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Electrophysiology Catheter Detection and
Reconstruction from Two Views in Fluoroscopic

Images
Matthias Hoffmann, Alexander Brost, Martin Koch, Felix Bourier, Andreas Maier, Klaus Kurzidim,

Norbert Strobel and Joachim Hornegger

Abstract—Electrophysiology (EP) studies and catheter ablation
have become important treatment options for several types of
cardiac arrhythmias. We present a novel image-based approach
for automatic detection and 3-D reconstruction of EP catheters
where the physician marks the catheter to be reconstructed
by a single click in each image. The result can be used to
provide 3-D information for enhanced navigation throughout
EP procedures. Our approach involves two X-ray projections
acquired from different angles, and it is based on two steps: First,
we detect the catheter in each view after manual initialization
using a graph-search method. Then, the detection results are
used to reconstruct a full 3-D model of the catheter based
on automatically determined point pairs for triangulation. An
evaluation on 176 different clinical fluoroscopic images yielded
a detection rate of 83.4 %. For measuring the error, we used
the coupling distance which is a more accurate quality measure
than the average point-wise distance to a reference. For successful
outcomes, the 2-D detection error was 1.7 mm± 1.2 mm. Using
successfully detected catheters for reconstruction, we obtained
a reconstruction error of 1.8 mm ± 1.1 mm on phantom data.
On clinical data, our method yielded a reconstruction error of
2.2 mm ± 2.2 mm.

Index Terms—Detection, Reconstruction, Catheters, Fluo-
roscopy, Ablation, Electrophysiology.

I. I NTRODUCTION

CATHETER ablation is a minimally invasive treatment
option for several types of heart arrhythmia, e.g. for
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Fig. 1. Common catheters used for electrophysiology (EP) procedures. A
radio-frequency (RF) ablation catheter is used to generatelesions inside the
left atrium, the circular mapping catheter (CM) records electrograms inside
the heart, and the coronary sinus (CS) catheter is used for pacing.

paroxysmal atrial fibrillation (AFib). The standard treatment
option for paroxysmal AFib is electrical isolation of the pul-
monary veins [1]. This often involves a radio frequency (RF)
ablation catheter to generate lesions around the pulmonary
vein (PV) ostia. In addition, a circular mapping (CM) catheter
is generally used to monitor the electrical signals at the
ostium of each PV. Finally, a coronary sinus (CS) catheter is
usually placed in the coronary sinus vein to facilitate pacing
when required. Navigation during EP procedures can either be
performed under X-ray or using electro-anatomical mapping
systems [2], [3]. X-ray provides the physician with a real-time
image at a high spatial resolution as shown in Fig. 1. The
disadvantage of X-ray imaging is its low soft tissue contrast,
e.g. a chamber such as the left atrium is only visible when
contrast is injected. Furthermore, fluoroscopic images provide
no depth information. As a consequence, the exact 3-D shape
and position of catheters have to be figured out mentally.
A biplane fluoroscopic system simplifies navigation as X-ray
imaging can easily be carried out from two different, usually
orthogonal, viewing directions, if required even at the same
time.

If we adopt X-ray images as our view on a patient, aug-
mented reality concepts can be applied to enhance navigation
during interventional procedures. For example, 3-D objects

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available athttp://dx.doi.org/10.1109/TMI.2015.2482539

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



2

which are registered to the X-ray images can be fused with
the live fluoroscopic images using overlay techniques [4].
A typical example is a 3-D model of the patient heart
segmented, e.g., from voxel data acquired using computed
tomography or magnetic resonance imaging. Besides 3-D
anatomical information, other graphical objects or additional
text can be added. As of today, manual triangulation of the
catheter is required to visualize the 3-D shape of a catheter
with respect to a registered heart model. This can be a time
consuming task, and we developed a method for catheter
detection and reconstruction which requires considerableless
user interaction.

The long term success of a RF ablation depends on the
catheter tip-to-heart wall contact force [5]. Recent studies have
shown that the contact force can be computed if the catheter
bending is known [6]. A 3-D catheter model, generated using
our proposed technique, could be used as input for this
bending-based force estimation method.

A. Previous Work

A combined approach for detection and reconstruction of
catheters was presented by Benderet al. [7]. This approach
was designed to verify catheter placement in intensive care
patients under X-ray. The assumptions made, e.g., low catheter
curvature, do, however, not meet EP requirements. Franken
et al. proposed a method for EP catheter detection [8]. The
main focus was placed on automatic catheter tip detection.
When trying to extend their algorithm to the detection of the
full catheter, the success rate was found to be low. Another
approach for catheter tip detection was presented by Yatziv
et al., [9]. This approach cannot be applied to single images
as it requires image sequences to compute a mean image
representing the background. From this background image,
an image from the sequence is subtracted to obtain moving
structures such as catheters including their shafts. Starting
from a point marked by the user, potential catheter shafts
are traced. However, this information is not processed further
in order to detect the complete catheter shafts, but rather
used to reduce the search space for catheter tips. Another
catheter tip detection method based on blob detection was
presented by Maet al. [10]. An alternative detection method
is the fusion of hypotheses generated by a number of learning-
based detectors in a Bayesian framework [11]. Both methods
focus on electrodes only, thus, limiting catheter reconstruc-
tion to those catheter segments that carry electrodes. As a
consequence, detection of catheters not carrying electrodes,
such as the cryoballoon catheter, is not possible. Another
detection approach was presented by Cazalaset al. [12], and
an approach with focus on overlapping catheters was presented
by Milletari et al. [13]. Again, these approaches detect only
catheter tips and not the whole catheter. Without detectionand
3-D reconstruction of the full catheter, little information about
the overall catheter shape can be provided. This information
is important to, e.g., assess a catheter’s fit to the anatomy at
hand.

A method to detect curvilinear structures in fluoroscopic
images was presented by Wanget al. [14]. They proposed

a graph-based approach which requires the user to mark the
start and the end point of the object. Additional points can
be manually added to increase the accuracy of the method.
Although the method can be adapted to EP catheters, it has
only been evaluated for guide wires.

Previous work on guide wire detection [15], [16], [17], [18]
cannot be applied to catheters directly either. In X-ray images,
guide wires present themselves as thin, homogeneously dense
objects with little variance in appearance. Catheters, however,
can vary in thickness, e.g. if they are located inside a sheath.
They also differ in contrast, especially in the regions around
the electrodes.

