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Introduction

The diagnosis of peripheral arterial occlusive disease 
requires comprehensive imaging of a large field of view, 
typically including the abdominal aorta, and iliac, femoral 
and popliteal arteries down to the tibial and fibular arter-
ies. In addition to digital subtraction angiography, which 
is considered the reference technique, contrast-enhanced 
magnetic resonance angiography (MRA) techniques are 
widely used in clinical practice. These require the injec-
tion of a gadolinium-based contrast agent, which can only 
be administered in patients with adequate renal function, 
often excluding those who need the scan most. Moreover, 
correct bolus timing is important and represents a source 
of potential errors. Time-of-Flight imaging is a non-inva-
sive, non-contrast-enhanced MRA technique offering both 
high resolution and excellent imaging contrast. However, 
its main drawback is the long acquisition time [1], due to 
the large field of view combined with the 2D electrocar-
diogram (ECG)-triggered acquisition method that is com-
monly used.

Iterative image reconstruction methods, combined with 
a dedicated data sampling strategy, have shown potential to 
shorten acquisition times for non-contrast-enhanced MRA. 
Recently proposed magnetic resonance imaging (MRI) 
reconstruction techniques combine the concept of Com-
pressed Sensing [2] with widely-used parallel MR recon-
struction techniques such as SENSE or GRAPPA [3, 4].

Compressed sensing exploits known sparsity properties 
of the data in transform domains, in combination with inco-
herent k-space sampling and non-linear reconstruction algo-
rithms. The choice of the sampling and the minimization 
algorithm are challenging, especially for high acceleration 
factors that are desired in many applications. In addition, 
noise amplification is a known problem in iterative SENSE 
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reconstructions [3, 5, 6], originating from linear dependent 
coil setups and the resulting ill-conditioned reconstruction 
matrices. The noise is more pronounced when using high 
acceleration factors. Therefore, regularization with prior 
knowledge terms such as isotropic Total Variation or Wave-
let regularization is required. As a consequence, joint prob-
lems emerge that need to be solved using adapted optimiza-
tion algorithms. These traditionally include gradient-based 
methods such as the Conjugate Gradient [7] or Newton 
methods. However, multi-step algorithms such as the Split 
Bregman algorithm that were recently adapted include L1

-regularized optimization problems [8, 9], and they have 
proven to be effective in a broad range of applications. In 
this family of algorithms, the optimization problem is not 
solved in its joint form, but split into multiple steps [10], 
hence allowing for dedicated minimization strategies.

This work proposes a novel combination of a MultI-
Coil Compressed Sensing (MICCS) sampling and the Split 
Bregman algorithm. It is shown that this approach provides 
high acceleration factors of up to 12, while overcoming the 
problem of noise amplification and promoting sharpness in 
MRA images. The MICCS pattern incorporates aspects of 
sampling patterns as previously used in the context of the 
parallel MRI algorithm SENSE and Compressed Sensing, 
and uses interleaved calculations of the reference scans.

The purpose of this work is to compare this novel com-
bination with other state-of-the-art schemes with different 
reconstruction algorithms. Our study aims to quantitatively 
show the benefits of the proposed acquisition and recon-
struction strategy, using image-based criteria and the Vessel 
Sharpness Index to evaluate the diagnostic usability.

Materials and methods

In the following section, the novel MICCS sampling pat-
tern is introduced and the Compressed Sensing-SENSE 
problem using the Split Bregman algorithm is formulated.

MICCS sampling pattern and coil sensitivities

The developed data acquisition strategy, referred to as 
the MultI Coil Compressed Sensing (MICCS) pattern, 
combines aspects of sampling schemes used for parallel 
MRI and Compressed Sensing techniques. These aspects 
are incorporated differently in the central and peripheral  
k-space regions.

The traditional sampling scheme for parallel MRI 
combines regular undersampling in the periphery with a 
fully sampled k-space center to provide low-frequency 
information for coil sensitivity maps. Both paradigms are 
combined in the proposed MICCS pattern. In the central 

region, a regular undersampling with factor d ∈ Z is used, 
which can be adapted to the number of independent coils 
in the acceleration direction. Shifts between neighboring 
slices, parametrized using the center offset o ∈ N, allow 
for an interleaved generation of coil sensitivity infor-
mation as described in the next section. In the k-space 
periphery, random, pseudo-random or Poisson-disc dis-
tributions were previously proposed [11] for Compressed 
Sensing.

