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Multi-Dimensional Flow-Preserving Compressed
Sensing (MuFloCoS) for Time-Resolved
Velocity-Encoded Phase Contrast MRI
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Joachim Hornegger, and Andreas Maier

Abstract—4-D time-resolved velocity-encoded phase-contrast
MRI (4-D PCI) is a fully non-invasive technique to assess hemo-
dynamics in vivo with a broad range of potential applications in
multiple cardiovascular diseases. It is capable of providing quanti-
tative flow values and anatomical information simultaneously. The
long acquisition time, however, still inhibits its wider clinical use.
Acceleration is achieved at present using parallel MRI (pMRI)
techniques which can lead to substantial loss of image quality for
higher acceleration factors. Both the high-dimensionality and the
significant degree of spatio-temporal correlation in 4-D PCI render
it ideally suited for recently proposed compressed sensing (CS)
techniques. We propose the Multi-Dimensional Flow-preserving
Compressed Sensing (MuFloCoS) method to exploit these prop-
erties. A multi-dimensional iterative reconstruction is combined
with an interleaved sampling pattern (I-VT), an adaptive masked
and weighted temporal regularization (TMW) and fully automati-
cally obtained vessel-masks. The performance of the novel method
was analyzed concerning image quality, feasibility of acceleration
factors up to 15, quantitative flow values and diagnostic accuracy
in phantom experiments and an in vivo carotid study with 18
volunteers. Comparison with iterative state-of-the-art methods
revealed significant improvements using the new method, the
temporal normalized root mean square error of the peak velocity
was reduced by 45.32% for the novel MuFloCoS method with
acceleration factor 9. The method was furthermore applied to two
patient cases with diagnosed high-grade stenosis of the ICA, which
confirmed the performance of MuFloCoS to produce valuable
results in the presence of pathological findings in 56 s instead of
over 8 min (full sampling).

Index Terms—Compressed sensing, hemodynamics, magnetic
resonance imaging (MRI), phase contrast MRI.
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I. INTRODUCTION

T HE ASSESSMENT of hemodynamics is important in
the diagnosis of multiple cardiovascular diseases and is

widely used for therapy decisions and planning. One example
is the bi-lateral assessment of carotid flow to evaluate conse-
quences of stroke or stenosis or flow patterns in aneurysms to
assess the probability of ruptures. A further example is the as-
sessment of severe internal carotid artery (ICA) stenosis, which
can be done by measuring retrograde flow or the visualization
of areas with very slow flow [1]. The requirements for clinically
useful hemodynamic information include a good temporal res-
olution to observe the dynamics over the cardiac cycle and high
spatial resolution in all three dimensions to assess even small
arteries and to detect turbulence. Furthermore, the accuracy
of clinically relevant parameters such as wall shear stress [2]
or volumetric flow is highly dependent on the knowledge of
anatomical vessel lumen and wall information.
Acquisition techniques for hemodynamic information in-

clude computed tomography angiography (CTA), Doppler
ultrasound (DUS), fractional flow reserve (FFR) [3], and
dynamic contrast-enhanced MRI (DCE-MRI), but they all
come with significant drawbacks: CTA exposes the patient to
ionizing radiation; FFR is highly invasive; DCE-MRI requires
injection of a gadolinium-based contrast agent; and ultrasound
is user-dependent and does not offer anatomical information
[4]. In addition, Computational Fluid Dynamics is used to
create simulations [5] based on patient-specific information
such as heart rate and geometry [6]. But those cannot replace
a fully patient specific in vivo acquisition of the blood flow
velocities. 4-D PCI represents a fully noninvasive method to
assess human blood flow. It provides furthermore intrinsically
registered—as simultaneously acquired—anatomical and ve-
locity information, enabling the calculation of a wide range of
clinically relevant physiological parameters such as volumetric
flow, peak velocity, and mean velocity [7].
A general drawback of this technique—if considerable

3-D coverage and high temporal and spatial resolution is re-
quired—is its long acquisition time, which originates from the
synchronization to the cardiac cycle, the required segmented
acquisition technique and the velocity encoding. The acqui-
sition time for a full scan of the carotid bifurcation region
for a reasonable parameter set offering both good spatial and
temporal resolution reaches up to 30 min.
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Recently, approaches to reduce acquisition time for 4-D PCI
have been proposed: They rely either on optimized encoding
strategies [8], [9] or on specific reconstruction strategies able
to reconstruct the output volumes from highly undersampled
-space data. Sampling below the Nyquist criteria leads to sig-
nificant image artifacts which are addressed by specific recon-
struction techniques. One group of methods consists of pMRI
such as GRAPPA [10] and SENSE [11]. The spatially varying
information of multiple coils around the subject which acquire
-space data simultaneously is used to reduce the scan time.
The additional spatial sensitivity information of the coil setup
is exploit to reconstruct images from undersampled -space
data. pMRI techniques are employed for dynamic 4-D PCI
often in combination with temporal encoding schemes such
as kt-GRAPPA [12] or compartment-based kt-SENSE [13].
Non-Cartesian trajectories such as spirals in combination with
SENSE were introduced by Steeden et al. [14]. A different
group of methods, able to reconstruct even higher accelerated
data, are iterative reconstruction techniques and recently pro-
posed compressed sensing (CS) techniques [15], [16] which are
frequently combined with pMRI methods. CS relies on gener-
ating noise-like artifacts by using incoherent samplings, which
can be separated from image information using adapted regu-
larization. The basis for the employed regularizers are sparsity
or transfer sparsity assumptions, The resulting optimization
problem, combining the fidelity to the measured data with reg-
ularization terms is solved using nonlinear reconstruction al-
gorithms. This technique is promising for 4-D PCI as the fun-
damental principles of incoherence and sparsity are applicable.
Incoherence is achieved by choosing dedicated sampling trajec-
tories for the acquisition in -space. Those are either Cartesian
or non-Cartesian. Non-Cartesian trajectories such as radial or
spiral sampling offer higher flexibility compared to Cartesian
patterns with regard to incoherence. But this benefit is associ-
ated with the required additional gridding step [17] as major
drawback which significantly adds to the computational effort
of the iterative reconstruction. It was shown that the theoret-
ical best choice, randomized patterns, is less suitable for highly
accelerated MRI. The central -space region, containing low
frequencies requires denser sampling to achieve good results
[18]. Furthermore, high acceleration randomized patterns can
result in significant gaps between the samples. Proposed al-
ternatives include pseudo-random or Poisson-distributed sam-
pling [19]. Sparsity is inserted into the CS formulation with
specific regularizers, varying between very general assump-
tions about medical images such as a certain smoothness and
the possibility to be expressed by a low number of Wavelet
coefficients and very acquisition specific constraints. These in-
clude for 4-D PCI, complex difference sparsity as shown by
Kwak [20], divergence-free constraints described by Busch et
al. [21] and specific phase regularization [22]. Furthermore,
the dynamic character of 4-D PCI is exploited by Kim et al.
[23], proposing a kt SPARSE SENSE approach reconstructing
jointly reference and velocity-encoded data using a temporal
FFT and PCA as sparsifying transform. Velikina et al. [24]
include second order temporal differences. Spatially varying
temporal constraint regularization has been applied to PC MRI
by Hulet et al. [25]. Acceleration methods based on CS further