Tracking of catheters is related to catheter detection, but
it requires prior information, such as an initialization atthe
beginning or the result of a previous frame. If a 3-D structure
is tracked using images from different views, it is also related
to reconstruction. Tracking of EP catheters in 3-D can be
performed by altering the 3-D structure until its projections
fit the 2-D images [19], [20] or by 2-D tracking in both
fluoroscopic images followed by a calculation of the 3-D
position based on the 2-D objects. This approach was used
by Baert et al. [21] for tracking of guide wires with low
curvature. So far, only Brostet al. [22] focused on curved
objects, but their approach is limited to the elliptical part of
the CM catheter.

B. Contribution and Outline

We propose a novel method to detect and reconstruct
complete EP catheters from two different views which runs
automatically after manual initialization. In contrast to[9], it
requires only a single image per view rather than a sequence
and can accommodate, unlike the methods in [7], [21], highly
curved objects such as the CM catheter. Our proposed method
reduces the required manual interaction to a single click in
each image plane for each catheter, and it can be seamlessly
integrated into the workflow of typical EP procedures. The
resulting 3-D catheter model can be used for 3-D visualization
of anatomical landmarks [23] or for documentation of a
static scene during the procedure or retrospectively afterthe
procedure. If dynamic visualization is required, the method can
be used to calculate the initialization for catheter tracking [20].
Recently, a method for initial registration of a 3-D patientheart
model was proposed [22]. This method would be performed
only a few times during the procedure and requires as input
the 3-D shape of the CS catheter, which also can be obtained
using our proposed method. Furthermore, the method can
compute the 3-D shape of a RF catheter which can be used for
estimating its contact force [6]. Our previous approach [24],
[25] was designed for CM catheter detection. We extended
this approach by introducing a learning-based framework that
allows the method to adapt to arbitrary line-shaped catheters
in a training step. In this context, the constraint on the catheter
curvature was changed to adapt to more bent catheters such as
the CS catheter. Furthermore, we performed a comprehensive
evaluation of the detection and the reconstruction step as well
as their combination both on phantom data as well as on a large
clinical data set. In addition to our previous publication,we
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perform an evaluation with respect to the coupling error [26]
which allows a better judgement of the detection results, but
we use also the distance of the detection result to a reference
to maintain comparability.

This paper is structured as follows. In Section II, we provide
details on our catheter detection. Catheter reconstruction is
explained in Section II-D. Evaluation results are presented in
Section III, and we discuss our findings in Section IV. Finally,
we draw conclusions from our work in Section V.

II. CATHETER DETECTION AND RECONSTRUCTION

Our catheter detection and reconstruction algorithm com-
prises four steps. After manually placing a seed point on
the catheter, the image is filtered to enhance catheter-like
structures as a first step. In addition, the search space is
reduced to catheter-like structures that are close to the seed
point. In the second step, candidates for catheter segments
are identified and organized in a graph structure. In the third
step, combinations of different catheter segments are evaluated
using features that are selected with respect to certain catheter
properties. An evolutionary algorithm is used to search fora
combination of catheter segments that fits best to these defined
properties. After catheter detection in two views, 3-D catheter
reconstruction is performed as a last step. These steps are
explained in detail below.

A. Search Space Reduction

At first, a seed points ∈ N
2 is manually placed on

the catheter depicted in a digital X-ray image. For linear
catheters such as the ablation catheter and the CS catheter,
the seed point has to be put on the tip electrode. For the
circular mapping catheter, the seed point needs to be placed
shortly after the position where the shaft connects to the
elliptical part of the CM catheter. Afterwards, the image is
filtered using a medialness filter [27], see Fig. 2(b). In the
filtered output, catheter-like structures are enhanced, while
other structures are supressed. This image is denoted by
If , If(i, j) ∈ {0, . . . , Imax

f }. Without loss of generality, we
normalizeIf such thatImax

f = 255. After image filtering, a
binary image is generated using avariable threshold[28]. To
reduce noise, especially in the area close to the catheter and
to close holes within the catheter, an additional opening and
closing is performed on the binarization. The resulting image
is denoted byIb. Afterwards, a skeletonIs of the catheter is
computed [29], as shown in Fig. 2(c), and the seed point is
moved to the nearest skeleton point.

Next, we identify those pixels that belong to the catheter.
The goal is to obtain a reduced search spaceSr containing the
complete catheter and as few background pixels as possible.
Simply using the skeleton pixels connected to the seed point
is not sufficient as the skeleton along the catheter may contain
gaps. To handle these gaps, we define a costcr(p) for each
pixel p = (i, j)T and compute the setSr of pixels in the
original image that are closest to the seed point with respect
to this cost. This is done using Dijkstras’ algorithm [30]. To
apply it, we consider the images as a graph where each pixel
represents a node that is connected to its four neighbours by

an edge. The cost of the edge depends solely on the target
pixel p and is defined by

cr(p) =











1 if Is(p) = 1

min (Imax
f − If(p), λ‖p − s‖2) if Ib(p) = 1

I
max
f − If(p) otherwise

(1)
Pixels on the skeletonIs have a low cost since the skeleton
outlines catheters very well. To handle gaps in the skeleton,
the cost of the other pixels is determined by the filter value
such that a high filter value corresponds to a low cost.
Especially around the electrodes, the CM catheter may have a
low contrast which can result in several small patches in the
binarized imageIb that are separated by little gaps. During
skeletonization, a small patch may shrink to a single point
with a large gap to the next skeleton part. To ensure that the
catheter tip is completely included in the search space, pixels
that occur in the binarizationIb and are located close to the
seed points receive special treatment in Eq. 1. The impact of
the proximity tos is governed by a weighting factorλ that sets
the size of the CM catheter tip in relation toImax

f . Dijkstras
algorithm is terminated when the desired search space size
|Sr| is reached. The size|Sr| should be chosen according to
the expected number of pixels covered by the catheter in the
image.

B. Search Graph Generation

In the previous step, we restricted our search space to the
pixels in Sr. Pixels of the image which are both part of the
skeleton and elements ofSr form potential catheter segments.
The goal of this second step is to extract these segments from
Sr and to organize them in a graph structure which is illustrated
by Fig. 2(e). The edges of this graph represent the segments.
Connections between the segments are modelled as nodes.

The transformation to the graph representation cannot be
performed solely based on the skeleton, because it is not
necessarily continuously connected. Therefore we impose a
graph structure on all pixels inSr. This graph is a tree, which
has s as root and the main branches of the tree follow the
skeleton. Every pixel becomes a graph node and is connected
by an edge to a neighboring pixel. In a first step, relevant
endpoints, so called feature points, are determined and only
the paths from these feature points to the root are retained in
the graph.

