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Abstract. Language-independent and alignment-free phonological and phone-
mic features were applied for automatic age estimation based on voice and speech
properties. 110 persons (average: 75.7 years) read the German version of the text
“The North Wind and the Sun”. For comparison with the automatic approach,
five listeners estimated the speakers’ age perceptually. Support Vector Regression
and feature selection were used to compute the best model of aging. This model
was found to use the following features: (a) the percentage of voiced frames, (b)
eight phonological features, representing vowel height, nasality in consonants,
turbulence, and position of the lips, and finally, (c) seven phonemic features. The
latter features might be relevant due to altered articulation because of dentures.
The mean absolute error between computed and chronologicalage was 5.2 years
(RMSE: 7.0). It was 7.7 years (RMSE: 9.6) for an optimistic trivial estimator and
10.5 years (RMSE: 11.9) for the average listener.
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1 Introduction

In speech science, increasing attention is given to age-dependent characteristics of
speech, as life expectancy and the percentage of elderly population are growing fast, es-
pecially in Europe and North America. Better understandingof aging effects on speech
performance will provide better insight into models of the anatomical, physiological,
and linguistic consequences of aging. The accuracy of a model for vocal aging can be
tested by classifying a speaker’s age automatically. A person with a large discrepancy
between chronological and perceived or computed age shouldbe examined more in de-
tail in order to reveal possible symptoms of beginning diseases. The analysis of healthy
speech may provide key contributions to the early diagnosisof neurodegenerative disor-
ders, such as shown for Parkinson’s disease [1]. In other scenarios, age-specific recog-
nition systems can be applied, when the user’s age has been estimated automatically,
for instance by choosing specific speed, volume, or music forsystem prompts.
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The focus of many papers in that field is on the disambiguationof only a few age
classes of practical relevance. Our work concentrates on the development of a large
feature vector that allows to estimate an adult speaker’s age as precisely as possible.

Phonological and phonemic features capture many voice and also speech properties.
They were successfully used for language-independent detection of voice quality and
speech intelligibility and can even be used to visualize these aspects [2–4]. Hence, we
regarded them also suitable for automatic estimation of a person’s age from speech.

This paper is organized as follows: Section 2 introduces thespeech data used for
the experiments, Sect. 3 describes the features computed from the data and the Support
Vector Regression for creating the aging model. The resultswill be discussed in Sect. 4.

2 Test Data and Subjective Evaluation

110 German persons (31 men, 79 women) without voice or speechproblems and be-
tween 50 and 94 years of age participated in this study. The average age was 75.7
years with a standard deviation of 9.6 years (Fig. 1, Table 2). They were recruited from
senior community centers, senior meetings, and assisted living facilities. Persons re-
ceiving voice-related medical treatment, in need of skilled nursing care and/or with
relevant cognitive limitations (e.g. dementia) were excluded from the study [5]. Each
person read the phonetically rich text “Der Nordwind und dieSonne” (“The North Wind
and the Sun”, [6]), which is frequently used in medical speech evaluation in German-
speaking countries. It contains 108 words (71 distinct) with 172 syllables. The data
were recorded with a sampling frequency of 16 kHz and 16 bit amplitude resolution.
The study respected the World Medical Association (WMA) Declaration of Helsinki
on ethical principles for medical research involving humansubjects and has been ap-
proved by the ethics committee of the University Erlangen-Nürnberg (FAU).

One female and four male raters evaluated the audio data perceptually by assigning
the age to each speaker after listening to the respective audio sample. One male rater
was speaking German as a second language, the others were native German speakers.
They did not know about the distribution and the range of age in the data in advance.

3 Features Computed from the Speech Data

Since it is expected that speech of elderly persons is not only affected by voice aging but
also by changes in articulation, we use phonological and phonemic features to capture
these effects. They were designed for Flemish, but in recentstudies [2, 4] they have been
also successfully used for German. The pre-processing stage returns 12 Mel-frequency
cepstral coefficients (MFCCs) and an energy value for each 25ms speech frame (frame
shift: 10 ms). From this spectro-temporal representation of the acoustic signal, speaker
features are extracted which constitute a compact characterization of the speech of the
tested person. Based on the stream of MFCCs, two text-independent feature extraction
methods, focusing on phonological and phonemic aspects, have been explored.
Alignment-free phonological features (ALF-PLFs): First described in [7], these fea-
tures follow from a tracking of the temporal evolutions of the individual outputs of an
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Fig. 1. Distribution of age and dentures among the 31 male and 79 female speakers; for one
woman, no information about the dental status was available.