include work by Joseph et al., who showed good results ap-
plying nonlinear inverse reconstruction techniques [26] and the
recent work by Santelli et al. extending the L1-spirit method
to PCI data [27]. The only studies applying CS methods to
in vivo carotid PCI data were presented by Tao et al. [28]
introducing temporal Fourier transform in combination with
uniformly random sampling and by Hutter et al. [29] using
a Low-Rank Sparsity assumption. Carotid PCI data is chal-
lenging due to the small vessel diameter, the highly pulsatile
flow and the complex flow behaviour around the bifurcation.
For carotid PCI, the dynamic changes originate mainly from
blood flow effects, either directly or indirectly by vessel wall
motion due to its pulsatile nature. In addition, their spatial ex-
tent is limited to the vessel proximity. Further possible origins
of movement, patient-, cardiac-, and breathing motion can be
neglected for this application. The temporal resolution of de-
rived physiological parameters with clinical relevance, such as
volumetric flow, peak velocity, or wall shear stress depends to a
high degree on the temporal fidelity of the flow reconstruction.
A well-suited temporal regularization should thus exploit the
anatomical correlation in the static tissue parts to offer volumes
with clinically accepted image quality while maintaining the
temporal fidelity in vessel proximity. Two basic requirements
exist for the usage of this prior knowledge: The first require-
ment is a joint reconstruction algorithm which reconstructs all
volumes for all time steps as well as velocity encodings simul-
taneously to allow for exploiting correlations spanning over
different images along all dimensions. Secondly, a stable dy-
namic sub-division of the image volume into vessels and static
tissue is required. The necessary information for this subdi-
vision is intrinsically available in 4-D PCI with the anatom-
ical reconstruction. The Multi-dimensional Flow-adapted Com-
pressed Sensing algorithm (MDFCS) used this information as
prior in combination with a dedicated pattern and iterative re-
construction [30]. In this work, we extend this approach to
a fully interleaved and incoherent sampling (I-VT) strategy,
enabling higher acceleration through fully internally shared
calculation of the coil profiles. The adaptive TMW regular-
ization strategy is refined by adding additional weighting and
masking with a static and dynamic mask for a stable and au-
tomatic differentiation into static and nonstatic tissue during
the reconstruction. The resulting Multi-Dimensional Flow-pre-
serving Compressed Sensing (MuFloCoS) algorithm exploits
the significant spatio-temporal correlation in the dynamic ac-
quisition while preserving the temporal flow resolution. The
adaptive masking strategy relies on inherent 4-D PCI features,
which are made accessible by an interleaved sampling scheme
in the temporal and velocity encodings (I-VT). In summary,
in contrast to other methods, not only the spatial and temporal
dimension, but also the 4-D PCI inherent velocity encoding
dimension is included in all steps of the algorithm. The TMW
regularization penalizes nonsimilarity to neighboring temporal
phases but differentiates between static and flow affected areas
using adaptive vessel masks in order not to introduce temporal
blurring. The paper is structured as follows. The acquisition and
reconstruction basics as well as the postprocessing of the image
data for PCI are introduced, the novel MuFloCoS method is
described as well as the experimental setup consisting of a
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Fig. 1. Static magnetization and moving magnetization under the influ-
ence of the bipolar gradient in the acquisition time .

phantom experiment, a larger carotid volunteer study with 18
subjects and two patient cases. Image based quantitative mea-
sures as well as physiological parameters were calculated and
used to evaluate the accuracy of the proposed method. The
novel method is compared against the fully sampled reference
as well as different CS methods such as L1 regularized SENSE,
kt-SPARSE SENSE once with temporal Fourier transform and
once with temporal principal component analysis (PCA), the
method proposed by Tao et al. 2013 [28] and MDFCS. Another
experiment shows the stability and acceleration capacities of
MuFloCoS. Finally, the results of the two patient cases of se-
vere stenosis of the ICA, accelerated and reconstructed with
MuFloCoS, are presented.

II. 4-D PCI THEORY

The magnetic field in an MRI measurement consists of a ho-
mogeneous magnetic field and a gradient field , gener-
ated from gradients in all spatial dimensions which are switched
during the measurement sequence. Phase Contrast MRI relies
on the linear dependency of the signal phase from velocity in
presence of special bipolar gradients consisting of two
lobes with the same amplitude but opposite polarity. The
total field considering a gradient in -direction equals to

. The accumulated
phase at the end of an acquisition interval is calculated by
integrating the frequency over the time and using the Larmor
frequency as

(1)

The mechanism to obtain velocity information utilizing the
signal phase is illustrated observing two spins with different
velocities (see Fig. 1). If a magnetization is static,

and magnetization is moving along the direction of the
gradient with constant velocity , its time-dependent position
equals .
During the first slope for , the transverse magneti-

zation of both spins is de-phased. The second slope re-phases the
static magnetization, leading to a net phase change of 0. Mag-
netization , however, during its movement experiences dif-
ferent magnetic field conditions and is not completely re-phased
during the second slope of the gradient. As a result, a term in-

cluding the first gradient moment and providing a linear depen-
dency on the velocity is obtained

To obtain a linear relation between the velocity and the mea-
sured phase as well as to compensate for phase effects unre-
lated to flow such as field inhomogeneties an additional ve-
locity-compensated reference acquisition is required. For 3-D
velocity information, most 4-D PCI sequences use a 4-point ve-
locity encoding scheme [31], which requires one flow-compen-
sated reference scan and three velocity sensitive scans [32] in
through-plane, anterior-posterior and right-left direction. Dy-
namic information over the cardiac cycle is obtained by trig-
gering the acquisition to the R-wave in the cardiac cycle of the
patient using electrocardiogram (ECG) or pulse triggering.
time steps are defined starting from the R-wave, within which
subsets of -space data are collected over multiple heart beats
in a segmented acquisition scheme.