1) Tree Generation:In the beginning, the graph consists of
all pixel in Sr which are 4-connected. The tree is computed as
a shortest path tree using again Dijkstras’ algorithm withs as
start. For the cost function, a distance transform [31]IDT of
the skeleton is computed.IDT (i, j) is the Euclidean distance
to the next skeleton pixel. The costcf(p) for each pixelp is
defined by

cf(p) =

{

∞ p /∈ Sr

(Imax
f − If(p)) ·min

(

IDT (p)+1
̺

, 1
)

otherwise.
(2)

The distance from a pixelp to s with respect to this cost is
denoted byδs(p). In Eq. (2), we combine the filtered image
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(a) (b) (c) (d) (e)

Fig. 2. Catheter detection involves several steps. After placing a seed point in the the original image (a), a medialness filter is applied (b). Using a variable
threshold, a binary image and then a skeleton image (c) is computed. Using the medialness filtered image and the skeleton, the search space is reduced and a
costcf for each pixel is defined (d); green pixels are outside the search spaceSr and their cost is set to infinity. Based on this cost, the shortest path from each
pixel to the seed point is computed. Finally, feature points such as endpoints of the skeleton are selected. Their shortest paths to the seed point are used to
transform the skeleton into a graph (e). For illustration, each path from a feature point to a node is given a different color to make them easily distinguishable.
Starting from the seed point which is marked in (a) with an arrow, a path in this graph is searched that fits best to a set of predefined features.

Fig. 3. Schematic drawing of the tree with the seed points as root. Circles
in the skeleton (black) can be found by considering pixels atwhich two paths
from different directions meet. For a circle, the first feature point,q

m
, is a

point on the skeleton that has a higher distanceδs to the seed point than its
neighboring points on the skeleton. Asq

m−1
is on the path fromq

m
to s,

the neighborrn has to be the other feature point. The pathsq
1
→ . . . → q

m

andrn → . . . → r1 = q
1

will be merged after computing all feature points.

and the skeleton image. An example of this cost function is
shown in Fig. 2(d). The main branches of the shortest path
tree should be smooth and follow the skeleton as closely as
possible. Therefore, within a range of̺ pixels around the
skeleton, the cost is decreased depending on the distance to
the skeleton given byIDT . The value of̺ depends on the
smoothness of the skeleton and is typically a number between
5 and 10.

Also within the̺-pixel range, the values ofIf are important.
Without these values, the distance measure would degenerate
to a Euclidean metric. This will be more important for the
shaft search presented later in Section II-C1: In rare cases,
such a degenerated distance measure might result in favoring
a shorter connection instead of a longer path which might
present a better filter response.

2) Feature Points: The first and second set of feature
points are based on the skeleton. Therefore we process only
skeleton pixels in these stages. The first set consists of pairs
of neighboring pixelsqm, rn with partially different shortest
paths to the seed point that describe a circle. The paths are
denoted by

(qm → qm−1 → . . . → q1 → . . . → s) and

(rn → rn−1 → . . . → r1 → . . . → s) with q1 = r1.

Fig. 4. The skeleton (black line) may contain gaps. The graph creation is
robust w.r.t. gaps (A) between skeleton endpoints and the seed point as they
are bridged by the shortest paths from the endpoints (red squares). The same
holds for gaps in a circle unless the feature points forming the circle fall into
these gaps (B). For such a case, additional bridges (blue) are computed that
connect parts of the graph that are not connected by the skeleton.

So, they describe a circle

(q1 → . . . → qm → rn → . . . → r1 = q1)

in the image, see Fig. 3. Assuming,δs(qm) ≥ δs(rn), qm can
be found by searching for skeleton pixels that have a higherδs
value than their neighbors. The neighboring pixel that follows
qm on the shortest path tos is qm−1, the other neighbor is
rn. The lengthlc is given by(m + n − 1) as the start pixel
of the circle is contained in both paths. Pairs with alc below
a certain threshold are not considered as feature points.

The second set of feature points are the endpoints of the
skeleton. They are defined as points on the skeleton that have
only one neighbour on the skeleton. Then, from the original
tree, a simplified graph is created that contains only edges and
nodes that are part of a path from a feature point to the seed
point. Nodes with two adjacent edges are removed and the
two edges are merged.

The resulting graph might lack some relevant edges due
to the non-contiguous skeleton. To close remaining gaps, we
look for neighboring, unconnected nodes of the original tree
such that their shortest path connects two existing edges, see
Fig. 4. The detection of missing connections is similar to
the detection of circle feature points. In this case, however,
not only skeleton pixels, but all pixels in the search space
Sr computed in Section II-A are considered. Every pixelp
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is tested if itsδs distance is higher compared to all of its
neighboring pixels. In this case, for each pair formed byp and
a neighboring pixel, the shortest paths from the two pixels to
the seed point will be evaluated. The valuelb is computed as
the number of pixels in both paths that are not yet part of the
simplified graph, andlc is computed as above for the circles on
the skeleton. Iflc and the fractionlc/lb is larger than a certain
threshold, these paths will be added to the simplified graph.If
there exist several pairs of feature points whose paths connect
to the same edges, only the connection with the highest ratio
lc/lb will be added.

Finally, adjacent unconnected nodes are connected by an
edge to introduce circles. Stubs, i.e. short edges leading to
a leave node with a length below a certain threshold, are
removed.

C. Catheter Search

The computed graph defines the catheter search space.
The search for the catheter is constrained by the information
provided by the seed point. We differentiate two types of
catheter detections. Linear catheters, such as the RF and the CS
catheters, only require a search for the shaft, while the circular
mapping catheter also requires a search for its elliptical upper
part, denoted as ‘tip’ or ‘tip section’, respectively.