artificial neural network that was trained (see [3, 7] for more details) to generate 14
phonological properties per frame. These properties describe:

– vocal source: voicing
– manner of articulation: silence, consonant-nasality, vowel-nasality, turbulence (re-

ferring to fricative and plosive sounds)
– place of consonant articulation: labial, labio-dental, alveolar, velar, glottal, palatal
– vowel features: vowel height, vowel place, vowel rounding

Every phonological property is analyzed by two sub-networks. One of them deter-
mines whether the property is relevant at a given time (e.g. it is not relevant to investi-
gate vowel place during utterance of a consonant); the otherone determines whether the
characteristic (e.g. “labial”) is actually present or not.The hypothesis is that temporal
fluctuations in the network outputs can reveal articulatorydeficiencies, regardless of the
exact phonetic content of the text that was read, at least as long as this text is sufficiently
rich in phonetic content. The temporal analysis of each network output generates a set
of parameters, such as the mean and standard deviation, the percentage of the time the
output is high (above 0.66), intermediate or low (below 0.33), respectively, the mean
height of the peaks (maxima), and the mean time it takes to make a transition from low
to high. The overall number of output features is 504, and it is acknowledged that several
of them may carry similar information. These speaker features are computed without
knowledge of the text that was read. Hence, we expect them to be text-independent.
Alignment-free phonemic features (ALF-PMFs): The features, introduced in [3], were
originally based on the hypothesis that intelligibility degradation is correlated with
problems in realizing a certaincombination of phonological classes that is needed for
the production of a certain phone. Therefore, the ALF-PMFs follow from a plain analy-
sis of posterior phone probabilities. Considering all frames for which the maximal prob-
ability is assigned to a particular phone, one computes the mean and standard deviation
of that probability, and the mean of the peaks (maxima) and the valleys (minima) found
in its temporal evolution. In addition, the percentage of the time a frame is assigned to
the phone, and the mean probability of this phone over all frames are computed. Clearly,
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Table 1.The AMPEX features (for details, see [10])

featuredescription

PVF percentage of all frames in the recording that were labeled voiced
PVS percentage of speech frames that were labeled voiced
AVE average voicing evidence in voiced frames
PVFU percentage of voiced frames with an unreliableF0

Jit averageF0-jitter in voiced frames
Jc averageF0-jitter in voiced frames with a reliableF0

VL90 90th percentile (in seconds) of the voiced fragment durations
Tmax duration (in seconds) of the longest speech fragment (not interrupted by a pause)

these features are computed without any knowledge of the text that was read and can
therefore be expected to be text-independent. There are 495different ALF-PMFs.

All the neural networks for the computation of ALF-PLFs and ALF-PMFs had been
trained with Flemish speech data and were now used with German test data. Their
general independence of the language had been shown before [2, 4].

Prosodic features (AMPEX): They originate from a holistic analysis of the frame-
level volume, fundamental frequency, and voicing evidences. This analysis can be con-
ducted on arbitrary speech, irrespective of the language that is spoken. The frame-level
prosodic features are converted into 8 AMPEX features [8]. The voicing evidence and
the signal loudness (see [9, 10]) are used to label the framesas voiced/unvoiced and as
speech/silence, and to locate pauses, defined as intervals of more than 200 ms long.
Based on these classifications, the AMPEX feature extractorcomputes the features
listed in Table 1. They can be grouped into voicing-related parameters (e.g. the per-
centage of speech frames classified as voiced) andF0-related features (e.g. average
jitter of the fundamental frequencyF0 in voiced frames). They were computed for the
whole length of each speech sample. In earlier studies, supplementing phonological fea-
tures with theseF0-and-voicing related speaker characteristics enhanced intelligibility
prediction [3]. We assumed that they may also support automatic age estimation.

Support Vector Regression (SVR): In order to determine the best subset of all phonolog-
ical, phonemic, and prosodic features to model the chronological age, Support Vector
Regression (SVR, [11]) was used. The underlying SVM used a linear kernel. The com-
plexity constantC for the SVR was set to 0.01 after a short series of experimentswith
heuristic changes toC by powers of 10. Each training example for the regression con-
sisted of a set of features (the inputs) and a chronological age (the target output). The
sequential minimal optimization algorithm (SMO, [11]) of the Weka toolbox [12] was
applied in a 10-fold cross-validation manner.