A. Reconstruction

For the following, will be the column wise written notation
for a matrix . The variables and denote the number
of temporal phases and velocity encodings, rep-
resents the problem size. is the number of
-space samples, the number of parallel receive coils and

the image volume size.
For each temporal phase , each velocity encoding , and each

channel , one -space vector is acquired. The
set of all -space acquisitions corresponding to the same
temporal phase and velocity encoding are represented as the
all-channel vector . For each time step, vectors

are created, which form
the total raw data vector .
The reconstruction leads to the image space vectors
. The image space vector is formed analogously.
Transformation between image space and -space is done via

the system matrix assembled of matrices
, such that and

. . .
. . .

(2)
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For conventional fully sampled single-channel MRI, the
system matrix consists of Fourier coefficients. For pMRI,
the matrices include the coil sensitivity profiles and
the Fourier coefficients [11]. Direct solution of is
impossible in the highly accelerated case as the system is
heavily under determined for .

B. Extraction of Flow-Related and Anatomical Information

The reconstructed data sets are further processed to ob-
tain both anatomical information and quantitative 3-D velocity
information. For the case of three-directional velocities,
equals four. The complex difference between velocity-com-
pensated and velocity-encoded acquisitions highlights the
regions with moving magnetization by subtracting out the static
regions, corresponding to moving protons. It can therefore be
used to obtain angiographic images which highlight the vessel
anatomy. Respective complex differences are calculated for
all velocity encoding directions. The sum of their magnitudes
results in the angiographic image , providing high
contrast for areas with flow irrespective of the direction. The
quantitative information is obtained via the signal phase dif-
ference between velocity-compensated and encoded image for
each flow encoding direction as .
Calculations of and are performed as

(3)
The phase in is encoded to values within the interval

, which can lead to wrapping artifacts and misinterpre-
tation of flow exceeding this range as slow flow in the opposite
direction. In order to avoid those artifacts, the velocity encoding
parameter, also called venc, , is chosen as the maximum ex-
pected velocity in each flow encoding direction. Finally, 3-D
velocity fields are obtained as .

III. MUFLOCOS

The novel MuFloCoS approach is presented in detail here.
Four main points are in the focus: the interleaved I-VT pattern
is explained in Section III-A; the multi-dimensional joint
iterative Newton-based reconstruction in Section III-B; the
vessel-masked and temporal weighted TMW regularization in
Section III-C and finally the domain sub-division using the
anatomical image detailed in Section III-D. Furthermore, the
choice of all parameters is given along with pseudo-code and a
schematic flowchart.

A. The I-VT Sampling Strategy

The sampling for 4-D PCI can be varied in four dimensions,
two intra-volume and two inter-volume directions. The intra-
volume degrees of freedom are and direction. The acqui-
sition in the read-out direction is substantially faster than the
phase encoding directions and as no gradient switches
are required. The inter-volume directions are the time and
the flow encoding direction . While state-of-the-art approaches
typically offer , and -direction variation, the freedom in

Fig. 2. (a) Schematic 2-D illustration of central -space variations. (b) Map-
ping of time steps and velocity encodings for three different mapping func-
tions : Temporal variations , regular , and random per-
mutations .

flow encoding direction is rarely used. The MuFloCoS algo-
rithm relies on a Cartesian pattern, which can be analytically
calculated while offering both a substantial amount of incoher-
ence and suitability for high acceleration factors. The omis-
sion of a gridding step, possible through the use of a Carte-
sian pattern, in every iteration reduces the computational ef-
fort, and therefore the reconstruction time. The pattern is de-
scribed by , with , it equals “1” for sam-
pled points and “0” for omitted -space samples. The genera-
tion of the pattern for all time steps and flow encodings is
detailed in the following. Intra-volume directions are exploited
by separating -space into a central region , which is regu-
larly under-sampled and has the dimension , and a
peripheral region, sampled irregularly with decreasing den-
sity following an inverse root function [33]. The center is de-
scribed by the spacing , fixed to for the 2-D version and

for 3-D, and the offset , obtained as re-
sult of the mapping . Fig. 2(a) illustrates the center sam-
pling patterns for with . Conventional
temporal approaches without -variations can be modelled with

, where depends uniquely on . Two alterna-
tives including -Variations for the mapping function are pro-
posed, regular permutations and random
shifting , obeying two constraints: 1) two subsequent
time steps in the same velocity encoding never share the same
central lines and 2) all -space central lines must be sampled in
each time step

(4)

(5)

(6)

The same offset is used for the start of -space peripheral in-
verse root sampling, using a parametrizable quadratic function

to determine the distance between successive sam-
pling points.
The results for all three mentioned mapping functions are il-

lustrated in Fig. 2(b) for on the top, for in the
middle and for on the bottom. The corresponding pat-
terns including peripheral inverse root sampling are shown in
Fig. 3 with their point spread functions. The higher peak-to-
sidelobe-ratio in the I-VT variants in three illustrates the higher
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Fig. 3. Exemplary patterns for 2-D sampling with for the three
mentioned mapping functions with the corresponding point spread functions
PSF using the same scaling illustrate the better peak-to-side lobe
ratio for the random permutations.

incoherence of the under sampling artefacts, which is an impor-
tant prerequisite for CS. The proposed I-VT sampling strategy
exploits and direction to add incoherence, but also to enable
two additional features.
• The pattern, interleaved in and permuted in -direction,
allows the calculation of approximate static and dynamic
anatomical images , which are used later in the algorithm
for the anatomy-based sub-division (Section III-D).

• Instead of acquiring the coil profiles in a separate time-con-
suming external scan, they can be obtained by combining
central -space lines over the velocity encodings. The
combined fully sampled low resolution -space is filtered
with a Hanning window [11].

B. Multi-Dimensional Iterative Newton-Based Reconstruction

In contrast to the conventional case, where each volume is
reconstructed individually, the approach combines the raw data
of all phases and velocity encodings in one reconstruction. This
is favourable over individual reconstruction, as it enables the use
of sparsifiying transforms spanning over different images along
all dimensions to exploit similarities during the reconstruction.
The objective function for the iterative reconstruction consists
of a data fidelity term and the regularization term .
The data fidelity term

(7)

includes the raw data and the pMRI reconstruction matrix
including the Fourier coefficients,

the under sampling pattern and the coil profiles described
by

(8)

Fig. 4. Illustration and justification of the weighted and masked temporal reg-
ularization strategy. (a) Magnitude of the flow-compensated and through-plane
encoded images is shown for . (b) Finite differences over time
between the images for and are depicted.