1) Shaft Search:For standard C-arm view directions, prior
knowledge about the image content can be taken into account.
In our cases, where catheters are inserted at the groin area,
the catheter shafts enter the image from the bottom. As a
consequence, all pixel sequences forming shortest paths on
the graph from the seed point to nodes of the graph located in
the lower 60% of the image are considered as shaft candidates.
The shortest paths are defined by the cost function given
in Eq. (2). The number of different shortest paths depends
on the image. For noisy images where many other linear
structures such as ECG-leads or other catheters cross, we
may end up with several, partially overlapping paths, e.g.,up
to 20. For images with low noise where no other structure
crosses the catheter, there may be only one or two shortest
paths. The catheter does, however, not need to be identical to
the complete pixel sequence given by a shortest path which
may comprise additional pixels that reach beyond the actual
catheter. Therefore, an evaluation is performed not only onthe
complete pixel sequence, but also on sub-sequencesF which
start at the seed point and have increasing sizes. Ideally, one
would increase the path pixel by pixel, but this increases the
number of paths that have to be evaluated. If, on the other
hand, the path is increased by a large number of pixels, then
either a large part of the catheter end section may be left
out or too many pixels not belonging to the catheter may be
included. In our case, we settled on a length for the first
sub-sequenceF = [p1, . . . ,p |F|] of 100 pixels, and each
subsequent fraction is increased by 30 pixels. This turned out
to be a good trade-off between performance and accuracy. A
visualization of all resulting subsequencesF formed this way
is given in Fig. 5.

The following features of a subsequenceF are taken into
account by the optimization step:

Fig. 5. All paths from the seed point (blue circle) to graph nodes in the lower
part are used to determine shaft candidates. These paths are not evaluated as a
whole, but subsequencesF of increasing length are formed. While all of them
have a common start point (blue circle), their respective endpoint (denoted by
a red circle) is different.

• The length|F| of the subsequence, as the catheter should
be as complete as possible.

• The mean squared valueac of the curvature. It is given by

ac(F) =
1

|F|

|F|
∑

t=1

κF (t)
2. (3)

The curvature of the sequence at pixelpt is denoted by
κF (t). By using the squared value, high curvature values are
penalized more strongly. This favors low curvatures which
are more common for linear catheters.

• The integralad of the deviation of the path from−90◦

ad(F) =

|F|
∑

t=1

∣

∣

∣

∣

φF (t)−
−π

2

∣

∣

∣

∣

(4)

where the angleφF (t) denotes the angle of the tangent
to the pixel sequence at pixelpt. This feature applies
to catheters inside the left atrium inserted via transseptal
puncture. In this case, the overall direction of the shaft
should be around−90◦. For procedures where the catheters
are aligned differently, this feature should be adapted or
taken out.

• The angleaa of the path at the bottom end. It is computed
as

aa(F) =

∣

∣

∣

∣

φF (|F|)−
−π

2

∣

∣

∣

∣

(5)

By incorporating prior knowledge, we ensure that the
detected catheters enter the image in an almost vertical
direction, such that the direction of the shaft is close to
−90◦. The intention of this term is to determine a stopping
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criterion for the path search. While the other features are
global features for which changes at the end have lesser
impact, this feature is focused on the end of the catheter.
The decision whether to take a longer path depends highly
on this feature. In the end, when the angle of the catheter
approaches−90◦, this term needs to be minimized and a
longer path with a too strong deviation from this angle is
not preferred to a shorter path with a better angle at the
end. This way, a detection along a horizontal edge in the
lower part of an X-ray image, e.g. introduced by a shutter,
can be avoided.

Each feature is weighted with a corresponding factorα. Using
a full search on all shaft candidates, the sub-sequencep̂ that
optimizes the objective function

p̂ = argmin
F

(−αl · |F|+αc · ac(F)

+αd · ad(F) + αa · aa(F)) (6)

is found. It is considered the best estimate for the catheter
shaft. As only the length|F| needs to be maximized,αl has
a negative sign.

2) Tip Section Search:In contrast to the shaft search, no
additional information about the orientation of the elliptical tip
section of the CM catheter can be obtained from the seed point
s. Therefore all possible sequences that are not used for the
shaft need to be considered as candidates for the tip section.
Similar to the shaft search, the candidates for the tip are paths
G = [p1 . . .p |G|] which start ats and increase in length. Since
the shape of the catheter is approximately circular, it resembles
an ellipse when projected to 2-D. This strong characteristic
is already used for tracking approaches [32], [33], [22]. For
tip section detection, an ellipse is fitted to the points of the
catheter tip candidateG. The candidate is evaluated with
respect to the quality of the ellipse fitting and the values of
the medialness filteringIf along the fitted ellipse.

In a first step, six equidistant points are taken from the point
sequenceG to which an ellipseE(G) is fitted. The resulting
ellipse is given by a set{e1 . . . e |E(G)|} of pixels e that are
covered by the ellipse. In the next step, several features for
the catheter tip section candidateG and its associated ellipse
E are computed:
• The mean filter valuebfe of the ellipse is calculated as

bfe =
1

|E|

|E|
∑

i=1

If(e i). (7)

An ellipse representing the real catheter tip section should
have high values in the filtered imageIf , thus this term
needs to be maximized.

• The mean distancebd of the points inG to E :

bd =
1

|G|

|G|
∑

i=1

min
j

‖pi − ej‖2. (8)

This feature measures how elliptical the point sequenceG
is.

• The coveragebc of the ellipse by the points inG is given
by

bc =
#{e i | minj ‖pj − e i‖2 < ε}

|E|
. (9)

This feature denotes what fraction of the ellipse is covered
by the point sequenceG. A pixel of the ellipse is considered
as covered if the distance to the next pixel ofG is within ε.

• A feature with respect to the circumference of the ellipse is
defined as

bl = max(Π− |E|, 0). (10)

The values of this feature should be low as its intention
is to penalize ellipses that are smaller thanΠ. Very small
ellipses rarely represent the catheter tip section but can have
extraordinary good values for the coverage and the filter
value, e.g. due to small bright spots in the filtered image.
The length penalty reduces this bias towards small ellipses.
The choice ofΠ depends on the expected image quality and
ε.

• Angular differenceba between shaft and tip candidate

ba = |φs − φt − 180◦|. (11)

Shaft and tip section start from the seed point with a start
angleφs andφt, respectively. As they continue in different
directions, the angular difference should approximate180◦.
This feature is used to define the direction of the catheter
tip section if a clockwise or a counter clockwise direction
are both possible.

Additionally there are some features that are used to reject
candidates for which the ellipse is not plausible with respect
to the known catheter shape.
• Length bM and bm of the major axis and minor axis,

respectively. The maximum diameter of a currently available
LassoR© catheter (Biosense Webster, Diamond Bar, CA,
USA) is 25 mm. Given a projective magnification factor
of less than 1.5 and a pixel spacing of 0,183 mm, the
diameter of a CM catheter in the image is less than
205 pixel. Using this prior knowledge, candidates can be
rejected ifbM > 220 pixel. A candidate is also rejected if
bm < 20pixel. If the ellipse is degenerated and just a line,
the catheter tip section cannot be detected by the current
approach. Also the 3-D reconstruction will not work. In
this cases the approach of Brost [32], [33] could be used.

