantnasality_presence_meanneg || ALF-PLF| 10 || 0.177 0.154 0.066

highlow_presence_tneg ALF-PLF| 9 (-0.114-0.106-0.027
highlow_presence_meanmin ALF-PLF| 10 || 0.173 0.183 0.016
roundedspread_rel evance_meanneg ALF-PLF| 7 0.129 0.149 0.05Q
turbulence_rel evance_meanmax ALF-PLF| 7 |-0.076-0.033-0.084
turbulence_presence_mean ALF-PLF| 7 |-0.024-0.044-0.051
turbulence_presence_tneg ALF-PLF| 8 0.099 0.10%3 0.061
correlationr to chronological age || — — 0.774 0.73 0.69
mean abs. error to chronological ageH — — 5.2 5.4 5.8
RMSE to chronological age I — — 70 7.0 8.2

used together with MFCCs on the University of Florida Vocgli#g Database [17]. The
mean absolute error of listeners was 6.4 years, and the@rtbe machine was 10.0
years for gender-independent classification. Differeatyef age were not represented
continuously in the data, however, but in three separateyemgs with gaps between
them. This may also be the reason why the humans were bettegiirevaluation than
the machine. In our experiments, there was a monomodailistm of age.
Minematsu et al. [18] reported correlations between peeckand computed age
of up to r=0.88, but on audio data showing a clear trimodal dig&ibution. Their
approach was based on Gaussian Mixture Models (GMMs). lndy<if Bocklet et al.
with children in preschool and primary school age (aver&8dgyears), a system based
on GMMs and SVR showed a mean absolute error of 0.8 years arackianal error of
3 years [19]. The ratio of error and average age was smaltaurisystem; however.
This study showed the potential of the presented featurdariguage- and gender-
independent estimation of age from speech data. The methgdenhelpful for clinical
screening tests and for applications based on automagckpecognition in general.
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