Thereby is the position of voxel in image space, is
the frequency. A more detailed description of the regularization
term is found in Section III-C.

C. Vessel-Masked and Temporal Weighted Regularization

The MuFloCoS approach proposes an adaptive vessel-
masked and weighted temporal regularization (TMW) which
exploits spatio-temporal correlation while maintaining the tem-
poral flow fidelity using the anatomy-based sub-division. The
significant spatio-temporal correlations of PCI can be observed
in the first five time steps for the velocity compensated (upper
row) and one of the velocity encoded scans (lower row). Those
can be modelled using finite differences (FD) with different
step length in time direction. For each temporal time point
and encoding , the FD to phase with

is calculated voxel wise as

(9)

Fig. 4(b) illustrates for and
for the velocity compensated and encoded
data scans. To assess the proposed sparsity assumption as well
quantitatively, the coefficients of the FD images
for are sorted by magnitude in Fig. 5 for ,

, , and . Three observations can be de-
rived and will motivate the algorithmic choices detailed below.
In general, it can be well observed, that the significant high con-
tributions are concentrated within few pixels in the coefficient
plot. This is illustrated in the difference images in Fig. 4(b),
where the main contributions to the finite differences clearly
are concentrated at the vessels, which show the meaningful ve-
locity changes over time, while the background has relatively
low contribution. There is a substantial difference between the
flow compensated and encoded images.While the flow-encoded
scans show the described enhancement of vessels, this is less
clearly observable in the compensated scans. The zooms into the
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Fig. 5. Finite difference coefficients ordered by magnitude show
the sparsity of the used differences for and .

highest 0.1% of the coefficients show a more significant contri-
bution of the velocity-encoded scans (dotted lines). The zoom
into the lower coefficients reveals the inverse situation. In sum-
mary, the coefficients for the flow-encoded scans are more com-
pressed in the highest values. Finally, the concentration of con-
tributions to the vessels decreases for larger time steps. How-
ever, the general importance of the differentiation in vessels and
background stays valid for a certain range of subsequent time
steps. Based on those observations, the MuFloCoS algorithm
includes three features into the temporal finite difference regu-
larization:
• a vessel-mask limiting the regularization to background
areas to preserve the dynamics within the vessels,

• different treatment for the flow compensated and velocity
encoded scans, and finally

• a temporal weighting in time direction, attributing higher
importance to closer time steps.

The difference terms are arranged for all step sizes in a common
vector

(10)

and finally for all flow encodings to and all time
steps to

...
... (11)

The weighting function is realized either with
a box function or with a Gaussian kernel

, centred at the posi-
tion with standard deviation , determining the extent of the
influence of neighboring phases. Thereby the vector
equals . It is used to form the
weighting matrix for time step as well as
the complete weighting matrix

(12)

Finally, the vessel masks are involved. Those
theoretically equal to for voxels within a vessel and

for background voxels, for practical reasons nonbi-
nary values are chosen. Their calculation is detailed
in Section III-D. To limit the regularization to the background
areas, the masks are subtracted from the unity vector ,
such that voxels within vessels are multiplied with “0” and do
not contribute to the value of the regularization. The differen-
tiation between compensated and encoded acquisitions is mod-
elled by weighting all voxels of the compensated scan with “1,”
meaning, that the regularization operates on them.
The masks are arranged in the diagonal matrices

, and composed to form matrices
. These are used in the assemblage of the final

entire mask matrix

. . .

. . .
(13)

The temporal differences are multiplied with the mask ma-
trix and the weighting matrix

(14)

The objective function including the regularization weight
equals

(15)

This is solved iteratively by

(16)

D. Anatomy-Based Sub-Division

During the iterative reconstruction the volume, defined by its
voxel set with voxel indices , is divided into a
static part consisting of the voxel set and a part affected by
flow motion with to allow guidance of the
temporal regularization to the static parts. This is important to
avoid temporal blurring. The goal is therefore to obtain dynamic
masks with the theoretical property

if
if .

(17)

As the subdivision correlates mainly with the vessel anatomy
in the chosen application, is referred to as vessel mask. The
selected differentiation feature is the occurrence of flow as it is
inherent in the PCI technique through the anatomical images
as explained in Section II-B. The proposed interleaved and in-
coherent pattern leading to distributed incoherent artifacts in
and direction allows an approximation of , which is used to
generate the masks . This information is then available for
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Fig. 6. Generation of the vessel masks as a combination of the static and dy-
namic anatomical images is illustrated. The (a) static images and (c) dynamic
images for the first three and the last iteration are depicted. (c) Evolution of
their respective influence is shown depending on the parameter . (d) Final
vessel masks for are visualized.

the temporal regularization and directs it to the known loca-
tions of correlation. Beside the approximation of the typical PCI
anatomical map , as described in (3), a static approximation
calculated as the anatomical image over all phases is used

(18)

During the reconstruction, both are calculated based on the ac-
tual image estimate for iteration . The first
necessary estimate used during the first iteration, referred to by
corresponds to the conventionally reconstructed raw data

vector using the Sum-of-Squares [34] method: .
By updating the masks in each iteration, the algorithm adapts to
the improving reconstruction quality. MuFloCoS uses a combi-
nation of both static and dynamic image, which is crucial for
the stability and robustness of the algorithm particularly for the
first iterations which are heavily influenced by aliasing artefacts.
This is illustrated with a 9.0 times under-sampled data set in
Fig. 6. The obtained static masks for the first four iterations and
the last iteration are shown in Fig. 6(a), the dynamic images
for time step 2 in Fig. 6(c). The aliasing artefacts in the first
dynamic masks are visible, while the static images allow clear
depiction of the vessels from the first iteration on. This is pos-
sible through the use of the I-VT pattern with variations in both
directions, used combined to generate the anatomical images.
The sub-division is entirely based on this intrinsically

obtained anatomical images and by applying a binary
threshold . The obtained binary masks and for voxel
equal

if
if

if
if

(19)

The influence of the static and dynamic anatomical image
approximation changes smoothly with the parameter
depending only on the iteration step with

(20)

The evolution of over iteration steps is visualized in
Fig. 6(b). Fig. 6(d) illustrates the final masks .