The objective function that evaluates a pathG and its associ-
ated ellipseE(G) is given by

b(G, E) = −βfe · bfe − βc · bc + βd · bd + βl · bl + βa · ba (12)

and needs to be minimized. The weights of features that need
to be maximized have therefore a negative sign.

The number of possible tip section candidates may get very
large. This depends on the complexity of the graph which
is related to the image quality. Therefore, a population based
method is used to find the best path [34]. The initial population
consists of all possible paths of the search graph which start
from the seed point and have a length of 100 pixels. In
each iteration, all paths in one generation are evaluated. Then
the next generation is computed by increasing the length of
the previous generation by 30 pixel. If there is a bifurcation
during those 30 pixels, the individual splits up and each new
individual follows a different path. No individual may visit
a path twice or a path that was already used for the shaft
search. An exception is made for short segments which may

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available athttp://dx.doi.org/10.1109/TMI.2015.2482539

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



7

(a) (b)

(c) (d)

(e) (f)

Fig. 6. Typical results of the catheter detection. Each catheter was detected
separately. The seed points used for detection are marked with a circle and
are placed at the tip of the linear catheters. For the CM catheter, the seed
point was placed after the transition from the shaft to the tip.

be used twice to allow for self-crossings of the path. Only
individuals with an objective value close to the best solution
found so far will stay in the population. The optimization is
terminated if no better solution was found three times in a row
after the 10th generation or a length of 600 pixels is reached.
This corresponds to a 25-mm LassoR© catheter tip.

D. 3-D Catheter Reconstruction

As last step, the catheter is reconstructed in 3-D using two
images acquired under different views, e.g., using plane A
and plane B of a biplane system. The result of the catheter
detection for each image is given as a parametric 2-D curve,
CA(tA) and CB(tB), tA , tB ∈ [0, 1], usually provided as
cubic spline curves. Since we use a calibrated C-arm system
with known projection matrices, candidates for point corre-
spondences are identified using epipolar geometry, We then
search for a maximum sequence ofn point correspondences
((CA(tA,1), CB(tB,1)) , . . . , (CA(tA,n), CB(tB,n))) among the
candidates such that their curve parameterstA,1, . . . , tA,n and

TABLE I
CLINICAL DATA USED FOR EVALUATION

Catheter Number of biplane Number of patients
image pairs

RF 47 27
CS 61 47
CM 58 45
all 88 59

tB,1, . . . , tB,n are placed in ascending order. The reconstruction
algorithm is an improved version of a method by Baertet
al. [21]. A detailed description can be found in [24] using
a shortest-path-problem formulation or in [25], which usesa
recursive formulation to solve this problem.

III. E VALUATION AND RESULTS

For the evaluation of the proposed catheter detection method
and reconstruction algorithm, we used both clinical data and
data from phantom experiments. Although clinical data reflects
reality better, we could not use it to assess 3-D accuracy dueto
the lack of associated 3-D ground truth. Instead, 2-D catheter
center lines in the images were extracted manually to obtain
2-D ground truth. To still provide insights into the 3-D recon-
struction accuracy, we carried out a phantom study involving
tomographic reconstruction using C-arm CT. We obtained 3-D
ground truth using manual segmentation of catheter center
lines in the C-arm CT volume. Two-dimensional ground truth
was generated as for clinical data.

We carried out three types of evaluation: First, we performed
catheter detection on clinical data and compared the result
to our 2-D ground truth. We did not evaluate 2-D catheter
detection on data acquired during the phantom study as these
results have less clinical relevance. Second, we focused on
inaccuracies related to our 3-D reconstruction method. As no
3-D ground truth was available for clinical data, we performed
this error analysis on phantom experiment data. We used 2-
D ground truth center lines as input for 3-D reconstruction
to assess the reconstruction error independent of possible
detection errors. The results were compared to the 3-D ground
truth. Third, we combined our detection and 3-D reconstruc-
tion approach to estimate how detection inaccuracies affect
the reconstruction result (combined approach). For clinical
data, 3-D reference data was generated from 2-D ground truth
center lines using our reconstruction method. Note that this
reference data is subject to the 3-D reconstruction inaccuracies
studied in the phantom experiment. Finally, the combined
approach was also applied to phantom data. Although the
results have less clinical significance, they are still valuable
since the 3-D ground truth was not affected by any detection
and triangulation errors as it had been obtained from 3-D
tomographic C-arm CT data.

A. Experimental Setup and Data

The phantom study was performed on a C-arm biplane
system (Artis zee biplane, Siemens AG, Healthcare Sector,
Forchheim, Germany). Our experimental setup comprised a
circular mapping (CM) catheter, a coronary sinus (CS) catheter
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TABLE II
PARAMETER VALUES DETERMINED HEURISTICALLY FOR DETECTION

Description Symbol Value Appears in
Reduced search space size |Sr| 150,000 Sec. II-A
Closeness gain weighting λ 1.25 Eq. 1
Cost reduction range width ̺ 7 pixels Eq. 2
Minimal circle length lc 75 pixels Sec. II-B
Circle-gap-ratio lc/lb 10 Sec. II-B
Ellipse coverage buffer ε 10 pixels Eq. 9
Small ellipse penalty Π 200 Eq. 10

and a radio-frequency (RF) ablation catheter all inserted into
a thorax phantom. Images were taken from different primary
angles (RAO/LAO) and a static secondary angle (Cran/Caud)
of 0◦. The angular difference was always 90◦ as this is
currently clinical practice [35]. The primary angle rangedfrom
-120◦ to -20◦ for plane A and from -30◦ to 70◦ for plane
B. The step width was10◦ resulting in 11 Biplane pairs All
images show the CM, the CS and the RF catheter. For the
catheters in these images, the 3-D ground truth position was
extracted manually from a C-arm CT volume (syngoDynaCT,
Siemens AG, Healthcare Sector, Forchheim, Germany).

The clinical data was made up of 88 biplane sequences
(176 monoplane sequences) from 59 patients. Only the first
frame of each sequence was taken as the image content did not
change much throughout the sequence. From these images, not
all could be used for every catheter type as not all catheters
were always present. We also excluded biplane images for
the CS catheter evaluation if the catheter was only visible at
the lower border or very short. Furthermore, biplanes images
where the CM catheter loop was degenerated to a line were
not used for CM catheter evaluation. An overview of the
number of remaining images and the number of patients they
are associated with is given in TABLE I.