For the selection of the attributes, the Greedy Stepwise algorithm was applied. The
standard settings were not changed. All input features werestandardized (mean value:
µ=0, standard deviation:σ=1) for the analysis. For the final regression, the most relevant
features were used, precisely those who had been selected between 7 and 10 times
during the 10 folds of the process.
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4 Results and Discussion

For the final set of the aging model (Table 3), one AMPEX feature (PVF) was selected.
Eight phonological features were in the best feature set. The most relevant (selected 9
and 10 times) are:

– highlow presence meanmin: the mean minimum probability of the vowel height
throughout all vowels in the text

– highlow presence tneg: the mean duration (in number of frames) of a segment in
which a low vowel is present

– consonantnasality presence meanneg: the mean probability of nasality in a conso-
nant that sounds non-nasal

– consonantnasality relevance negdelta1: the time needed to do a transition from
consonant to vowel

Concerning the vowel height, or the vowel trapezium in general, there is no proof
that the measured effects are caused by anatomical changes due to aging. Instead of
the voice, altered articulation may be the reason. Earlier studies reported that the pro-
nunciation of phones can change during time due to changes inthe language, or in the
way one speaker uses a language [13, 14]. Hence, also the vowel space, i.e. the area en-
closed by the vowel trapezium, can change. Older speakers ofEnglish were reported to
undergo a shift in the speaker space roughly along a diagonalin the phonetic height×
backness plane [15]. It is not sure so far that these findings can be generalized to other
languages, however. Nevertheless, we regard our results important for age estimation
from speech – as opposed to age estimation from voice which uses less information.

Transitions, as represented byconsonantnasality relevance negdelta1, might in ol-
der people be slower. The negative sign in the regression weight (Table 3) supports
this assumption. The weights are very low, however. Different weights for men and
women in the formulae, especially forhighlow presence meanmin, might be related to
the differentF0 or to a more rapidly fallingF0 in women as result of aging processes.

One feature in the set is related to the position of the lips invowels (mean of negative
relevance ofroundedspread). Three features are related to turbulence in the voice.

The most relevant phonemic features (Table 3) refer to minimal, maximal, and mean
probabilities of some phones. The mean and maximum probabilities of /s/ over all
frames where it was recognized, and the percentage of positive presence values for
/Z/ (as in French ‘journal’; SAMPA notation) may indicate altered articulation due to
dentures. This is an important aspect to consider when estimating age from speech. The
same reason may hold for the occurrence of /n/, /v/, and /l/ (l meanpos is the mean pos-
itive value for the presence of /l/). /Y/ denotes the short u-umlaut. Its role in the set is
currently unclear.

The absolute error between the automatically estimated andthe chronological age
was 5.2 years for all speakers together (root mean square error RMSE: 7.0), for men and
women separately, it was slightly higher (Table 3). A trivial estimator optimizing with
respect to the mean absolute error would have had an error of 7.7 years (RMSE: 9.6).
Hence, our results show an error which is lower by more than two years. The average
human rater estimated with an absolute error of 10.5 years (RMSE: 11.9). The greatest
mismatch occurred for a woman who was estimated 42 years younger by rater 3.
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Table 2.Chronological age, perceived age for single raters and their average, and automatically
determined age (SVR);µ(|e|) denotes mean absolute error, min/maxe denotes minimal/maximal
error; perceptual ratings were given in integer numbers (without decimal places)

all speakers women men
µ(age)µ(|e|) min e max e µ(age)µ(|e|) min e max e µ(age)µ(|e|) min e max e

chron. 75.7 — — — 76.3 — — — 74.0 — — —

rater 1 72.9 7.2 –34 27 73.0 7.1 –34 18 72.8 7.6 –14 27
rater 2 74.5 6.6 –22 22 75.6 6.6 –22 20 71.9 6.7 –15 22
rater 3 57.3 19.1 –42 11 57.9 18.9 –42 11 55.9 19.7 –39 11
rater 4 63.5 13.3 –34 25 63.0 13.9 –34 9 64.7 12.0 –24 25
rater 5 63.4 13.9 –31 24 63.7 14.1 –31 15 62.6 13.5 –25 24
rater avg. 66.3 10.5 –24.0 19.2 66.6 10.4 –24.0 7.4 65.6 10.7 –19.2 18.4