E. MuFloCoS Implementation Details

This section describes the details of the MuFloCoS algorithm
implementation. The algorithm was included into a C++ re-
construction framework, offering both a linked version to the
MR scanner and a standalone version for testing purposes. The
linked version directly processes the raw data after acquisition
using the inline data processing pipeline. The MuFloCoS algo-
rithm seeks to find a solution for the problem as stated in (15).

Algorithm 1: MuFloCoS algorithm

Require:

Require:

1: Calculate combined coil profiles

2: Obtain direct reconstruction with

3: Calculate and

4: Initialize mask matrix

5: Assemble weighting matrix

6: Assemble encodingmatrix with

7: while do

8: Newton update evaluating the objective function as
follows:

9: Calculate the data fidelity term

10: Assemble FD vector

11: Calculate

12: Update

13: Update

14: Combine and to using

15: Update mask matrix

16: end while

17: return

The complete MuFloCoS algorithm is represented in the flow
chart in Fig. 7 as well as in a detailed step overview in algorithm
1. The preprocessing in steps 1–6 includes shared coil profile
calculation, initialization of the vessel mask, calculation of the
temporal weights and assembling of the encoding matrix. Then,
the iterative process is started.
Considering the size of the optimization problem with

unknowns, a limited-memory BFGS solver [35] is used, which
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Fig. 7. Scheme of the MuFloCoS algorithm.

proved to be memory-efficient and stable. Replacement with
further solvers such as the conjugate gradient method is possible
without introducing structural changes. For all gradient-based
solvers, both the objective function and its gradient are required
within each iteration. Finally, the vessel mask matrix is updated.
The parameters for MuFloCoS were chosen equal for all

datasets and experiments as , and
. The ensures computational effi-

ciency, as the differences are calculated only in the relevant
kernel .

IV. EXPERIMENTS AND RESULTS

A. Phantom Experiment

Phantom data was acquired using an MR compatible pump
(CardioFlow 5000MR, ShelleyMedical, Toronto, Canada) con-
nected to a control unit outside the scanner room and a tube
system filled with blood mimicking fluid. An inflow–outflow
setup was used for this study with two connected tubes of diam-
eter 1.9 cm and a phantom bottle to simulate tissue contrast. The
imaging volume plane was chosen orthogonal to the tubes, such
that each imaging plane contained a cross section of the bottle
and both the in- and outflow tube. See Fig. 8(a) for a schematic
representation of the setup. A regulated laminar flow with 150
ml/s was pumped through the tube system and imaged on a 3T
MR scanner (MAGNETOM Skyra, Siemens Healthcare Sector,
Erlangen, Germany). The imaging parameters were FOV 190
130 mm, matrix 256 176 and a slice thickness of 3.1 mm,

, temporal resolution 49.6 ms and flip
angle 20 . The controlled setup allows to verify the flow con-
servation law between in- and outflow in each slice

, and between adjacent slices regarding the inflow and
the outflow

(21)

The fully sampled data sets were reconstructed with the con-
ventional Sum-of-Squares (SoS) technique to obtain a reference
volume. The I-VT pattern with acceleration factor 9 was applied

Fig. 8. Setup and imaging planes for (a) the phantom experiments and (b) the
in vivo carotid study.

TABLE I
QUANTITATIVE EVALUATION OF THE PHANTOM DATA

retrospectively and the undersampled data was reconstructed
using our proposed MuFloCoS method. Table I illustrates the
deviation results for the reference reconstruction and for Mu-
FloCoS in percent, which are all below 4%.

B. In Vivo Study

4-D PCI data was acquired on a clinical 3T MR scanner
(MAGNETOM Skyra, Siemens Healthcare, Erlangen, Ger-
many) from 18 healthy volunteers (18–72 years) using an
ECG-triggered PC sequence. The region of interest (ROI) was
chosen as the region around the carotid artery bifurcation. Up to
16 transverse slices were acquired, starting from the common
carotid artery (CCA) 40 mm below the bifurcation up to the
internal and external carotid artery approximately 20 mm above
the bifurcation. This setup is illustrated in Fig. 8(b). Imaging
parameters were , temporal resolution
49.76 ms, flip angle 20 , FOV 200 mm 200 mm, slice
thickness 2–4 mm and imaging matrix 256 256, in-plane
resolution of 0.78 . The velocity sensitivity range
and phases were individually optimized. Between eleven and
20 temporal phases were acquired and the was chosen be-
tween 60 and 100 cm/s. The FOV was adapted if required. The
fully sampled data sets were used to have a reliable reference
especially for the physiological values.
Three experiments with different goals were performed with

the in vivo study data.
Experiment I: Quantitative and physiological evaluation.
Quantitative flow parameters obtained with the proposed re-

construction algorithm are compared to previously reported lit-
erature values and to the results of different state-of-the-art iter-
ative algorithms to ensure the validity of the proposed method
for enhanced image quality and quantification purposes. Seven
reconstruction were therefore performed: the fully sampled data
set was reconstructed using the Sum-of-Squares technique to
obtain a Reference. The remaining six reconstructions were
performed using an acceleration factor of 9.0 for different it-
erative techniques. Thereby, the same coil profiles and the same
formulation of the data fidelity term in (15) was used. The algo-
rithms thus varied in the choice of the regularization, the same
sampling was employed for all. All emerging optimization prob-
lems were solved using the same lBFGSmethod which has been
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shown to be very stable and especially suited for large opti-
mization problems as the present. The number of iterations con-
ducted for each algorithm was determined based on the relative
data fidelity term (7) reduction, calculated as

(22)

This resulted in for ISENSE, for ,
for , for , for

MDFCS and for MuFloCoS.
• Iterative SENSE algorithm ISENSE without regulariza-
tion, corresponding to in (15).

• Regularized state-of-the art Compressed Sensing algo-
rithm using the Daubechies 4Wavelet transform and
Total Variation with corner rounding parameter .

• The kt-SPARSE SENSE algorithm as previously proposed
[23] using temporal Fourier transform and using
PCA [36] . The implementation followed the
original implementation provided by the authors in terms
of objective function and gradients.

• The previously proposed MDFCS algorithm [30]. A box
function instead of the Gaussian weighting is used and the
vessel mask is obtained only based on the dynamic images.

• The proposedMuFloCoS algorithm with .
The sparsity weights for , , and were

optimized individually for each technique regarding NRMSE
over the parameter space . The re-
sulting values and for ,

and for and
for were used for all data sets.