The clinical images were recorded during standard catheter
ablation procedures performed at three clinical site on a C-arm
biplane system (Artis zee biplane, Siemens AG, Healthcare
Sector, Forchheim, Germany). The catheter center lines were
manually extracted and then verified by a board-certified
electrophysiologist. These center lines were later on usedas
ground truth for the retrospective evaluation.

To assess the spatial accuracy of our detected catheters, we
obtained the mean and maximum error by sampling points
along the detected catheters and computing the average and
maximum of their distance to the associated ground truth. Fur-
thermore, we calculated the coupling distance [26] normalized
by the catheter length. This measure computes a point-wise
mapping from one line to the other first. Then, it sums up the
distances between these mappings. It is a symmetric measure
and takes both wrongly detected catheter parts and undetected
catheter parts into account.

The computations were performed on an Intel Core i7
2.6 Ghz CPU with 8 GB RAM and a Nvidia Quadro K1000M
GPU. The GPU was used to generate the medialness image
and the skeleton image.

(a)

(b)

Fig. 7. (a) Success curve for catheter detection, both usingthe average
distance to the manual ground truth annotation and the stricter coupling error.
(b) Distribution of the maximum distance to the ground truth annotation in
each image.

B. Detection Performance

To evaluate detection accuracy, parameter values depend-
ing on the image size, intensity quantification and spatial
resolution were set heuristically. The values are providedin
TABLE II. The pixel spacing was between 0.173 mm and
0.183 mm for all images. If a different pixel spacing is to be
used, the parametersΠ and lc should be adapted accordingly.
The various parametersα of the objection function for the
shaft, Eq. (6), and the different weightsβ of the objective
function for the catheter tip search, Eq. (12), were determined
in a training step. Training of the detection parameters and
evaluation was carried out in a leave-one-patient-out crossval-
idation. That is, for the evaluation of one image, parameter
training was carried out using all other datasets excluding
the images that belonged to the currently evaluated patient.
The parametersαl and βfe were set to a fixed value of 1
without loss of generality. The shaft parameters were trained
separately for each catheter type, again, in a leave-one-patient-
out cross-validation. The catheter tip section parametersfor the
CM catheter were obtained the same way. The optimization
of the parameters was performed using grid search. For each
parameter, a normalization factor was determined such thatthe
expected maximum value is equal to 1. In the grid search, the
weights ranged from 0 to this normalization factor. For each
sequence, the seed point was manually set after the transition
from the shaft to the tip section at the CM catheters as shown
in Fig. 6. For the other catheter types, it was set at the top of
the catheter tip. This seed point was fixed during the training
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TABLE III
CATHETER DETECTION RESULTS.

All detections Successful detections
Cathe- Mean dist. to Mean coupling False negative / Success Mean dist. Mean coupling False negative /

ter reference distance false positive rate to reference distance false positive
type ± std dev. ± std dev. rate ± std dev. ± std dev. rate
RF 3.1 ± 5.5 mm 3.9 ± 7.0 mm 31.1 % / 27.5 % 84.0 % 1.3 ± 1.1 mm 1.6 ± 1.2 mm 21.2 % / 17.7 %
CS 2.9 ± 7.5 mm 5.6 ± 12.1 mm 25.2 % / 16.4 % 82.8 % 0.7 ± 0.7 mm 1.2 ± 0.8 mm 13.7 % / 6.8 %
CM 0.9 ± 1.3 mm 3.3 ± 3.0 mm 18.5 % / 7.8 % 83.6 % 0.6 ± 0.5 mm 2.3 ± 1.3 mm 14.0 % / 4.3 %
all 2.3 ± 5.6 mm 4.3 ± 8.4 mm 24.5 % / 16.6 % 83.4 % 0.9 ± 0.8 mm 1.7 ± 1.2 mm 15.9 % / 9.0 %

process and was also used for the evaluation.
We rated catheter detection a failure, if the average error

was above 5.0 mm. A pixel was considered a false positive, if
it was more than 2.0 mm away from the ground truth. The
false negative rate was the percentage of the ground truth
pixels which had no detected pixel within a 2.0 mm radius. An
example of a successful detection result is shown in Fig. 6.
A curve showing the success rate with respect to different
error thresholds as well as the distribution of the maximum
deviation from the ground truth annotation is given in Fig. 7.
Detailed results are presented in TABLE III for all catheters.

To evaluate the sensitivity of the detection method with
respect to different seed point placements, we evaluated
the intra-user variability and the inter-user variabilityof the
method. This evaluation was not performed for each of the
332 catheters, but we considered a representative subset of
20 images for each catheter type including images with a
low and a high detection error as well as images with failed
detections. For assessing the intra-user variability we used
detection results coming from three different seed points of the
same person. For the RF and the CS catheter, the variance in
the coupling error was 0.1 mm or less. For the CM catheter, the
variance was 0.5 mm. To assess the inter-user variability, we
used detection results coming from three seed points marked
by different persons. For the RF and the CS catheter, the
variance in the coupling error was again 0.1 mm or less. For
the CM catheter, the resulting coupling error had a variance
of 0.6 mm.

The runtime for a single image was 2.8 s± 3.6 s for the
catheter detection with tip section search and 1.1 s± 0.2 s if
no tip search was used. The runtime doubles when catheters
in both images of a biplane pair need to be detected, e.g. for
3-D reconstruction.

C. Reconstruction Performance

Three-dimensional reconstruction performance could only
be evaluated for the phantom experiments. The ground truth
catheter center lines in the biplane sequences were used as
input for 3-D reconstruction. The result was then compared
to the 3-D ground truth catheter positions derived from the
C-arm CT. The mean error was 0.8 mm± 0.3 mm for the
RF ablation catheter, 0.7 mm± 0.2 mm for the CS catheter
and 1.0 mm± 0.2 mm for the circular mapping catheter,
respectively. Unfortunately, the same 3-D information of the
catheters cannot be obtained in a clinical setup, since it isnot
possible to perform a C-arm CT for each biplane fluoroscopy
scene. This is why an evaluation of the reconstruction accuracy

on clinical data was not possible. The median runtime of the
reconstruction was 32 ms.

