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Abstract. X-ray dark-field imaging is a novel technique which provides
complementary information on structural variation and density fluctua-
tion. It allows to obtain object structures at micrometer scale and also
contains information on the orientation of these structures. Since it can
be acquired by a conventional X-ray imaging system, dark-field imaging
has great potential for medical diagnosis.
However, fully recovering 3D orientations in dark-field reconstruction
still remains unexplored. In this paper, we propose an improved recon-
struction method based on the zero-constrained dark-field reconstruc-
tion by Bayer et al. and a simplified principle axes transformation. A
well-defined phantom containing representative 3D orientations is recon-
structed in our experiment. On average, the structure orientations in
the reconstructed volume differ from the ground truth by 9%. Within
the boundaries of an object, the error drops to 6%. Application of this
method in real diagnosis data can be expected in future.

1 Introduction

X-ray dark-field imaging reveals ultra-small-angle scattering. It has attracted at-
tention in recent years for providing unprecedented information [1]. Such images
are usually obtained by Talbot-Lau grating interferometer with conventional X-
ray tube and detectors [2,3]. Ultra-small-angle scattering is generated by local
orientations of microstructures in the order of magnitude of the grating period.
Thus dark-field imaging allows reconstruction of structures at length scales below
the resolution of conventional X-ray imaging systems. Dark-field reconstruction
shows great potential for medical diagnosis and specimens in nondestructive ma-
terials testing. One promising application is the diagnosis of osteoporosis where
detection of different bone structures is required. Micrometer-sized calcifications
in mammography have been observed in dark-field imaging by Michel et al. [4],
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which is currently investigated for its suitability for early detection of breast
cancer.

Previous work presented experiments in dark-field radiography and obser-
vations of periodical dark-field signals caused by structural variation. Several
groups partially reconstructed local orientations. Revol et al. exploited prior
knowledge on microstructure orientations to separate isotropic and anisotropic
components [5]. Malecki et al. formulated contributions of scattering and sensi-
tivity for each voxel [6]. However, a full 3D reconstruction of vectorial information
of the imaging object with separated isotropic and anisotropic contributions is
still not available. Bayer et al. [7] successfully reconstructed scalar and vecto-
rial components in dark-field tomography and presented several test specimens.
However, the reconstructed local orientation is the projected angle from 3D local
orientation and it remains in a 2D plane. In this paper, we present an approach to
extend the tensorial information to 3D. This improved method reconstructs two
sets of projection data from different imaging coordinate systems and registers
them into the same object to acquire fully three-dimensional structures. The pro-
posed method demonstrates that two tomographic scans in different trajectories
suffice to recover the microstructure orientation with great accuracy.

2 Materials and Methods

The proposed algorithm works as follows:

1. Reconstruct two sets of dark-field signal by gradient descent method with
zero constraints.

2. Register reconstructed results from Step 1 into the same system by center
of mass alignment.

3. Calculate 3D local orientation by in-plane angle from Step 1 according to
Equation 2.

2.1 Two Imaging Models

Two sets of dark-field projections in different imaging coordinate systems are
required for the proposed method. As illustrated in Fig. 1, the object in pro-
jection model A is located in the position such that its ŷ-axis is along y-axis in
world coordinate system and is scanned around ŷ-axis. In projection model B,
the x̂-axis of the object coordinate system, around which the object is scanned,
is aligned with y-axis in world coordinate system.

We reconstruct each set of projections using the gradient descent method
with zero constraints proposed in Bayer et al. [7]. This computation provides
for both image planes the in-plane local orientation as well as its isotropic and
anisotropic contributions.

The phantom dimensions are denoted as M × N × L, θy, dyiso, d
y
aniso de-

note reconstructed orientations in the X − Z plane and their isotropic and
anisotropic contributions to dark-field signal from projection model A, respec-
tively. dxiso, d

x
aniso, θ

x represent reconstructed isotropic components, anisotropic
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components and local orientations in Y − Z plane from projection Model B,
respectively.

2.2 Registration

Before calculating 3D structures from reconstructed results described above,
it is necessary to register both results into the same object due to mechanical
instability in the experiments. Therefore, we introduce a simplified principal axes
transformation here [8]. In this registration step, we register two sets of data by
aligning their center of mass, which is calculated by position (x, y, z) and the
isotropic component diso(x, y, z) at that position. diso(x, y, z) = dyiso(x, y, z) in
projection model A and diso(x, y, z) = dxiso(x, y, z) in projection model B. The
center of mass can be expressed as:

C(d) = [xc, yc, zc] :=

∑M
i=1

∑N
j=1

∑L
k=1 diso(xi, yj , zk) · (xi, yj , zk)∑M

i=1

∑N
j=1

∑L
k=1 diso(xi, yj , zk)

(1)

Between the two projection models, we only move the object rigidly. Since we
already know the axis around which the object rotates in the two models, only
translation needs to be calculated. Thus the center of mass provides sufficient
information for our registration. However, we expect that we will require a more
sophisticated transform for real data, which is subject to future work.

