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Abstract—X-ray dark-field imaging has drawn attention in
recent years for its great diagnostic potential. This novel modality
measures structural variations at length scales of few hundred
nanometers using a conventional X-ray tube. It yields high
contrast to some structures composed of weakly absorbing
materials. The dark-field signals are generated by orientations of
the micro structures in the objects and thus enable reconstruction
of local 3-D orientations.
The main barrier for fully recovering the 3-D micro structure
orientation is that, to our knowledge, currently no analytic linear
projection formula exists. In this paper, we develop a 3-D X-
ray dark-field scattering model. This model is experimentally
validated by dark-field images of bunches of fibers. This is a
major step towards the inversion of the orientation-dependent
dark-field line integral. Based on this model, fully vectorial dark-
field reconstruction can be expected in future.

I. INTRODUCTION

The X-ray dark-field signal shows microscopic inhomo-
geneities in specimen. Currently, Talbot-Lau interferometers
are the most popular systems to capture dark-field images
using a conventional X-ray tube [1], [2]. The potential of this
novel modality is twofold:

1) it allows recovery of local orientations of micro struc-
tures [3], and

2) it allows reconstruction of the structural variations at
length scales below the resolution of conventional X-
ray imaging systems [4].

Previous works have partially reconstructed local orientations.
However, the reconstructed orientations are based on inade-
quate projection models that limit the reconstruction. Revol et
al. [3] assume that the orientations are available as prior
knowledge. The algorithm by Malecki et al. [5] requires to
collect rays from all three axes of rotation, and hence requires
a considerably larger number of X-ray images. In our previous
work [4], the projection model is based on 2-D structural
information, thus only in-plane orientations are reconstructed.
3-D reconstruction is possible, but micro structure orientations
can only be recovered within the plane of scan rotation as

Fig. 1. Wooden block (right), consisting of multiple layers of spliced wood
in different orientations. 2-D reconstruction (left) of the wooden block. Color
coding is used to distinguish different layers.

shown in Fig 1. The vectorial information with the missing
dimension can be obtained using projections from two tomo-
graphic trajectories [6]. However, this approach requires at
least two tomographic scans on different trajectories, which is
challenging to implement in an actual system.

In this paper, we propose a projection model where the 3-D
orientations of micro structures are described as elevation and
azimuth angles. We assume that an elongated micro structure
exhibits a 3-D Gaussian scattering distribution. X-ray dark-
field signals of fibers located at different elevation angles are
analyzed according to the proposed model.

II. 3-D SCATTERING MODEL

In our model, scattering from a single elongated structure
is modeled as a Gaussian distribution. Statistically, this ap-
proximation exploits the idea that the scattering function of an
elongated structure can be derived as convolution of scattering
functions of individual scatterers and thus obeys the central
limit theorem to form a Gaussian distribution [7]. Previous
works experimentally validated this idea for a 2-D Gaussian
approximation for in-plane scattering [7], [8]. In this paper,
we perform the extension to 3-D and experimentally validate
the proposed model. In this section, we first model local
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Fig. 2. Geometry and coordinate systems

micro structure orientations in the global imaging coordinate
system. Then, we use this formulation to derive dark-field
contrast using an analytic representation of a grating-based
X-ray phase-contrast system.

A. 3-D Gaussian Scattering Distribution in Imaging Coordi-
nates

Let p = (x, y, z)T denote a point in the imaging coordinate
system, and let po = (xo, yo, zo)T denote a point in the
coordinate system of the local structure. Let furthermore θe
and θa denote the elevation and azimuth angle of an elongated
structure in the imaging coordinate system, as shown in Fig. 2.
A 3-D Gaussian function fg(po) with zero mean and diagonal
covariance matrix Σ = diag(δ1, δ2, δ3) (which is determined
by the material of the sample) can be written as

fg(po) =

1

(2π)
3
2 δ1δ2δ3

exp

(
− 1

2δ21
x2o −

1

2δ22
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1

2δ23
z2o

)
.

(1)

Note that throughout the paper, we omit for all components
of the covariance matrices the dependency on the location po

or p, respectively.
Imaging coordinates can be transformed into structure coor-

dinates using two rotation matrices for elevation and azimuth
angle. This yields the relation

po = R · p , (2)

where

R =

sin θe − cos θe 0
cos θe sin θe 0

0 0 1

sin θa 0 − cos θa
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cos θa 0 sin θa


=
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cos θa 0 sin θa

 .

(3)

Note that we ignore the roll angle in this formulation, as differ-
ent tomographic views do not affect it. Instead, we assume that
the roll angle is implicitly modeled in the covariance matrix
Σ.

All local micro structure orientations can be expressed in
global coordinates by substituting Eq. 3 into Eq. 1. We define

the resulting function as s(p),
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Here,
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We consider a parallel-beam imaging system. Then, after
rotation by angle ω, the elongated structure’s elevation angle
is θe and the azimuth angle is θa − ω.