For the MICCS pattern, the distance from one sampled 
line χ to the next is calculated using the following analyti-
cal inverse root function f , where the parameters a and b 
are used to scale the slope and distance between sampled k
-space points:

The obtained total number of sampled lines and their distri-
bution depends on the k-space size and the parameters for 
the center (d, o) and periphery (a, b). Typical settings are 
(d, o) = ([2, 4], [0, 3]) and (a, b) = ([0.01, 0.1], [3, 6]). The 
generation of the pattern as a combination of SENSE and 
Compressed Sensing features is illustrated in Fig. 1.

Internal, interleaved and interpolated coil sensitivity 
calculation

The complex spatial coil sensitivity profiles, required for 
the SENSE algorithm, are described by c(z,γ ) ∈ R

N for 
slice z and coil γ. They are typically obtained from low-
frequency k-space samples, representing, after Fourier 
transform and a filtering step, approximations of the coil 
images and thus the sensitivity of each coil. Two different 
methods to obtain these central lines are common, either by 
a separate external scan or internally from the image data. 
In the proposed method, the spatial adjacency of neigh-
boring slices is exploited as shown in Fig. 2. The low fre-
quency samples are completely obtained from the imaging 
data using an interleaved approach based upon variation of 
the offset o as introduced in the previous section. Choos-
ing the offset o = 1 relative to adjacent slices leads to a 
shift of the central regular undersampling k-space pattern 
from slice to slice. The Nz 2-D slice images are written as 
column vectors xz with z = 1, . . . , Nz and are arranged in 
a common vector x ∈ C

NNz with N = NxNy. The k-space 
data from Nγ coils is likewise arranged in column vector 
m ∈ C

Nγ NkNz for all slices with Nk = Nkx · Nkz. Thereby, 
the vectors m and x contain the linearized image pixels and 
k-space samples. The reconstruction problem is formulated 
for the entire 3D stack of slices using the encoding matrix 
E ∈ C

Nγ NkNz×NNz, incorporating the sampling information 
and the coil sensitivity map, as well as the inverse Fourier 
Transform coefficients.

(1)f (χ , (a, b)) = ⌈(a · χ)b⌉ with a, b ∈ R.
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The data fidelity term is formulated as 1
2
�Ex − m�2

2. The 
assumption that medical images are piecewise constant and 
smooth is exploited using the sparsity of the data in the 2D 
Total Variation (TV) [12, 13] and the 2D Wavelet Trans-
form (W) [7]. The joint minimization problem combines L2 
and L1 terms, including the data fidelity term and the regu-
larization terms:

where ∇x denotes the 2D finite difference in the x and y 
direction, W the Wavelet decomposition operator, while the 
weights �t and �w regulate the influence of the respective 
terms.

Split Bregman and Quasi Newton method

The joint unconstrained problem formulation in Eq. (2) can 
be solved using different algorithmic types. The methods 
originally proposed [7] use the joint problem formulation, 
which is then solved using gradient-based minimization 
algorithms such as the Quasi-Newton or Conjugate Gradi-
ent algorithms [14], seeking to minimize all terms at the 
same time.

Alternatively, the parts of the minimization problem can 
be split and treated individually, allowing a better-suited 
strategy for each of them. The recently developed Split 
Bregman algorithm [8] alternates between a gradient-based 
optimization for an L2 problem and shrinkage for the L1 
sub-problems. The minimization problem in Eq. (2) is used 
as a basis for the Split Bregman algorithm. The introduc-
tion of the additional variables dw, dx and dy ∈ C

N yields 
the formulation with penalty terms

(2)

x̂ = argmin
x

LGB(x) with LGB(x)

=
1

2
�Ex − m�2

L2

︸ ︷︷ ︸

Data fidelity term

+ �t�∇x�L2,1
︸ ︷︷ ︸

Total Variation

+ �w�W(x)�L1
︸ ︷︷ ︸

Wavelet transform

,

(3)

