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Abstract— Epilepsy is a disease of the central nervous system.
Nearly 70% of people with epilepsy respond to a proper
treatment, but for a successful therapy of epilepsy, physicians
need to know if and when seizures occur. The gold standard
diagnosis tool video-electroencephalography (vEEG) requires
patients to stay at hospital for several days. A wearable
sensor system, e.g. a wristband, serving as diagnostic tool or
event monitor, would allow unobtrusive ambulatory long-term
monitoring while reducing costs.

Previous studies showed that seizures with motor symptoms
such as generalized tonic-clonic seizures can be detected by
measuring the electrodermal activity (EDA) and motion mea-
suring acceleration (ACC).

In this study, EDA and ACC from 8 patients were analyzed.
In extension to previous studies, different types of seizures,
including seizures without motor activity, were taken into ac-
count. A hierarchical classification approach was implemented
in order to detect different types of epileptic seizures using data
from wearable sensors. Using a k-nearest neighbor (kNN) clas-
sifier an overall sensitivity of 89.1% and an overall specificity
of 93.1% were achieved, for seizures without motor activity
the sensitivity was 97.1% and the specificity was 92.9%. The
presented method is a first step towards a reliable ambulatory
monitoring system for epileptic seizures with and without motor
activity.

I. INTRODUCTION

Epilepsy is a disease of the central nervous system, with 50
million patients worldwide [1]. The most important symptom
associated with epilepsy are epileptic seizures, i.e., episodic
events where the patient is struck by various symptoms
such as loss of consciousness or involuntary movements.
Differences in clinical manifestations of epileptic seizures
depend on the location of the seizure onset in the brain, i.e.,
the epileptogenic zone [2].

For therapy, physicians need to know if and when seizures
occur. Many medical decisions depend on detailed infor-
mation about the seizure type and its origin in the brain.
The gold standard for the diagnosis of epilepsy is video-
electroencephalography (vEEG) monitoring. A vEEG inves-
tigation usually provides the aforementioned information,
allowing a diagnosis of epilepsy and a detailed seizure
characterization in order to determine therapeutic options,
especially in absence of a response to medication [3].
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The standard vEEG examination takes up to several days.
Consequently, a patient is required to stay at hospital and to
keep electrodes placed at his scalp during that time. An easier
and more applicable diagnostic tool would facilitate long-
term monitoring at home, reduce the burden on patients as
well as the financial and medical staff expenditure and would
be helpful for a first diagnosis. In cases of already diagnosed
epilepsy it could serve as event monitor, especially if it is
applicable both inside and outside the vEEG environment.

In previous research, various biomedical signals were
analyzed and tested for applicability in home monitoring.
Wearable sensor systems measuring biomedical signals were
used to develop automatic detection tools. Most of the
systems were based on measurements of motor activities [4],
[5]. Furthermore, changes in electrodermal activity (EDA) in
particular for generalized tonic-clonic seizures (GTCS) and
complex partial seizures (CPS) were analyzed and showed
an increased EDA amplitude [6], [7]. EDA is a measure-
ment of the skin conductance reflecting the activity of the
sympathetic nervous system [8]. Recent studies proposed
that combining the measurement of EDA with acceleration
(ACC) data could improve the performance of such detection
systems [7].

Wearable sensor systems measuring motor activity are
applicable for seizures with striking movement patterns, e.g.
GTCS. For seizure types that do not show prominent move-
ments, a motor based system would fail. It was shown that
seizures with motor activity can be detected by measuring
ACC and EDA.

In this study, different types of seizures, including seizures
without motor activity, were taken into account. The purpose
of this paper is to detect different types of epileptic seizures.
The measured ACC and EDA data were analyzed in order to
determine significant characteristics and differences between
seizure types. We show that characteristic EDA changes can
be measured for seizures with and without striking movement
patterns. We propose a hierarchical seizure classification
algorithm as a first step towards an ambulatory event monitor.

II. METHODS
A. Measurement Devices

The ACC and EDA signals were measured using the Em-
patica E3 (Empatica Inc., Milan, Italy) wristband, which was
worn bilaterally at the distal forearm. It contained a three-
axes accelerometer measuring with a sampling frequency of
32 Hz. EDA was measured by applying a generated alternat-
ing current through two silver-coated electrodes placed at the
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ventral side of the distal forearm [9]. EDA data was collected
with a sampling frequency of 4 Hz. A vEEG monitoring unit
served as reference data.

B. Data Collection

Data collection took place at the Epilepsy Center in
the Department of Neurology of the University Hospital
Erlangen. The study was approved by the local ethic com-
mission. Only patients who were regularly scheduled for a
vEEG monitoring at the Epilepsy Center Erlangen with a
pre-diagnosed clear cut epilepsy syndrome were asked to
participate. The study data was collected additionally to the
standard examination. Each patient participating in the study
was informed and asked to sign consent.