2.3 3D Orientation Reconstruction

3D local orientations are calculated from two sets of reconstructed in-plane angles
after the registration step. If the unknown orientation is parallel to ŷ-axis or x̂-
axis, it will only show isotropic scattering when rotating around the axis it is
parallel to. To avoid infinite from tangent, the orientation is set as (0, 1, 0) if
θx = 90◦. A 3D orientation, which is denoted by a unit vector (vx, vy, vz) can be
obtained by:

Fig. 1. Two imaging models with different object orientation.
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[vx, vy, vz] =


(1, 0, 0) if dxaniso = 0

(0, 1, 0) if dyaniso = 0

(0, 1, 0) if θx = 90◦

(cos(θy),sin(θy) tan(θx),sin(θy))
‖(cos(θy),sin(θy) tan(θx),sin(θy))‖ otherwise

(2)

2.4 Experiment

For the tomography scans, 101 projections were taken over 360◦ for both pro-
jection models. For reconstruction, 100 iterative steps have been taken for each
projection model.

3 Results

The 3D local orientation dark-field tomography reconstruction was evaluated
using a well-defined phantom (Fig. 2, Column A). This phantom was created as
a mathematical block of 20× 25× 30 pixels in an imaging space of 50× 50× 50
pixels. To simulate two imaging models and their mechanical instability, the
phantom was positioned differently in each projection model. In projection model
A, the center of phantom was located at position (26, 22, 21) in the world system.
In projection model B, the center of phantom was positioned at (28, 25, 16) in
the world system. The phantom has the isotropic parameter diso(x̂, ŷ, ẑ) ≡ 1.0
and anisotropic parameter daniso(x̂, ŷ, ẑ) ≡ 1.5. Different local orientations are
obtained in five sub-blocks among ŷ-axis. These orientations are visualized in
Fig. 2, Column A1 and Column A2.

From calculation of registration step, center of mass in projection model A is
(26, 22, 21) and center of mass in projection model B is (28, 25, 16). This result
matches our phantom design.

Reconstructed results are visualized in Fig 2, Column B1 and Column B2.
Five representative layers from each sub-block are visualized and compared with
the same layer from ground truth in Column A1 and Column A2. Visualization
was created using ParaView. The microstructure, which can be represented by
(danisovx, danisovy, danisovz) are visualized by lines. The length of each line is
the magnitude of its anisotropic component. Orientations are visualized by the
line directions. Five representative layers from five sub-blocks are shown in Fig 2
from top to bottom for both phantom and reconstructed results.

To quantitatively evaluate our algorithm, we calculated the error between
reconstructed orientation and ground truth. Error per voxel at position (x, y, z)
is defined as:

epv = ‖(v?x(x, y, z), v?y(x, y, z), v?z(x, y, z))− (vx(x, y, z), vy(x, y, z), vz(x, y, z))‖
(3)

where (v?x, v
?
y , v

?
z) is a unit vector which denotes local orientation in ground truth.

Fig 3 shows error per voxel from the five representative layers by color legend
of magnitude. Empty space in this visualization implies zero error.
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To measure the average error of reconstructed result, we introduce average
reconstruction error as:

ev =

∑
x,y,z ‖(v?x, v?y , v?z)− (vx, vy, vz)‖

N ·M · L
(4)

In our experiment, the average reconstruction error is 0.091. Fig 3 shows that
most errors are caused by edges, this is also a limitation of the reconstruction
method in Bayer et al. [7]. Thus we also calculated this average reconstruction
error without edges, i.e phantom with dimensions (N − 4) × (M − 4) × L, this
gives us a smaller error of 0.059.

4 Discussion

In this paper, a new approach to reconstruct 3D orientations is presented. The
major improvement of this proposed method is to fully recover vectorial in-
formation in a scanned object. Two sets of projections from different imaging
coordinate systems are required as inputs. Mechanical instability of the imag-
ing systems is compensated by a registration step and thus no further prior
knowledge is needed. A shift in center of mass is corrected in this registration
step. Visualized microstructure of the well-defined phantom showed that this
method is able to reconstruct 3D local orientations. Error measurement shows
orientations from reconstructed results have error by 9% from orientations of the
phantom and 6% if we omitted edges.

This algorithm shows great potential of dark-field imaging by its ability of
providing unique information using a conventional X-ray imaging system. Real

Fig. 2. Orientations from the phantom and reconstructed results. Five representative
layers are visualized to show different orientations in each sub-block.
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Fig. 3. Visualization of error per voxel at five representative layers according to equa-
tion 3. Empty space denotes zero.

data will be examined in our future work. Furthermore, we will investigate how
much the axes must deviate to reconstruct a correct image.
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