(x̂, d̂x , d̂y, d̂w) = argmin
x,dx ,dy ,dw

LSB(x, dx , dy, dw) with

LSB(x, dx , dy, dw) =
1

2
�Ex − m�2

L2

+ �t

N
∑

ι=1

√

(dx)2
ι + (dy)2

ι + �w�dw�L1

+
α�t

2

(

�dx − ∇xx�2
L2

+
∥
∥dy − ∇yx

∥
∥

2

L2

)

+
α�w

2
�dw − W(x)�2

L2
,

Fig. 1  Illustration of the 
MICCS pattern, made from 
combined requirements from 
SENSE and Compressed Sens-
ing. The k-space is divided into 
central and peripheral regions. 
The k-space information used 
for coil sensitivity calculations 
is combined over adjacent slices

Fig. 2  Illustration of the calculation of the coil sensitivity maps: 
using the interleaved approach (top row), an individual coil calcula-
tion for each slice (second row), the difference between both using 
the same scaling third row, and a factor of 10 in scaling (bottom row)
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where α ∈ R with α > 0.
The decoupling of dx and dy in the isotropic Total Vari-

ation term is not possible [15], and so a joint formula-
tion is used in Eq. (3). The problem is then reformulated 
using the Split Bregman algorithm with the penalty terms 
and residual errors bx, by, bw ∈ C

N as explained in the 
“Appendix” in more detail. The minimization problem 
can be split into sub-problems allowing the de-coupling 
of the L1 and L2 parts. The L2 problem, formulated with 
the objective function LSB-L2 is solved using a gradient-
based optimization technique with N ′

i  iterations. The 
isotropic Total Variation is minimized using the gener-
alized shrinkage formula [8], while the Wavelet term is 
minimized with soft thresholding. In contrast to the joint 
problem, numerical calculation of the gradients of the 
Total Variation norm, the Wavelet L1 norm, as well as the 
corner smoothing parameter τ, are not required. This is 

beneficial, as the choice of adapted τ constitutes a trade-
off between convergence speed and the quality of the 
obtained solution [7, 16].

The stated steps, minimization of the L2 term, general-
ized Total Variation thresholding and Wavelet soft thresh-
olding, are repeated in each iteration j for j ∈ {1, . . . , Nj}. 
Figure 3 illustrates both techniques schematically, and the 
corresponding pseudo codes are shown in Algorithm 1.

Experimental setup

Specifically for the following experiments, 3 × 1 or 2 × 3 
independent left-right elements of the spine and 1 × 4 or 
2 × 4 independent elements of the peripheral coil were 
used, depending on the table position. The acquisition was 
segmented such that 23 lines were acquired in one shot. 
To evaluate the image quality achieved with the presented 

Fig. 3  Schematic representa-
tion of the joint gradient-based 
and Split Bregman-based 
algorithm
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algorithms, the data sets were fully sampled so that they 
could be used as a reference and to render retrospective 
undersampling possible. Two different types of data sets 
were acquired, referred to as protocols I and II. With proto-
col I, data sets of four slices were acquired from the region 
below the bifurcation of the popliteal artery into the anterior 
and posterior tibial and the origin of the peritoneal artery. 
An in-plane field of view of 448 mm × 448 mm and matrix 
size of 460 × 460 were used. With protocol II, data sets 
of the entire upper and lower peripheral vasculature were 
acquired in three bed positions with 128 slices each. The 
field of view was 448 mm × 168 mm, which is sufficient 
for covering the volunteers’ anatomy. With a matrix size 
of 448 × 184, the in-plane resolution was 1 mm × 0.9 mm.  
For both protocols, TE/TR were 5/34.7 ms and the slice 
thickness was 2 mm.

Implementation

The algorithms were implemented in a C++ framework 
offering both the connection to the scanner manufacturer’s 
reconstruction pipeline and the possibility for operation 
as a stand-alone platform. In the present work, a limited-
memory Broyden–Fletcher–Goldfarb–Shanno (lBGFS) 
Quasi Newton algorithm was chosen as the gradient-based 
optimization method for the joint problem formulation. 
Its low memory usage, combined with the low number of 
required function evaluations, is beneficial for large-scale 
optimization problems [14].