The duration of the data collection varied for each patient
from 24 hours to several days, depending on the length
of their stay and the occurrence of epileptic seizures. The
examined vEEG data, provided by the Epilepsy Center and
annotated by a medical expert (B.K.), was used to determine
the data of interest, i.e., time of seizure onset, duration of the
seizure, EEG pattern of the seizure and a possible movement
pattern during the seizure. The seizure types were grouped
according to their movement patterns. Tonic-clonic seizures
and seizures with hypermotor and complex motor symptoms
were grouped as predominantly motor seizures. Dialeptic
seizures and seizures with automotor and hypomotor symp-
toms were grouped as predominantly non-motor seizures.

Before and after each measurement period a temporal
alignment of the sensor and the vEEG system was performed
by producing an artificial artifact on the two wristbands
simultaneously and manually marking the corresponding
time stamp in the vEEG recording.

C. Preprocessing

EDA is a slow-moving signal that might contain motion
artifacts [10]. For this reason a low pass filter was used to
reduce high frequency components. Analogously to earlier
studies, a cutoff frequency of 1.5 Hz was chosen [10]–[12].

The EDA signal as a measurement of the skin conduc-
tance was decomposed into two components: the tonic skin
conductance level and the phasic skin conductance response
[13]. The EDA signal was decomposed using Ledalab, a
Matlab-based software that provided an implementation of
the continuous decomposition analysis (CDA), an algorithm
based on deconvolution [14].

D. Feature Extraction

For the feature extraction, sliding windows of 10 s with
50% overlap and 5 min with 80% overlap were used to
extract features of the ACC and EDA data. 26 features were
extracted with 10 s windows. 16 of these features were time,
frequency and nonlinear features computed from the ACC
data, already introduced in a previous study [7], [11]. Ten
features proposed in different studies were determined from
EDA, skin conductance level and skin conductance response
data [7], [11], [15]–[17]. In order to determine changes of
the signal, further 26 features indicating the difference of
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Fig. 1. Overview of the hierarchical classification approach. Firstly, data
was reduced using the four best features of the information gain rank on
the training set to detect possible seizures and discard non-seizure data.
Secondly, with another information gain rank, the best feature set achieving
the best classification results was determined.

the value of each 10 s window feature to its value 60 s
before were calculated. To obtain information about the
distribution of the EDA signal and to capture low frequency
components of the EDA signal, another four features were
used to compute mean, variance, skewness and kurtosis in a
5 min window. Accordingly, we ended up with 56 features
in total. Before training and testing, each feature was scaled
to the interval [0;1] on the training and test data sets.

E. Hierarchical Classifcation

A hierarchical classification system was used to firstly
detect possible seizures and discard non-seizure data and
secondly classify the remaining data. Figure 1 illustrates
the process of the hierarchical classification, which will be
described in the following.

For data reduction, features were ranked according to their
information gain [18]. The first four features of the ranking
were selected and used for data reduction. To handle the
skewed class distribution, an oversampling technique was
applied. With the applied oversampling technique, the data
set used for training was repartitioned to 80% seizure and
20% non-seizure data [19], [20]. Then, a classifier deciding
for a possible seizure or non-seizure sample was trained
using the repartitioned data. As classifiers, the machine
learning algorithms Random Forest with 10 trees [21] and
k-nearest neighbor classifier (kNN) with k = 5 were tested
[22], [23].

The remaining data set, i.e., the data classified as possible
seizure, was again ranked according to the information gain
[18]. This time, the result of the information gain was used
to sequentially add a feature to the classifier in order to
determine the feature set with the best classification results.
For this approach, the kNN and Random Forest algorithm
were tested again. Allowing the classifier to detect different
types of seizures, different labels were used for epileptic
seizures with and without motor activity. The seizure type
(predominantly motor or non-motor) was determined accord-
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Fig. 2. Example of a predominantly motor seizure with complex motor
symptoms (top) and of a predominantly non-motor seizure with hypomotor
symptoms (bottom).

ing to the video data and the course of the seizure described
by the medical experts. In order to avoid losing important
information of the measured signals just before or after the
indicated seizure time, the signals five minutes before the
seizure onset were considered and labeled as preictal and the
signals five minutes after the seizure offset were considered
and labeled as postictal.

F. Evaluation

In order to account for statistic variations induced by the
randomness of the oversampling process, the data reduction
was repeated 10 times and the average of the results for
the different settings was used for comparison. For the eval-
uation, sensitivity, precision and specificity were estimated
using an exhaustive leave-one-subject-out cross-validation
[24]. The specificity and precision indicate the reliability
of the detector. The sensitivity specifies how many clinical
seizures were detected. A seizure was considered as detected,
if any seizure label was set within the preictal, ictal or
postictal phase. Measurements of the right and left side were
considered separately.