Experiment II: Comparison against state-of-the art in CS for
carotid PCI.
The aim of this experiment is the comparison of MuFloCoS

against the only known further state-of-the-art algorithm pro-
posed for the same application, in vivo imaging of the carotid
arteries, the method by Tao et al. [28]. The key algorithmic el-
ements were as follows.
• R: A pattern which is fully sampled in the central region
and randomly under sampled in the periphery. The same
percentage of central lines as in the study by Tao et al.
(20/192) were used for the present data sets (26/256). The
pattern was not varied over encodings but includes random
variations over time.

• : minimization in the yf-space for each encoding
separately was proposed as regularization by Tao et al.

Different reconstructions, evaluating these components against
the corresponding MuFloCoS parts, the I-VT sampling and the
TMW regularization were evaluated. First, the proposedmethod
was evaluated as proposed in the original paper combining a
random pattern with the minimization (TAO 3) and with
the same acceleration of 3 and regularization but using the I-VT
pattern ( 3). Then, three reconstruction were per-
formed with an acceleration factor of 9: The method by Tao et
al. (TAO 9), the novel I-VT sampling combined with the
regularization ( 9) and finally the proposed Mu-
FloCoS method. To ensure fair comparison, the weights were
optimized regarding NRMSE for each of these experiments, but
kept fixed over all data sets.

Experiment III: Parameter and robustness.
The influence, stability and robustness of different algo-

rithmic aspects and parameter choices are evaluated based on
quantitative image measures and reconstruction parameters.
For Experiment III, three elements were investigated: The
regularization weight , the sampling strategy and the use
of the shared coil profile calculation. The parameter was
varied between 0.0005 and 0.0125, the sampling pattern was
chosen fixed for all phases and temporal phases or interleaved
and permuted with regular permutations with length 1 or
interleaved and permuted as proposed by the I-VT sampling
strategy of MuFloCoS. The basis pattern parameters , , ,
and were chosen identical for both. Furthermore, the influence
of coil sensitivity calculation was evaluated by using either
the shared version or by acquiring an external reference scan,
both resulting in a total of 16 used reference lines. Feasible
acceleration factors for this application are determined, the
used acceleration factor was therefore varied between 3, 6, 9,
12, and 15. The reconstructions were performed with fixed

.
1) Evaluation Strategy: The reconstructed volumes are

used to calculate the angiographic images and the phase con-
trast images . For the derivation of flow parameters, the 3-D
velocity fields and the vessel borders for the CCA, ICA,
and ECA are required. The borders are obtained using an in-
teractive up-sampling and segmentation tool. For the quantita-
tive image evaluation, the normalized root mean square error
NRMSE and the structural similarity measure SSIM [37] offer
an objective comparison between the reconstruction result

and reference volume . Thereby and
are the mean and respectively the variance over . Further-
more, to assess the image quality, the angiography specific con-
trast-to-noise-ratio between vessel and tissue CNRVTwas used.
Therefore, regions-of-interest (ROI) were chosen in the vessel
and the tissue .
Evaluated flow parameters include the volumetric flow rate
, the peak velocity and the mean velocity .

They were measured in the 2-D slices and in three selected
vessel cross sections as illustrated in Fig. 8(b). The temporal
normalized root mean square error is calculated for a dynamic
parameter , measured with a reference method

and with a test method . These values are com-
puted as

and

The deviation is calculated for the volumetric flow and for
the peak velocity . Those results are illustrated with Bland-
Altman diagrams for graphical illustration of the TNRMSE for
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TABLE II
QUANTITATIVE IMAGE AND PHYSIOLOGY-BASED EVALUATION FOR THE IN
VIVO STUDY COMPARING MUFLOCOS TO THE REFERENCE AND FURTHER

ITERATIVE METHODS

all data sets and for each combination between MuFloCoS and
state-of-the-art methods. The results are ordered by the absolute
values for the volumetric flow and the peak velocity of the data
sets. This illustration aids to identify any systematic errors or
outliers.
2) Results for Experiment I: Quantitative and Physiological

Evaluation: The quantitative results for the image based mea-
sures of the study with 18 data sets are shown in Table II for
MuFloCoS and the five comparison methods. The NRMSE of
MuFloCoS is significantly reduced compared to the iterative
SENSE reconstruction and all further considered methods. Sta-
tistically, the NRMSE has been improved by 50.85 compared
to ISENSE, by 15.94 in comparison to and by 17.14
compared to . The same is valuable for the structural sim-
ilarity SSIM, which was improved by 3.72 compared to the
best comparison method . The contrast-to-noise ratio be-
tween the vessel and the background could be improved for all
data sets, in the mean by at least 16.5 and up to 41.2. Table II
shows the mean deviation from the physiological parameters for
each reconstruction technique. One data set (P16) was excluded
from the calculation of physiological parameters, as the overall
image quality even for the reference did not allow stable evalu-
ation. A significant improvement was achieved for the peak ve-
locity with 45.32% lower TN compared to and 53.04%
lower TN compared to MDFCS. While performed
better regarding the volumetric flow by 16.82%, MuFloCoS
was significantly better in the peak flow velocity measurements
with an improvement of 53.7%. Fig. 9 illustrates two represen-
tative results for peak systole. Representative time curves are
shown in Fig. 10, displaying the volumetric flow in the first
row, the mean velocity in the second row and the peak ve-
locity in the last row for all reconstruction results. The curves
of the reference and MuFloCoS are very similar, while the other
methods except tend to overestimate volumetric flow and
mean velocity in both cases. The most significant difference is
visible in the peak velocity plots, which is heavily disturbed
for comparison methods but well preserved for MuFloCoS. Es-
pecially the method, which produced a lower error in
volumetric flow significantly underestimated the peak velocity.
The Bland-Altman diagrams for the best comparison methods

, , and are given in Figs. 11. No outlier

Fig. 9. Magnitude reconstruction results for the through-plane encoding for
volunteer P2 and P7 at peak systole. Shown for both in the top row: Reference,

, in the middle row: ISENSE, MDFCS and in the bottom row: ,
MuFloCoS.