The parameters given for the joint problem solved with 
gradient-based methods in Eq. (2) included Ni, �t and �w.  
For the Split Bregman algorithm, the minimization prob-
lem of interest was formulated in Eq. (3). The relevant 
parameters were the number Nj of Split Bregman iterations, 
the number of Quasi Newton iterations N ′

i used to solve 
the L2 problem and the regularization weights. To limit 
redundancy, the weight α was chosen as α = 2.0. The Total 
Variation and Wavelet weights were referred to by �SB

t  and 
�

SB
w . These parameters were chosen individually for each 

method by limiting the respective normalized Root Mean 
Square Error (NRMSE), but fixed for all data sets so that 
robust reconstruction could be provided.

Reconstruction experiments

The purpose of the reconstruction experiments was to 
investigate both the proposed sampling strategy and the 
choice of the reconstruction algorithm.

To this end, all protocol I data sets were undersam-
pled with six different patterns, all using the same accel-
eration factor of 6, corresponding to 76 phase encoding 
lines of 460. These patterns varied in the way the k-space 
periphery was sampled, as well as in the size and chosen 

undersampling factor of the central region. Alongside full 
sampling, the proposed MICCS pattern with a central 
region consisting of 10 % of the k-space size sampled with 
a factor of 3, and two patterns with a regularly sampled 
periphery and two with randomly sampled periphery, were 
used. Thereby, the central region of the regular patterns was 
fully sampled; its size corresponded to 8 % of the k-space 
for the first pattern (Regular 1), and to 10 % of the k-space 
for the second pattern (Regular 2). The central size of both 
random patterns corresponded to 10 % of the k-space size, 
but while the first was regularly undersampled by a factor 
of 3, matching the MICCS pattern (Random 1), the second 
was fully sampled in the center (Random 2). The number 
of remaining lines in the periphery was chosen to match the 
desired target undersampling factor. These analyzed pat-
terns are illustrated schematically on the left side of Fig. 4. 
The reconstruction algorithm used was the iterative SENSE 
algorithm solved with the gradient-based algorithm with 
Ni = 8 iterations.

In experiment II, the MICCS pattern was applied to 
the presented application of interest in combination with 
the joint gradient-based and Split Bregman algorithms. 
The raw data acquired with protocol I and undersampled 
with the MICCS pattern using a factor of 12, correspond-
ing to 39 lines out of 460, was reconstructed using a non-
regularized iterative SENSE algorithm. In addition, two 
different reconstruction algorithms were applied: a gra-
dient-based solver operating on the joint unconstrained 
function (See Algorithm 1, left column) with Ni = 8, and 
the proposed split formulation with the Split Bregman 
algorithm (See Algorithm 1, right column) with N ′

i = 3 
and Nj = 5.

Both reconstruction pathways were combined with Total 
Variation regularization, Wavelet regularization and the 
combination of both. The regularization weights �t and �w,  
respectively �SL

t  and �SL
w , and the iteration numbers were 

optimized for minimal NRMSE for each of the combina-
tions, and were kept fixed over all data sets. They were 
chosen as �t/�w = 0.002/0.0, �t/�w = 0.0/0.001 and 
�t/�w = 0.002/0.001. The chosen iteration numbers were 
Ni = 5 for iterative SENSE, Nj/N ′

i = 5/3 for Split Breg-
man, and Ni = 8 for the joint gradient based reconstruction.

To demonstrate the diagnostic usability, the data sets 
acquired with protocol II, including the data from the entire 
lower peripheral vasculature, were reconstructed with the 
same settings. Maximum intensity projections were gener-
ated in coronal orientation to evaluate the visualization of 
the vessels along the entire leg.

The parameterization of the reconstructions was chosen 
such that the NRMSE was minimized for each technique, 
but kept fixed for all volunteers. The number of iterations 
was chosen based on a trade-off between run-time and the 
convergence of the data fidelity term.
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Data analysis

All data sets were acquired fully sampled to allow for ana-
lytical quantitative comparison of the iterative result vectors 
x against the fully sampled directly reconstructed reference 
r using the normalized Root Mean Square Error (NRMSE) 
and the Structural Similarity metric (SSIM [17]).