III. RESULTS

Considering the measurements on the right and left side
separately, 55 epileptic seizures were measured within 540
hours. Four of eight patients had seizures with striking
movement patterns (21 seizures), the remaining four patients
had predominantly non-motor seizures (34 seizures).

Figure 2 depicts the changes of the EDA and ACC signal
for an epileptic seizure with (top) and without motor activity
(bottom).

The four best ranked features used for data reduction are
the four EDA distribution features mean, variance, skewness
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Fig. 3. Best result for Random Forest and kNN classifier. The Random
Forest classifier achieved the best results with the 26 first features of the
information gain rank and the kNN with the eleven first features.

and kurtosis. Using the kNN classifier for data reduction
resulted in 58.2% remaining data, with a sensitivity of 96.4%.
The Random Forest classifier reduced the data to 40.8%,
with a sensitivity of 93.5%. Since it was aimed to detect all
seizures, further calculations were done based on the data set
with the highest sensitivity (96.4%), obtained by the kNN
classifier.

Figure 3 presents the results of the second classification
step. In the top plot the best results of the kNN and Random
Forest classifier are displayed. A sensitivity of 89.1%, a
precision of 7.5% and a specificity of 93.1% was achieved
using the kNN classifier trained by the eleven first features
of the information gain rank. This was the highest sensitivity
obtained by the kNN classifier. The highest sensitivity of the
Random Forest classifier (87.3%) with a precision of 8.2%
and a specificity of 95.2% was obtained by using the 26 first
features of the information gain rank.

The corresponding results for all seizures with motor
activity and all seizures without motor activity are shown
in the middle and on the bottom of Figure 3. The kNN
classifier with eleven features detected 97.1% of predom-
inantly non-motor seizures (9.6% precision, 92.9% speci-
ficity) and 76.2% of predominantly motor seizures (4.6%
precision, 93.4% specificity). The Random Forest classifier
detected 90.5% seizures with motor activity (5.6% precision,
93.3% specificity) and 85.3% without motor activity (12.3%
precision, 96.8% specificity).

IV. DISCUSSION

A visual inspection of the raw signals of EDA and
ACC already indicated significant changes for predominantly
motor and non-motor seizures (see Figure 2). Furthermore,
it was shown that changes of the ACC and the EDA signal
were different for epileptic seizures with motor activity
compared to those without. Besides the expected differences
in the ACC signal, there were also differences in the EDA
signal. While the EDA signal of seizures with complex
and hypermotor symptoms started with the seizure onset
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and showed an alternating curve, the changes of seizures
with automotor and hypomotor symptoms started with a
delay and they were characterized by a slow increase of the
amplitude. Concerning the delay, it was important to consider
the postictal phase. Having various different characteristics,
the usage of two different classification systems, suitable for
solving different classification problems, could improve the
classification results.

Since the four best ranked features used for data reduction
were calculated with a 5 min window and an overlap of 80%,
the features for the data reduction only had to be computed
every 60 s. This reduced computational costs. The volume
of reduced data is still high compared to previous studies
reducing data based on motor activity [11]. This might be
one reason for the low precision.

The sensitivity achieved in this study is slightly better
compared to a similar non-patient-specific detector, that
achieved a sensitivity of 88% [7], [11]. While in the
aforementioned study only one false alarm per day was
encountered, we encountered a high number of false alarms
[7], [11]. The false alarms decreasing the specificity and
precision of the presented hierarchical classification system
might be explained by several facts. One main challenge
was the varying EDA signal. EDA changes occur during
various daily activities and even while sleeping. For this
reason there are many similarities between daily arousals
and epileptic seizures. In addition, the amplitude of the
changes was relatively small compared to other daily changes
[11]. In previous studies it was already mentioned that using
another biomedical signal that provides further significant
characteristics of epileptic seizures, e.g. the heart rate, might
improve the classification results [11]. Furthermore, a differ-
ent classifier might improve the results.

Regarding the results for predominantly motor and non-
motor seizures, it was shown that seizures without movement
pattern are as good detectable as seizures with motor activity.

The proposed method does not provide the same diagnos-
tic information that can be obtained from vEEG recordings,
e.g. the location of the seizure onset. For this reason it
cannot replace the vEEG monitoring. Instead, it is a first step
towards a reliable long-term ambulatory monitoring system.

V. CONCLUSIONS

In this study, wearable sensors measuring EDA and ACC
were used to detect epileptic seizures, including such with
and without striking movement patterns. It was shown that
both seizure types could be detected using EDA and ACC
data. Furthermore, methods detecting predominantly motor
and non-motor seizures were proposed and achieved a high
sensitivity. This work is a first step towards a reliable
ambulatory monitoring system for predominantly motor and
non-motor seizures.

Due to a low precision, the main challenge in future
will be to distinguish characteristics evoked by epileptic
seizures from other daily EDA arousals. Therefore, it should
be considered if another biomedical signal or a different
classifier could improve the detection.
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