D. Combined Detection and Reconstruction Performance

We also evaluated a combination of detection and recon-
struction (combined approach). To this end, an automatic
detection was performed on the catheters first. These detection
results were then directly fed into the reconstruction algorithm.
Since our goal was to investigate the overall accuracy when
detection was successful, failed detections were not considered
for evaluation of the combined approach. A detection was
considered as failed if the mean distance to the ground truth
was larger than 5.0 mm. From the phantom study data, three
biplane pairs were not used for RF catheter evaluation, and
two image pairs were not used for CS catheter evaluation due
to misdetection. Misdetections happened e.g. because the CS
catheter tip section in certain angulations was so close to the
RF catheter that the RF catheter was detected instead of the
CS catheter. For the CM catheter, five pairs could not be used
as the tip section appeared as a line rather than as a loop. For
the angulations with 90 degrees difference, the resulting mean
3-D coupling distance was 1.8 mm± 1.1 mm. Broken down
by catheter types, the error was 1.7 mm± 0.8 mm for the RF
catheter, 1.0 mm± 0.3 mm for the CS catheter and 3.1 mm±
1.2 mm for the CM catheter, respectively.

With clinical data, a combined approach was performed as
well. As no 3-D ground truth information was available, 3-
D catheter reconstruction based on 2-D ground truth center
lines was used as reference. The computed differences can
therefore only be considered as an estimation of the actual
3-D error. We found a mean coupling error of 2.2 mm±
2.2 mm. In particular, the error was 1.7 mm± 1.0 mm for
the RF catheter, 1.8 mm± 3.2 mm for the CS catheter
and 3.1 mm± 1.1 mm for the CM catheter. The coupling
error is largely influenced by undetected catheter parts. To
evaluate the accuracy of the actually reconstructed parts,we
also calculated their distance to the ground truth. The overall
mean displacement was 1.4 mm± 1.7 mm. The error was 1.5
mm ± 1.0 mm for the RF catheter, 1.4 mm± 2.5 mm for the
CS catheter and 1.5 mm± 0.8 mm for the CM catheter. A
distribution of the displacement is given in Fig. 8.

IV. D ISCUSSION

Overall, the results demonstrate that our approach is suitable
for detection and reconstruction of catheters using only a
single click per catheter in each image of a biplane image
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(a)

(b)

Fig. 8. (a) Success curve for catheter parts reconstructed by the combined
approach. The error was computed with respect to a reconstruction result
based on manual ground truth annotation of the clinical data.The overall
mean displacement to the reference was 1.5 mm±1.0 mm for the RF catheter,
1.4 mm± 2.5 mm for the CS catheter and 1.5 mm±0.8 mm for the CM
catheter. (b) Distribution of the maximum displacement in eachimage.

pair. However, there are some issues that need to be discussed
in more detail.

A. Detection

The presented detection algorithm extends the previous
approach [24] to more catheter types. The feature weights were
according to the catheter type using a learning-based approach
to make sure that this method generalizes well for unseen
data. For the CS catheter, e.g., the most important feature was
the length. The training yielded especially for the direction
feature a lower weight compared to the other catheters. This
corresponds to the often horizontal positioning of the CS
catheter which is related to the coronary sinus anatomy. The
RF catheter and the CM catheter, on the other hand, received
higher weights for the curvature and the direction feature from
training. These weights were nearly equal for both catheters
as they are placed at similar positions inside the left atrium.
Overall, the dedicated end-angle feature played a minor role
as a correct catheter end at the bottom was also ensured by
the curvature and direction features.

In our previous approach [24], we used heuristically de-
termined feature weights to search for the CM catheter.
Compared to the previous approach, we achieved different,
in fact, slightly worse results which. We, however, consider

them as more representative as the method was evaluated on
a broader set of clinical images.

If the detection was successful, which was the case for
over 82 % of the images, the mean coupling error was below
2 mm making this approach suitable for clinical use [36].
In case of an unsuccessful detection, often a wrong catheter
was selected. In such a case, the resulting error could exceed
10 mm. For a failure, there are two main reasons: First, the
contrast of the catheter may be poor resulting in a gap of
the segmentationIb that is too large. This can happen, for
example, between the first and second RF catheter electrode
and for some types of CS catheter. If the catheter overlaps
with the dark diaphragm, catheter detection may also suffer. A
combination with an electrode detection algorithm [12], [10],
[37] could improve results. The second reason for detection
failures are intersections of catheters with other structures such
as ECG-leads. In many cases, these intersections are handled
correctly as selecting the correct catheter segments minimizes
the curvature. Nevertheless, in combination with poor contrast
or if the catheter tip is close to a different catheter, see Fig. 9,
the wrong catheter might be selected. We also investigated if
the curvature of the catheter had an impact on the detection
error, but we found no correlation.

The detection method has a low intra- and inter-user vari-
ability for the RF and the CS catheter. One reason for this is
because, the position where the seed point should be placed is
very distinct. In addition, as part of the initialization step, the
seed point is moved to the closest skeleton point. As a con-
sequence, the same skeleton point may be selected although
different points in the image were chosen. For the CM catheter,
the variability was higher as the point to be marked by the user
is more ambiguous. Here, significantly different results may
be computed if the wrong catheter direction was assumed or
if the seed point was not placed after to the position where the
circular tip starts but rather shortly before the position where
the circular tip meets the shaft again.

Compared to a previously published method [14], which
performs also a graph-based search using two or more points
marked by the user, our method requires only one point. The
false positive rate of 17.8 % reported by the authors of this
publication is in the range of our method, except for the RF
catheter. Their missing detection rate is about 17.6 %, which
is better than our one-click per catheter method. However, the
validity of a comparison based on these numbers is limited as
the evaluation was not only performed on a different data set,
but also on guide wires instead of EP catheters.

A more sophisticated catheter detection approach that
searches simultaneously for all visible catheters could, how-
ever, take such crossings into account and avoid these prob-
lems. Also, adding a second seed point at the bottom of the
catheter can be advantageous to detect the whole catheter. By
selecting the catheter manually, the physician can ensure that
the same catheter is detected in both images. If the catheter
detection and reconstruction turns out to be successful and
accepted in a clinical environment, user interaction couldbe
reduced by catheter tip detection methods to determine the
seed point automatically [38], [10], [11].
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Fig. 9. Examples for misdetections. Both in (a) and in (b) the seed point
was set at the top of the RF catheter pointed to by the arrow. Since the part
between the first and the second electrode is not visible in the fluoroscopic
image, the algorithm considers the tip as belonging to the CS catheter in (a)
and to the CM catheter in (b), respectively.

Fig. 10. Epipolar line for the CS catheter tip. The epipolar line is nearly
parallel to the end of the catheter. Computing intersectionswith the centerline
of the catheter and the epipolar line is therefore numerically unstable.