Both NRMSE and Structural Similarity were calculated 
for the stack of 2D images. For the Contrast-to-Noise Ratio 
and Vessel Sharpness Index, the posterior tibial and the 
femoral artery were chosen as vascular regions of interest 
(xv); a pixel region of 10 × 10 pixels within the soleus mus-
cle was used to determine tissue signal (xt).

where σ and µ denote standard deviation and mean value. 
As proposed by Li et al. [18], the Vessel Sharpness Index 
was evaluated on different vessels in subsequent slices, by 

NRMSE(r, x) =
1

Nl

�r − x�L2
,

SSIM(r, x) =
1

Nt

(

2µ(r)µ(x) + c1

µ(x)2 + µ(r)2 + c1

+
cov(x, r) + c2

σ(r)2 + σ(x)2 + c2

)

and

CNR(xv, xt) =
1

Nt

(

µ(xv) − µ(xb)
√

0.5(σ (xv)2 + σ(xb)2)

)

,

calculating the location of the 20 % and 80 % quartiles of 
the maximal vascular signal and the inverse distance.

Results

Experiment I: Evaluation of the MICCS sampling strategy

Quantitative results for the different pattern choices are 
given in Table 1, and representative image results for 
two volunteers are illustrated in Fig. 4. The image results 
showed an increased vessel sharpness and generally 
enhanced image quality of the proposed MICCS pattern in 
comparison to the alternative patterns. The arrows indicate 
small vascular structures, which were well depicted with 
the MICCS, but barely visible using the regular or random 
undersampling patterns. Furthermore, noise and aliasing 
artifacts were visibly reduced for MICCS and the results 
almost entirely recovered the reference results. This vis-
ual result of better image quality corresponded well with 
the quantitative results of Table 1. In the following, the 
best non-MICCS pattern was evaluated for each quantita-
tive measure and compared to the results from the MICCS 
pattern.

Fig. 4  Schematic illustration of the different patterns with an accel-
eration factor of 6, corresponding to 76 lines out of 460. Aside from 
the full sampling in the first row and the proposed MICCS pattern in 
the second row, two regular undersampled patterns with undersam-
pled and fully sampled center, as well as two randomly undersampled 

patterns with undersampled and fully sampled center, are shown. 
Representative image results for the in vivo study corresponding to 
these patterns are shown for volunteers 1 and 2, along with a magni-
fied view
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Evaluating the NRMSE, the Random 1 pattern reached 
the lowest value among the non-MICCS patterns, with 
NRMSE = 0.050 ± 0.006. The MICCS pattern decreased 
this NRMSE by 42 % to 0.029 ± 0.003.

Regarding the Structural Similarity, the Random 2 pat-
tern performed best among the non-MICCS patterns (SSIM 
= 0.882 ± 0.024), which was increased with MICCS by 
8.7 % to 0.959 ± 0.013, again signifying a closer fit to the 
reference reconstructions.

The Contrast-to-Noise Ratio values for MICCS reached 
values of 32.401 ± 18.225, which corresponded to an 
increase of 22 % in relation to the best non-MICCS pattern, 
Random 1. The Contrast-to-Noise Ratio values, however, 
varied significantly over the data sets.

While the best non-MICCS patterns for NRMSE, Struc-
tural Similarity and Contrast-to-Noise Ratio were based on 
random sampling, the Vessel Sharpness Index was highest 
for regularly sampled patterns with 0.198 ± 0.050 (Regular 
2). The MICCS Vessel Sharpness Index was increased by 
20 % to 0.239 ± 0.039 and reached nearly that of the refer-
ence (0.279 ± 0.046). Further statistical analysis results are 
presented in the box plots in Fig. 6, showing the decreased 
interquartile range for MICCS for the NRMSE and the 
Structural Similarity.

Experiment II: Evaluation of the MICCS pattern 
in combination with the Split Bregman algorithm

After the evaluation of the pattern in the previous section, 
the results of the combination from the MICCS pattern and 
the Split Bregman algorithm are presented using different 
combinations of regularization terms.