SVR 76.0 5.2 –24.8 14.8 76.2 5.4 –19.0 14.0 76.5 5.8 –24.4 7.2
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Fig. 2. Average chronological vs. perceived(left graphics) and computed age(right graphics)

The correlation of the automatically estimated and the chronological age wasr=0.72
for all speakers,r=0.73 for men, andr=0.69 for women only. The average human rating
showed a correlation ofr=0.65 to the ‘real’ age of the whole speaker group. No single
rater performed as good as the machine (rater 1:r=0.41; 2:r=0.66; 3:r=0.59; 4:r=0.43;
5: r=0.30). The inter-rater agreement on all the data, i.e. the correlation of one rater
against the average of the others, wasr=0.69 for three of the raters,r=0.62 for rater 1,
andr=0.48 for rater 5. The chronological, perceived, and computed age are also shown
in Fig. 2. The smaller range of the computed values is caused by the error minimization
during the SVR training. Without the somewhat optimistic feature selection, the human-
machine correlation wasr=0.52 (mean error: 6.5 years, RMSE: 8.6) for all speakers.

Studies on age estimation have been presented before. For instance, Schötz [16]
used prosodic and spectral features, such asF0, formants, energy, jitter, shimmer, and
duration, for age estimation by Classification And Regression Trees (CARTs). The av-
erage error in the classified age was above 15 years on 24 speakers from two age classes
(18 to 31 and 60 to 82 years).F0, the formantsF1 toF4, and prosodic features were also
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Table 3.Regression weights for the best feature set when applied to all speakers, to women and
men separately, respectively. The human-machine correlation and the respective errors between
computed and chronological age are given in the lower part ofthe table

feature type chosen all women men

PVF AMPEX 7 –0.097 –0.121–0.009
Y min ALF-PMF 7 –0.097 –0.052–0.019
l meanpos ALF-PMF 7 –0.175 –0.118–0.090
n min ALF-PMF 8 –0.169 –0.163–0.054
s mean ALF-PMF 8 –0.066 –0.060–0.071
s max ALF-PMF 9 –0.131 –0.127–0.069
v min ALF-PMF 7 –0.055 –0.074–0.050
Z posperc ALF-PMF 9 0.138 0.147 0.088
consonantnasality relevance negdelta1 ALF-PLF 10 –0.048 –0.034–0.023
consonantnasality presence meanneg ALF-PLF 10 0.177 0.154 0.066
highlow presence tneg ALF-PLF 9 –0.114 –0.106–0.027
highlow presence meanmin ALF-PLF 10 0.173 0.183 0.016
roundedspread relevance meanneg ALF-PLF 7 0.129 0.149 0.050
turbulence relevance meanmax ALF-PLF 7 –0.076 –0.033–0.088
turbulence presence mean ALF-PLF 7 –0.024 –0.044–0.051
turbulence presence tneg ALF-PLF 8 0.099 0.101 0.061

correlationr to chronological age — — 0.72 0.73 0.69
mean abs. error to chronological age — — 5.2 5.4 5.8
RMSE to chronological age — — 7.0 7.0 8.2

used together with MFCCs on the University of Florida Vocal Aging Database [17]. The
mean absolute error of listeners was 6.4 years, and the errorof the machine was 10.0
years for gender-independent classification. Different years of age were not represented
continuously in the data, however, but in three separate agegroups with gaps between
them. This may also be the reason why the humans were better intheir evaluation than
the machine. In our experiments, there was a monomodal distribution of age.

Minematsu et al. [18] reported correlations between perceived and computed age
of up to r=0.88, but on audio data showing a clear trimodal agedistribution. Their
approach was based on Gaussian Mixture Models (GMMs). In a study of Bocklet et al.
with children in preschool and primary school age (average:8.3 years), a system based
on GMMs and SVR showed a mean absolute error of 0.8 years and a maximal error of
3 years [19]. The ratio of error and average age was smaller inour system; however.

This study showed the potential of the presented features for language- and gender-
independent estimation of age from speech data. The method may be helpful for clinical
screening tests and for applications based on automatic speech recognition in general.
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