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Motivation
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Motivation – Cancer of the Oral Cavity

Sixth most common kind of cancer

Problems of diagnosis

• subjectivity of physician

• histological analysis

• surgical resection

Early diagnosis⇒ difficult!

⇒other solutions?
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Motivation – Initial Problem
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Motivation – Objective

Overall: separate patholgical from healthy images

Benefits:

• objective method to support the physician

• supports diagnosis & finding of the resection site

• time-saving and less harmful for the patient

Three problems:

1. creation of image database X

2. annotation of images X

3. classification of images todays topic

March 17, 2015 | C. Jaremenko | CS Dept. 5, FAU Erlangen-Nuremberg | CLE Image Classification 6



Motivation – Objective

Overall: separate patholgical from healthy images

Benefits:

• objective method to support the physician

• supports diagnosis & finding of the resection site

• time-saving and less harmful for the patient

Three problems:

1. creation of image database X

2. annotation of images X

3. classification of images todays topic

March 17, 2015 | C. Jaremenko | CS Dept. 5, FAU Erlangen-Nuremberg | CLE Image Classification 6



Motivation – State of the Art

Couceiro et al. [Couceiro, 2012]

• gastrointestinal tract

• arrangement of glands

• Scale Invariant Feature
Transform (SIFT)

Désir et al. [Désir, 2012]

• distal lung

• texture description

• Local Binary Patterns (LBP),
SIFT
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Background
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Background – Optical Biopsy

Example of
Optical Biopsy

In vivo
confocal microscopy:

en face view

Conventional
histology:

Transvers section

Example of Physical
Biopsy Image

Confocal LaserEndomicroscopy (CLE) allows real time visualization of
epithelial layer in vivo!
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Background – Carcinogenesis

Development stages of oral cancer

Normal
Squamous
hyperplasia

Mild
dysplasia

Moderate
dysplasia

Severe
dysplasia

Carcinoma
in situ
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Data & Methods
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Data – Patient & Image Database

Patient Data

Control Group Patient Group
Gender (m/f) 1/- 1/1
Age (years) 30 63.5 ± 2.1

Image Database

Location Control Patient 1 Patient 2
Alveolar Ridge (h/c) 71/- 94/45 41/-
Buccal mucosa (h/c) -/- 32/15 -/-
Lingual mucosa (h/c) -/- -/- 29/27
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Data – Image Examples

(a) Healthy (b) Carcinoma
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Data – Image Examples

(a) Healthy (b) Carcinoma
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Methods – Classification Algorithm

Subdivide images

• 110/51 rectangular patches⇒ precalculated coordinates
• sidelength 80/105 px
• step length 0.5 × side length⇒ 50 % overlap in x-direction

(a) 1 × 80 (b) 1 × 105 (c) 110 × 80 (d) 51 × 105
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Methods – Extracted Features

Histogram features

• frequency of gray level occurrences

• no information of structure

• computation of statistics

Homogeneity features

• evaluates gray values

• evaluates edge images

• simple features
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Methods – Extracted Features

Grey Level Co-Occurrence Matrices

• frequency of gray values

• geometrical arrangement of gray values

• features by Haralick, GLCM (8/16/32)

Local Binary Pattern

• pixel described by binary pattern

• binary patterns describe structures

Y

X
0◦

45◦
90◦135◦

Spot Spot / flat Line end Edge Corner
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Methods – Feature Vectors

Histogram

Homogeneity

GLCM

LBP

Mean

Std Deviation

Variance

Extraction of Features of
P1- PX

Concatenated
Feature 
Vector

Averaged
Feature
Vector

Local
Information

Global
Information
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Methods – Classifier & Evaluation

Classification algorithms

• Support Vector Machine (SVM)

• Random Forest (RF)

Evaluation methods

• 10-fold crossvalidation

• classification rate (Acc)

• average recall (Rec)

Software

• CONRAD → image analysis & feature extraction

• Weka → classification tasks
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Experiments and Results
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Experiments – Classification Method

Pathological vs. non-pathological

One patient – same location

• P1 vs. P1 – alveolar ridge

• P1 vs. P1 – buccal

• P2 vs. P2 – lingual

Between subjects – same location

• P1 vs. P2 – alveolar ridge

• P1 vs. P2 & Ctrl – alveolar ridge

All subjects – all locations ⇒ Acc / Rec: 95.8 % / 93.3 %
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. . . best performing features?
. . . best performing feature vector?
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Results – All Subjects all Locations

Comparison of feature vector – concatenated feature vector results
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Results – All Subjects all Locations

Comparison of feature vector – average feature vector results
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Summary & Conclusion
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Summary & Conclusion

Objective: separate patholgical from healthy images

Three problems:

1. creation of image database X
2. annotation of images X
3. classification of images X 95.8 % / 93.3 %

Benefits:

• objective method to support the physician
• supports finding of the resection site
• time-saving and less harmful for the patient

⇒ monitor progress of cancer?
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Thank you for your attention!

Questions?
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Backup – Hardware

Cellvizio Gastro-flex UHD

Imaging rate (frames/s) 12.8
Probe diameter (mm) 2.7
Depth of imaging (µm) 55-65
Lateral resolution (µm) 1
Field of view (µm) ∅ 240
Image resolution (px) 576 × 576
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The End
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