Classification of Confocal Laser Endomicroscopic Images of the Oral Cavity to Distinguish Pathological from Healthy Tissue

Christian Jaremenko
March 17, 2015
Computer Science Dept. 5 (Pattern Recognition)
Friedrich-Alexander University Erlangen-Nuremberg

Structure

- Motivation
- Background
- Data & Methods
- Experiments and Results
- Summary & Conclusion

Motivation

Motivation – Cancer of the Oral Cavity

Sixth most common kind of cancer

Problems of diagnosis

- subjectivity of physician
- histological analysis
- surgical resection

Early diagnosis ⇒ difficult!

Motivation – Cancer of the Oral Cavity

Sixth most common kind of cancer

Problems of diagnosis

- subjectivity of physician
- histological analysis
- surgical resection

Early diagnosis ⇒ difficult!

⇒other solutions?

Motivation – Initial Problem

Motivation - Objective

Overall: separate patholgical from healthy images

Benefits:

- objective method to support the physician
- supports diagnosis & finding of the resection site
- · time-saving and less harmful for the patient

Motivation - Objective

Overall: separate patholgical from healthy images

Benefits:

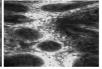
- objective method to support the physician
- supports diagnosis & finding of the resection site
- time-saving and less harmful for the patient

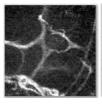
Three problems:

- 1. creation of image database
- annotation of images
- 3. classification of images

todays topic

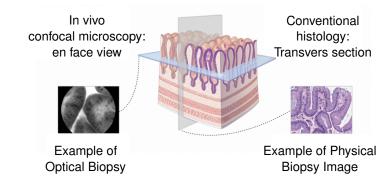
Motivation - State of the Art


Couceiro et al. [Couceiro, 2012]


- gastrointestinal tract
- · arrangement of glands
- Scale Invariant Feature Transform (SIFT)

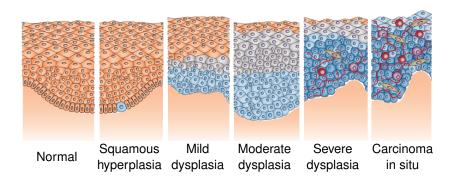
Désir et al. [Désir, 2012]

- distal lung
- texture description
- Local Binary Patterns (LBP), SIFT



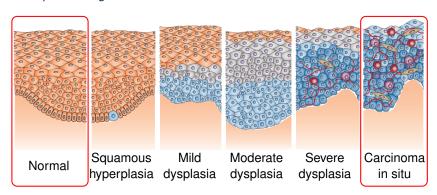
Background

Background - Optical Biopsy



Confocal LaserEndomicroscopy (CLE) allows real time visualization of epithelial layer **in vivo**!

Background – Carcinogenesis


Development stages of oral cancer

Background – Carcinogenesis

Development stages of oral cancer

Data & Methods

Data – Patient & Image Database

Patient Data

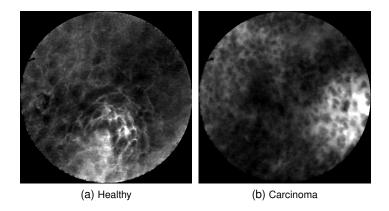
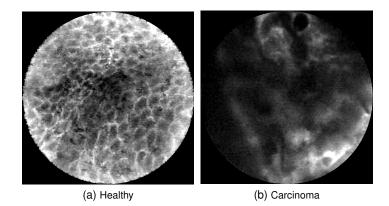

	Control Group	Patient Group
Gender (m/f)	1/-	1/1
Age (years)	30	63.5 ± 2.1

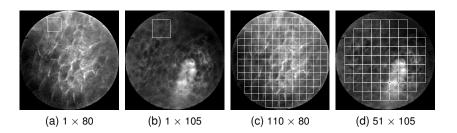
Image Database

Location	Control	Patient 1	Patient 2
Alveolar Ridge (h/c)	71/-	94/45	41/-
Buccal mucosa (h/c)	-/-	32/15	-/-
Lingual mucosa (h/c)	-/-	-/-	29/27



Data - Image Examples

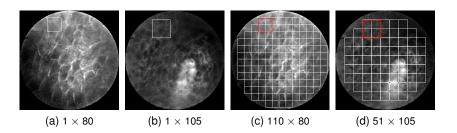
Data - Image Examples



Methods – Classification Algorithm

Subdivide images

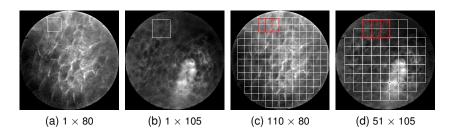
- 110/51 rectangular patches ⇒ precalculated coordinates
- sidelength 80/105 px
- step length $0.5 \times \text{side length} \Rightarrow 50 \%$ overlap in x-direction