Fig. 10. Volumetric flow, mean velocity profile, and peak velocity profiles il-
lustrated for volunteers P6 and P7.

or systematic bias is visible in the MuFloCoS result, whereas
the values for the other methods are spread for both volumetric
flow and peak velocity. Fig. 12 illustrates the 3-D result for peak
systole and early diastole at three selected locations as depicted
in Fig. 8(b).
3) Results for Experiment II: Comparison Against Carotid

PCI State of the Art: With the original method proposed by Tao
et al. [28], very good results were achieved for an acceleration
factor of 3, with a SSIM of 0.934 0.038, a NRMSE of 0.064
0.023 and a TNRMSE of the volumetric flow of 0.123 0.104
for the random pattern. The results using the same regularization
but the proposed I-VT sampling further increase image quality
and the accuracy of the physiological values with a NRMSE of
0.042 0.011 and TNRMSE of the peak velocity of 0.161
0.060. For the higher factor of 9, however, the proposed Mu-
FloCoS algorithm outperforms this method, particularly with
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Fig. 11. Bland-Altman diagram for volumetric flow and peak velocity for the
in vivo study for MuFloCoS and (a) , (c) , and (c) .

Fig. 12. 3-D velocity vector field from the left carotid bifurcation region il-
lustrated with 3-D vectors at four different locations for peak systole and early
diastole.

TABLE III
QUANTITATIVE IMAGE-BASED EVALUATION FOR THE IN VIVO STUDY
COMPARING MUFLOCOS AGAINST THE RESULTS OF CAROTID PCI

STATE-OF-THE-ART

respect to the TNRMSE of the physiological values and the
NRMSE. However, the method of Tao et al. shows some ad-
vantages regarding the SSIM value and the CNR. Comparing

Fig. 13. Image and reconstruction parameter results for a representa-
tive volunteer using different . (a) Image results and zooms to
the right ICA for, from left to right, the reference and MuFloCoS with

. (b), (c) Evolution of the data
fidelity term (b) and TMW term (c) is depicted for 20 iteration steps.

TABLE IV
QUANTITATIVE IMAGE BASED EVALUATION FOR DIFFERENT

MUFLOCOS VARIANTS

the results using the regularization in combination with
either the random or the I-VT pattern, the I-VT pattern delivers
more accurate flow results and better NRMSE, but lower SSIM
and CNR.
4) Results for Experiment III: Robustness and Acceleration:

Image results for different values are shown in Fig. 13(a)
with a zoom to the right carotid artery. The data fidelity term
as well as the TMW regularization term for selected choices of

are illustrated in Fig. 13(b) and (c). This reconstruction
resulted in the values illustrated in Table IV. The respective im-
ages for for early diastole and difference
images to the complete MuFloCoS method are shown for MnP
and MnC in Fig. 14 along with the corresponding difference
images to the normal MuFloCoS in the lower row. Volumetric
flow and mean velocity are illustrated in Fig. 15. Reconstruc-
tion specific parameters including the data fidelity term and the
regularization term over time are illustrated in the lower row of
Fig. 15. Both the data fidelity and the norm show a similar be-
havior for M andMnC, but higher values for the variant without
the interleaved and shifted pattern (MnP). Results of varying ac-
celeration factors of 3, 6, 9, 12, and 15 and fixed can be
seen for for the entire image and a zoom in Fig. 16(a).
The corresponding curves for volumetric flow are illustrated in
Fig. 16(b), the peak velocity in Fig. 16(c).
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Fig. 14. Image results for the through-plane encoding comparing the reference
andMuFloCoS (a) with the I-VT pattern and the shared coil profiles, (b) without
the I-VT pattern, and (c) with external coil profiles. Lower row illustrates the
difference to MuFloCoS scaled by a factor of 10.

Fig. 15. Physiological parameters (a), (b) and reconstruction results (c), (d)
for MuFloCoS with the I-VT pattern and the shared coil profiles, without the
I-VT pattern and with external coil profiles. Volumetric flow and mean
velocity are shown. Evolution of the data fidelity term and the evolution
of the TMW- term are depicted for 20 iteration steps.

C. Patient Cases

Two patients m/72y, m/63y, diagnosed with stenosis in the
ICA, were examined on a clinical 3T MR scanner (MAG-
NETOM Verio, Siemens AG Healthcare Sector, Erlangen,
Germany) using an ECG-triggered PC MRI sequence. Patient
1 was diagnosed with a high-grade stenosis of the right ICA
(NASCET 80%) and a low-grade stenosis of the left ICA
on CTA and DUS as indicated by red arrows on the coronar
CTA maximum-intensity projections in Fig. 17. For patient 2,
DCE-MRI revealed the unilateral high-grade stenosis of the
right ICA, as shown in Fig. 17. Both patients were scheduled for
an endartectomy. Axial slices at three locations pre- and post
the respective stenosis, “pre,” “ste,” and “post,” were acquired
with TE/TR 3.96/3.25(3.96 ms/6.51 for Patient 2) ms, temporal
resolution 26.04 ms. flip angle 20 , FOV ,
slice thickness 4 mm, imaging matrix 224 224, and in-plane

Fig. 16. Image results and physiological parameters for a representative vol-
unteer for different acceleration factors , , , , and

. (a) Image results from the through-plane encoding. (b) Volumetric
flow and (c) peak velocity .

Fig. 17. Diagnostic data from two patients with severe ICA stenosis. Patient
1: (a) coronar MIP highlighting the plaque around the right carotid bifurcation.
Patient 2: (b) DCE-MRI indicating the severe stenosis of the right ICA. Loca-
tions of the chosen PCI slices are highlighted in green.

resolution of 0.89 , to evaluate the flow and velocity
profiles. The venc was chosen as (150 cm/s) and
the number of temporal phases as .
1) Results: The under sampled data was reconstructed with

MuFloCoS and evaluated with a special focus on the pathology
detection by analyzing the peak velocities in the CCA and ICA
at three positions in the CCA, in close proximity to the stenosis
and post-stenotic in the ICA. For patient 1, the corresponding
peak velocity plots are illustrated in Fig. 18(a). A clear differ-
ence is visible between the velocities in the pre-stenotic CCA
and after the stenosis in the ICA. Especially on the right side,
where the high-degree stenosis has been diagnosed, a sharp in-
crease in peak-velocity is observable, which correlates well with
the reduced lumen at this position. The difference between the
high-grade stenosis on the right side to the low-grade stenosis
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Fig. 18. Peak velocity profiles for patient 1 and 2 from the PCI scan, accelerated
with factor and reconstructed using MuFloCoS.

on the left side is well visible in the difference of the peak ve-
locities. The results for patient 2 in Fig. 18(b) indicate well the
unilateral stenosis diagnosed with DCE-MRI. The stenotic pro-
file in the ICA is corrupted by aliasing due to the high velocites.
No correction was applied to this.