Table 2 summarizes the calculated quantitative results 
for the algorithm study, comparing both Split Bregman 
and gradient-based method with different regularization 
terms. The best results were obtained using the Split Breg-
man algorithm with both Wavelet and Total Variation regu-
larization. The NRMSE was reduced by 76 % compared 
to the iterative SENSE method and by 40.5 % compared 
to the gradient-based method using the same regulariza-
tion terms. The mean of the Contrast-To-Noise Ratio was 
increased by roughly 30 %, and Vessel Sharpness Index by 
64 % compared to the joint gradient-based results. Regard-
ing the regularization terms in combination with the Split 
Bregman algorithm, results with Total Variation regulari-
zation were very similar, independent of the addition of a 
Wavelet regularization term. The errors for the reconstruc-
tion results with only Wavelet regularization were higher, 
and the Contrast-To-Noise Ratio and Structural Similarity 

Table 1  Quantitative image and Vessel Sharpness Index evaluation for the in vivo pattern study

The reference is used to calculate the NRMSE and the Structural Similarity for all patterns. The Contrast-to-Noise Ratio between vessel and 
background, and vessel and tissue, as well as the Vessel Sharpness Index, are evaluated for all seven reconstruction results

Method Normalized Root Mean Square Error (NRMSE) Structural Similarity Contrast-to-Noise Ratio Vessel Sharpness

Reference 0.000 ± 0.000 1.000 ± 0.000 34.714 ± 19.416 0.279 ± 0.046

MICCS 0.029 ± 0.003 0.959 ± 0.013 31.707 ± 14.910 0.239 ± 0.039

Regular 1 0.070 ± 0.012 0.793 ± 0.047 19.881 ± 6.885 0.173 ± 0.046

Regular 2 0.061 ± 0.012 0.830 ± 0.048 21.674 ± 8.461 0.198 ± 0.050

Random 1 0.050 ± 0.006 0.854 ± 0.039 25.112 ± 9.832 0.177 ± 0.044

Random 2 0.056 ± 0.008 0.882 ± 0.024 22.378 ± 7.422 0.171 ± 0.041

Table 2  Quantitative image and Vessel Sharpness Index evaluation for the in vivo algorithm study

The reference is used to calculate the NRMSE and the Structural Similarity for all patterns. The Contrast-to-Noise Ratio between vessel and 
background, and vessel and tissue, as well as the Vessel Sharpness Index, are evaluated for all seven reconstruction results

Method Normalized Root Mean Square Error (NRMSE) Structural Similarity Contrast-to-Noise Ratio Vessel Sharpness

Reference 0.000 ± 0.000 1.000 ± 0.000 34.714 ± 19.416 0.279 ± 0.046

Iterative SENSE 0.0652 ± 0.102 0.817 ± 0.036 26.304 ± 06.527 0.178 ± 0.034

Split Bregman (TV) 0.0153 ± 0.004 0.991 ± 0.003 46.140 ± 23.372 0.296 ± 0.067

Split Bregman (W) 0.0715 ± 0.020 0.788 ± 0.002 24.326 ± 05.253 0.186 ± 0.034

Split Bregman (TV+W) 0.0152 ± 0.004 0.991 ± 0.003 45.950 ± 22.714 0.300 ± 0.072

Joint grad. based (TV) 0.0400 ± 0.008 0.931 ±  0.020 33.619 ± 10.502 0.182 ± 0.040

Joint grad. based (W) 0.051 ± 0.009 0.885 ± 0.028 28.630 ± 13.286 0.164 ± 0.056

Joint grad. based (TV+W) 0.0405 ± 0.008 0.929 ± 0.001 33.396 ± 10.278 0.182 ± 0.039
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were lower, even compared to the joint gradient-based 
results. In general, the differences between regularization 
terms were less pronounced in the gradient-based recon-
structions. These results were reflected by the image-
based findings of two representative examples as shown in 
Fig. 5, depicting axial slices for each of the eight discussed 
reconstruction techniques. The Split Bregman results with 
Total Variation show a suppressed background noise, and 
accurate delineation of the vascular structures and sharp 
vessel borders.