B. Dark-field scatter in a Talbot-Lau Interferometer

Equation 4 can be further simplified by taking the particular-
ities of a Talbot-Lau interferometer into account. Here, dark-
field signals are only measured perpendicularly to the grating
bars and X-ray propagation direction, i.e., only scattering
projected to x-axis in Fig. 2 is measured by dark-field imaging.
Integrating the above scattering function along both y-axis and
z-axis results in

s(x) =
1√
2πδ

exp

(
−x2

2δ2

)
, (6)

δ2 =(δ21 + (δ22 − δ21) cos2 θe)

+ ((δ23 − δ21) + (δ21 − δ22) cos2 θe) cos2(θa − ω)
(7)

Previous work described that intensity can be well approx-
imated by first-order Fourier expansion [1],

Ir(pd, ω) ≈ a0(pd, ω) + a1(pd, ω) cos

(
2π

g2
xg − Φ(pd, ω)

)
(8)

where pd denotes the pixel position on the detector, xg is
the position of grating with period g2, ω is the rotation angle
of the scanned object around the y-axis. a0(pd, ω), a1(pd, ω)
are offset and amplitude of the oscillating intensity signal.
Φ(pd, ω) denotes the lateral phase shift. The observed intensity
Is(pd, ω) (after the X-ray passing through the object) can be



calculated as the convolution of the original intensity Ir(pd, ω)
with the scattering function s(x) as

Is(pd, ω) = Ir(pd, ω) ∗ s(x)

= a0 + a1 exp

(
−2πδ2

g22

)
cos

(
2π

g2
xg − Φ(i, j)

)
.

(9)

The dark-field signal is defined as visibility contrast

d(pd, ω) =
as1(pd, ω)/as0(pd, ω)

ar1(pd, ω)/ar0(pd, ω)
, (10)

where as0 and as1 denote captured images with the object in
place (cf. Eq. 8), and ar0, ar1 denote captured images of an
empty scene (cf. Eq. 9). Hence,

d(pd, ω) = exp

(
−2πδ2

g22

)
. (11)

Substituting Eq. 7 into Eq. 11, we obtain

d(pd, ω) =

exp
(
−(b1 + b2 cos2 θe)− (b3 − b2 cos2 θe) cos2(θa − ω)

)
(12)

where

b1 =
2π

g22
· δ21 ,

b2 =
2π

g22
· (δ21 − δ22) ,

b3 =
2π

g22
· (δ23 − δ21) .

(13)

Taking the negative logarithm of d(x, ω), the log-dark-field of
an elongated structure is

dlog(pd, ω) = − log(D(pd, ω))

= (b1 + b2 cos2 θe) + (b3 − b2 cos2 θe) cos2(θa − ω)
. (14)

III. EXPERIMENTS AND RESULTS

To evaluate our proposed projection model, we examined
dark-field images of carbon fiber bunch at elevation angles
30◦, 45◦ and 60◦. A thin glass capillary filled with carbon
fiber was scanned over 720◦ at azimuthal steps of 18◦, i.e., 40
projections per scan. Example dark-field images are shown
in Fig.3. For each elevation angle, images are shown at
azimuth angles of 0◦, 36◦, 90◦, respectively. One can observe
the impact of azimuth angle and elevation angle on the dark-
field signals.

We calculated b1, b2 and b3 using log-dark-filed acquired at
elevation angles of 30◦ and 60◦. For each data set, we averaged
the log-dark-field over a region of interest in each projection
(i.e. the region only contains log-dark-field of carbon fibers,
not glass capillary). Line fitting was applied to calculate
coefficients depending on different elevation angles. In Fig. 4,
the fitted line is presented. The blue stars are the processed

Fig. 4. Line fitting of averaged log-dark-field contributions over region of
interest at elevation angle: a) 30◦, b) 60◦. Blue starts denote the data points
and the black lines are the fitted lines. Normalized least square root error
(NLSRE) for the two dataset are: a) NLSRE=5.0%; b) NLSRE=3.8%

data fitted by the green line. To evaluate our result, we use
the normalized least square root error (NLSRE):

r =

√∑Np

i=1(d̄a(i)− d̄s(i))2

Np ·
(

max
i=1...Np

d̄a(i)− min
i=1...Np

d̄a(i)

) , (15)

where Np = 40 is the number of projections, da(i) is the
averaged log-dark-field at ith projection and ds(i) is the line
fitting value at ith projection. For elevation angle 30◦, the
NLSRE is 5.0% and the NLSRE for elevation angle 60◦ is
3.8%.

From two sets of coefficients, b1, b2 and b3 can be cal-
culated. In our experiment, the results are: b1 = 0.074, b2 =
1.008, b3 = 1.006. In Fig. 5, we show the simulation log-dark-
field of a single carbon fiber bunch at elevation angle 45◦ based
on the proposed scattering model (red line). These results are
compared with experimental acquisition (averaged log-dark-
field contributions over region of interest) denoted by the blue
line. The figure shows high agreement between the prediction
and actual measurements in an experimental setup. Similar to
NLSRE, we define normalized square root difference (NSRD)
for a quantitative evaluation:

rd =

√∑Np

i=1(delog(i)− dslog(i))2

Np ·
(

max
i=1...Np

delog(i)− min
i=1...Np

delog(i)

) (16)

where Np = 40 is the number of projections, delog(i), dslog(i)
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Fig. 3. Dark-field images of a single carbon fiber bunch for elevation angle: a) 30◦, b) 45◦ and c) 60◦. Each column shows a series of three dark-field
images obtained at azimuth angle 0◦, 36◦, 90◦.

Fig. 5. Comparison of simulated average log-dark-field of the carbon bunch
at elevation angle 45◦ (red line) and the experimental dark-field signals of
the same example (blue line).

are the averaged log-dark-field from experiments and simula-
tion at ith projection. The resulted NSRD is 1.1%.

IV. DISCUSSION AND CONCLUSION

In this paper, we propose a 3-D scattering model derived
from a 3-D Gaussian distribution. We examine and eval-
uate this formulation by comparing simulated signals and
experimental results. Our experimental results show excellent
agreement with the model prediction. We consider this a
major step towards reconstruction of the local micro structure
orientation fully three-dimensionally. We expect that a line
integral model can be formed from this observation as a voxel-
wise sum of overlaying scattering structures as reported in the
literature for the 2-D case [4]. With such a model, it is possible
to tackle the inverse problem of reconstruction of 3-D micro
structure orientations.
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