B. Reconstruction

We found that our proposed reconstruction method dealt
better with curved catheters than the previously suggested
approach by Baertet al. [21]. An example for the different re-
construction results is presented in Fig. 11. Also a quantitative
evaluation comparing both approaches was carried out: For all
possible pairs of 2-D images from the phantom study data,
a reconstruction was computed using both approaches. The
mean distance from the ground-truth data to the reconstruction
results is given in Fig. 12. It shows that the approach by Baert
et al. can deal well with small-curvature objects. But without
the proposed search for point correspondences, a reconstruc-
tion of more strongly curved structures fails. However, some
remaining limitations became apparent in the evaluation. They
are discussed below.

The phantom study revealed a mean 3-D reconstruction
error of up to 1.0 mm for a 90 degree angular difference
between the two views. There are several possible sources
for errors. First, the manually annotated ground truth center
lines of the catheters, both in the 2-D fluoroscopic images and
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Fig. 11. Reconstruction result using a re-implementation of the previously
suggested approach by Baertet al. (a) and our proposed method (b). While
both methods perform well for the catheter shaft, the previous approach fails
for the curved catheter tip section.
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Fig. 12. The CM catheter of the phantom was reconstructed from the manual
annotations of all pairwise combinations of the acquired images. The distance
of the reconstructions to each point of the ground-truth annotation is plotted
for a re-implementation of the method of Baertet al. (blue) and our proposed
method (red). For the catheter shaft, the new method is equal tothe previous
approach. For the curved catheter tip section, the method of Baertet al. fails
while the new proposed method is able to deal with this curved structure.

in the 3-D C-arm CT volume, may contain small errors. We
also noticed that the error for the CM catheter was highest.
High errors appear if for some parts of the catheter no point
correspondences can be found. This can be the case when
the epipolar line does not precisely intersect the catheter,
e.g., due to small inaccuracies when estimating the biplane
projection geometry. This can occur especially at points where
the catheter is tangent to the epipolar line, see Fig. 10. As the
CM catheter has a circular part, it is more prone to this kind of
error. In such a case, the missing points are interpolated. The
difficulty to find the right point correspondences if the catheter
is tangential to the epipolar line is the major limitation ofthe
reconstruction algorithm. However, this is a general problem
that also affects manual reconstruction by triangulation.

The overall reconstruction results showed similar 3-D re-
construction errors as observed when triangulating a single
point [39]. Also the dependency on the angle between the two
viewing directions was found to be similar.

C. Combined Detection and Reconstruction

The combined approach using clinical data showed a cor-
relation between detection quality and accuracy of the 3-D
reconstruction. As no 3-D ground-truth was available, 3-D
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reconstruction based on 2-D ground-truth data was used as
reference. The error was measured using the coupling distance
between this reference and the result of a combined detection
and reconstruction. As a consequence, both inaccurate as well
as missing parts in the 3-D reconstruction result contributed to
this error. If the detection succeeded, the error was found to be
1.7 mm± 1.0 mm for the RF catheter and 1.8 mm± 3.2 mm
for the CS catheter. A 2.0 mm error is considered acceptable
from a clinical point of view [36]. For the CM catheter, the av-
erage coupling distance was 3.1 mm± 1.1 mm. This is because
the tip section of the CM catheter forms a circular structure
which sometimes overlaps at the end. The overlapping part
was included in the ground-truth annotation but it was often
not detected and therefore missing in the 3-D reconstruction
result, thus, leading to a higher coupling error. Considering
only the actually reconstructed parts, the error reduced to
1.5 mm± 0.8 mm.

The evaluation using data of our phantom study yielded
notably lower errors for the RF catheter and the CS catheter.
This is likely due to the detection step, as the phantom con-
tained fewer additional structure such as ECG leads which can
lead to small detection errors. However, for some images, the
detection failed as the tip of one catheter was close to another
catheter. For the CM catheter, the error was comparable to
the clinical data as also here, the overlapping parts of the tip
section were not always reconstructed.

The overall runtime of combined detection and recon-
struction is about 2 s for the CS and the RF catheter. This
facilitates computing a 3-D shape of the CS catheter for
initial registration or as a registration reference throughout
the case [40]. Real-time performance is not needed as this
step, as this registration is only performed a few times during
the procedure (possibly only once). Due to the run-time
requirements and the user interactions involved, our method
as currently implemented is not yet suited for continuous 3-D
modelling. In these case, tracking methods can be used [20],
[32]. However, our combined detection and reconstruction can
be used to compute the initialization of the catheter required
by these methods.

V. CONCLUSIONS

The results presented show that detection and reconstruction
of a complete EP catheter is possible if only a single seed
point per image is provided. The semi-automatic detection
can be adapted to various EP catheters to take their different
appearances into account. The detection and reconstruction
error was in most cases below 2.0 mm, thus enabling catheter
localization for clinical EP applications [36]. In some cases,
e.g. when two catheters overlap, the wrong catheter may be
detected. In these cases, manual correction may still be needed.
Although the combined detection and reconstruction was af-
fected by detection errors, it reached an accuracy of 1.0 mm±
0.3 mm to 3.1 mm± 1.2 mm depending on the catheter. These
values are based on data collected during our phantom study.
For clinical data, the respective average error of the combined
approach was 1.8 mm± 1.1 mm to 3.1 mm± 1.1 mm. Note
that these numbers refer to the coupling distance [26]. We

believe that the coupling distance is better suited for comparing
curvilinear structures as it is also sensitive to undetected parts.
Measuring simply the distance of detected parts to a reference,
as applied in [21], [18] leads to a lower error of 1.4 mm±
1.7 mm to 1.5± 1.0 mm for the combined approach on clinical
data depending on the catheter type.

Due to the small user interaction needed and high accuracy
achievable, our method can be used for augmented fluoroscopy
applications or as input for motion compensation algorithms
in the context of EP procedures [41]. In fact, if a mechanical
model of the RF catheter was available, then our a 3-D model
may even be used to estimate contact force [6].

As the largest error of this approach are introduced in the
detection step, an optional correction step should be provided
in clinical practice. A workflow using our approach could be
designed as follows: First, the assistant selects the type of
catheter that should be reconstructed. Then, the seed pointon
the catheter is set in both images. After reconstruction, the
3-D shape of the catheter is shown, and the 2-D detection
results, e.g. represented as spline curve, are overlaid on the
fluoroscopic images. If severe detection errors are present, they
can be corrected manually by moving or adding control points
to the 2-D detection result. As detection and reconstruction
are decoupled, the manually corrected 2-D shape of the
catheter can be directly used to perform a new 3-D catheter
reconstruction.
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