Finally, the maximum intensity projection results for 
protocol II in Fig. 7 underline the diagnostic usability of the 
proposed method. The results for the entire lower vascula-
ture of volunteers 2 and 3 are shown, as obtained via the 
reference method and the proposed accelerated technique 
in Fig. 7. The smaller vessels were accurately depicted, as 
can easily be observed with the arrows indicating the per-
forating branches of the femoral artery. The vessels of the 
lower leg, and the anterior, posterior and peritoneal artery 
are indicated with red arrows.

Fig. 5  Results of volunteers 1 and 2 using the reference reconstruc-
tion, the iterative SENSE algorithm, the Split Bregman algorithm and 
the joint gradient based algorithm with three different regularization 

combinations. The data is undersampled using the MICCS pattern, 
selecting 39 phase-encoding lines from 460

Fig. 6  Statistical analysis a for 
the pattern experiment com-
paring the proposed MICCS 
pattern performance to the 
reference and four sampling 
strategies with similar accelera-
tion; and b for the algorithmic 
experiment comparing the Split 
Bregman result with the refer-
ence, the iterative SENSE and 
the joint gradient-based results
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The box-plot results for all 10 volunteer cases can be 
seen in Fig. 6b, showing the lower NRMSE and higher 
Structural Similarity for both the Split Bregman and gradi-
ent-based methods, but also the smaller interquartile range 
for the Split Bregman method (Fig. 7).

Discussion

The scans for the entire lower vasculature with protocol II 
had a limited field of view, as specified in the “Experimen-
tal setup” section, to allow acquisition of the fully sampled 
scans in an acceptable time. This required very accurate 
positioning for each of the acquired steps. This resulted in 
a reduction of the field of view to 37.5 % of the previously 
used square field of view. The reported acceleration fac-
tor was therefore lower in absolute values than that previ-
ously chosen. Further parameter studies, mainly addressing 
the required number of iterations for each reconstruction, 
would be beneficial. Specific regularization strategies, such 
as multi-slice approaches [19], are feasible and could fur-
ther reduce the amount of data required. The proposed tech-
nique should be applicable to other 2D MRA techniques, 
such as Quiescent Interval Single-Shot [20]. The Quiescent 
Interval Single-Shot technique is a single-shot acquisi-
tion, and typically one slice is acquired per heart beat. As 
a result, the presented reduction of sampled k-space data 
would not directly result in a reduced examination time. 
The reconstruction times for the proposed algorithm can 
be greatly improved using multi-threading or graphics pro-
cessing unit (GPU)-based methods.

Conclusion

The proposed data sampling strategy combines elements 
of SENSE and Compressed Sensing sampling strategies 
in different regions of k-space. The experiments presented 
here show, that this data sampling strategy allowed for high 
undersampling factors in peripheral non-contrast-enhanced 
MRA, with higher image quality and vessel sharpness com-
pared to those obtained with further Compressed Sampling 
and SENSE sampling patterns at the same acceleration 
factor.

In combination with the Split Bregman method, very 
good results regarding image quality and vessel sharpness 
were achieved for all volunteers. The use of the Split Breg-
man algorithm led to a lower noise amplification by main-
taining a good data fit and reducing ghost artifacts, even for 
high acceleration factors.

In summary, the study of different undersampling pat-
terns and the combination with the Split Bregman algo-
rithm showed significant benefits for the combination of 
the proposed MICCS pattern and the Split Bregman algo-
rithm. The major advantages were the improved results for 
sharpness, NRMSE and SSIM, as well as the analytical and 
flexible generation of the MICCS pattern.
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Fig. 7  Example image results 
for volunteers 2 and 3, compar-
ing the fully sampled reference 
and the MICCS pattern + Split 
Bregman algorithm reconstruc-
tion. The coronal Maximum 
Intensity Projections are dis-
played with inverted intensity 
scale. The shifts in imaging 
position are indicated in blue, 
the arrows indicate the precise 
depiction of the smaller vessels, 
despite shorter acquisition time
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Appendix: Formulation of the split problem 
sub‑problems

Starting from Eq. (3), the inclusion of the residual errors 
bx, by, bw ∈ C

N yields the formulation in two steps, given 
in Eqs. (4–5).

The minimization problem for the L2 component equals

The sub-problems for the wavelet and total variation terms 
are formulated as
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