V. DISCUSSION

Iterative reconstruction with the proposedMuFloCoSmethod
was successful for all phantom and in vivo experiments and pro-
duced comparable consistent results. The high noise level both
in the background and the tissue of the image reconstructed with
iterative SENSE was significantly reduced with the iterative
methods. While they all managed to recover the image struc-
tures, the quality of the images as well as the accuracy of the
physiological parameters are measurable better for MuFloCoS.
The image quality allowed in summary good visualization of the
anatomy and corresponds to that of the fully sampled reference
image.

A. Quantitative Evaluation

In the phantom experiment, all inter- and intra-slice devia-
tions were under 4%, which illustrates the capability of Mu-
FloCoS to preserve the flow values over the entire dataset. Con-
cerning the in vivo data, the evaluation of the flow parameters
showed good preservation of flow parameters and had a sig-
nificantly reduced deviation compared to the further methods
in both the phantom experiment and the volunteer study (see
Table I, II). With MuFloCoS, the volumetric flow , the

mean velocity and the peak velocity over time
(Fig. 10) in the CCA were in good agreement with the corre-
sponding values obtained with the fully sampled directly re-
constructed data sets. A comparison to further state of the art
methods showed improvements in NRMSE, SSIM, and particu-
larly in the peak velocity, which is an important diagnostic value
in the classification of stenosis. This result indicates that both
temporal and spatial resolution are well preserved. Volumetric
flow and mean velocity corresponded well to values for the vol-
umetric flow rate as previously reported by Long et al. [38], and
for the mean velocity obtained by Ringgaard et al. [39]. The pa-
tient cases and the respective peak velocity profiles shown in 18
confirmed the CT and DCE-MRA findings and even allowed
differentiating between high- and low-grade stenosis.
The results compared to the PCA regularization as proposed

by Kim et al. [23] revealed a slight advantage for this regular-
ization for the evaluation of the volumetric flow, which shows,
that a combination of the global PCA method with the proposed
temporal masked and weighted MuFloCoS regularization is of
huge interest. The method as shown in [23] was a two step
method, starting with Fourier Transform and than switching to
PCA, which was not done in this analysis to make it compa-
rable to the further methods. Including the proposed MuFloCoS
algorithm for the first step instead of the temporal Fourier trans-
form, and adding the temporal PCA at a later stage could fur-
ther add value. The improvement compared to MDFCS shows
the positive influence of combining static and dynamic anatom-
ical images and of the Gaussian weighting. The comparison
against state-of-the art for CSmethods applied to carotid PCI in-
dicated the improvements achieved with MuFloCoS regarding
both image- and physiology-based measures, particularly in for
higher acceleration factors.
For carotid PCI accelerated by factor 9.0, the comparison

with the method by Tao et al. revealed significant advantages for
the novel MuFloCoS method, particularly regarding the phys-
iological values. The proposed method by Tao et al. showed,
however, good results for the SSIM and the CNR. Regarding
the desired hemodynamic information obtained from PCI ac-
quisitions, the accuracy of the physiological values is of major
interest. Further investigation could include a combination of
both regularization terms in the objective function.

B. Evaluation of I-VT, shared coil profiles and TMW

The benefits of the masked temporal regularization and the
I-VT pattern to exploit the inherent data correlation both in ve-
locity encoding and temporal direction become evident with the
results of their respective influence. The shared coil profile cal-
culation led to a very slight change in the results for NRMSE
from 5.53 to 5.79 while it contributed to the final acceleration
in substantial amount by allowing real undersampling by factor
four in the central -space. Its influence, illustrated in Fig. 14(b),
was barely visible in the difference image where the main de-
viations occur outside the object. The influence of the inter-
leaved and shifted pattern was substantially higher, as shown
in Table IV and in image 14(c). The norm plot in Fig. 15
on the left illustrates that the higher similarity at the beginning
due to the same sampling, expressed through low difference
values, increased with iterations and converged at higher values
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for

where such that
else.

(23)

for

where such that

for

where such that
otherwise.

(24)

than the I-VT pattern variant. This can be explained by the prop-
erty of the I-VT pattern to allow a better minimization for the
whole objective function (15) including data fidelity term and
regularization term. The NRMSE decreased from 5.90 to 5.53
compared to the shifted and interleaved pattern.
Experiment III illustrated furthermore that the proposed

TMW- regularization offers a very stable regularization
option. Different choices of the weighting factor led
to comparable results both in terms of visual impression and
in the physiological parameter estimation. Fig. 13(a) and (b)
illustrated even a convergence for both the data fidelity term, as
well as for the TMW- term independent of . For
in the range of [0.0015, 0.0125], the term converged to the
same value after 20 iterations. No critical bound was obtained,
the changes with growing are smooth in Fig. 13(a). All
reconstructions for the 18 volunteers were performed with a
fixed and produced comparable results, the
parameter can therefore be assumed to be robust in a wide
range and stable over different data sets.
Experiment II illustrated furthermore the acceleration capac-

ities of MuFloCoS. Even for high factors, such as 15, resulting
in using only around 6.7% of the data, good physiological re-
sults could be achieved. This acceleration is significantly higher
than feasible with currently clinically used methods, which can
achieve an acceleration of 2–4 (25%–50% of the data) in this
application. The performed study had the limitation that the ref-
erence values are calculated based on the fully sampled PCMRI
scans. This provided a reliable reference for the physiological
values. Further prospective under sampled studies need to be
done in the future. A further extension could be direct compar-
ison with a different modality such as a flow meter or DUS.

VI. CONCLUSION

Acceleration factors of in volunteers have been suc-
cessfully applied to PCI, leading to a significant speed up of the
acquisition. The acquisition time for good temporal and spatial
resolution in the carotid artery region can be significantly re-
duced. For the concrete example of the patient data acquisition
using three three-directional 2-D slices pre- and post-stenosis in
the CCA and ICA, the acquisition time could be reduced from
8 min 24 s to 56 s. This significant reduction can be an impor-
tant step in the clinical acceptance of this technique. This saved
time could also be invested in a higher spatial and/or temporal
resolution allowing to visualize especially pathological hemo-
dynamic situations with better accuracy. The proposed method

TABLE V

is not limited to the introduced masked and weighted temporal
regularization, but is easily expendable to different regularizers
such as TV, Wavelet or more PCI specific constraints as diver-
gence free flow fields or phase constraint. Only intrinsic proper-
ties of the 4-D PCI acquisition were exploited which makes the
proposed method ideally suited to be applied to different body
regions imaged with PCI.

APPENDIX
ANNEX A: PATTERN CALCULATION

See (23) and (24) at top of the page.

ANNEX C: SYMBOL TABLE

See Table V.
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