Methods – Classification Algorithm

Subdivide images

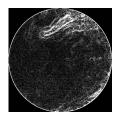
- 110/51 rectangular patches ⇒ precalculated coordinates
- sidelength 80/105 px
- step length $0.5 \times \text{side length} \Rightarrow 50 \%$ overlap in x-direction



Methods – Classification Algorithm

Subdivide images

- 110/51 rectangular patches ⇒ precalculated coordinates
- sidelength 80/105 px
- step length $0.5 \times \text{side length} \Rightarrow 50 \%$ overlap in x-direction

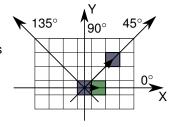

Methods – Extracted Features

Histogram features

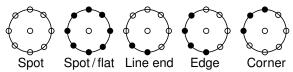
- frequency of gray level occurrences
- no information of structure
- · computation of statistics

Homogeneity features

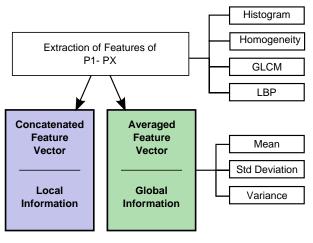
- evaluates gray values
- evaluates edge images
- simple features



Methods – Extracted Features


Grey Level Co-Occurrence Matrices

- frequency of gray values
- geometrical arrangement of gray values
- features by Haralick, GLCM (8/16/32)


Local Binary Pattern

- pixel described by binary pattern
- binary patterns describe structures

Methods - Feature Vectors

Methods - Classifier & Evaluation

Classification algorithms

- Support Vector Machine (SVM)
- Random Forest (RF)

Evaluation methods

- 10-fold crossvalidation
- classification rate (Acc)
- average recall (Rec)

Software

- ullet CONRAD ullet image analysis & feature extraction
- Weka → classification tasks

Experiments and Results

Experiments – Classification Method

Pathological vs. non-pathological

One patient – same location

- P1 vs. P1 alveolar ridge
- P1 vs. P1 buccal
- P2 vs. P2 lingual

All subjects – all locations

Between subjects - same location

- P1 vs. P2 alveolar ridge
- P1 vs. P2 & Ctrl alveolar ridge

 \Rightarrow Acc/Rec: 95.8 % / 93.3 %

Experiments – Classification Method

Pathological vs. non-pathological

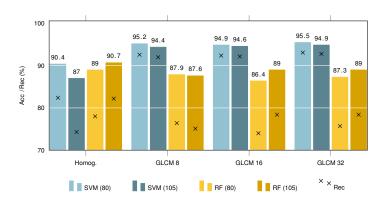
One patient - same location

- P1 vs. P1 alveolar ridge
- P1 vs. P1 buccal
- P2 vs. P2 lingual

All subjects – all locations

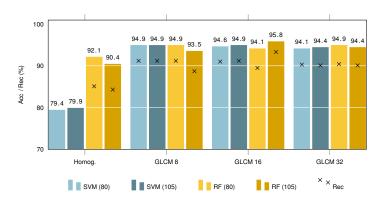
Between subjects - same location

- P1 vs. P2 alveolar ridge
- P1 vs. P2 & Ctrl alveolar ridge


 \Rightarrow Acc/Rec: 95.8 %/93.3 %

... best performing features? ... best performing feature vector?

Results - All Subjects all Locations


Comparison of feature vector – concatenated feature vector results

Results - All Subjects all Locations

Comparison of feature vector – average feature vector results

Summary & Conclusion

Summary & Conclusion

Objective: separate patholgical from healthy images

Three problems:

- 1. creation of image database
- annotation of images √
- 3. classification of images
 √ 95.8 % / 93.3 %

Benefits:

- objective method to support the physician
- supports finding of the resection site
- time-saving and less harmful for the patient

⇒ monitor progress of cancer?

Thank you for your attention! Questions?

Backup - Hardware

Cellvizio Gastro-flex UHD

Imaging rate (frames/s)	12.8
Probe diameter (mm)	2.7
Depth of imaging (μm)	55-65
Lateral resolution (µm)	1
Field of view (µm)	Ø 240
Image resolution (px)	576 × 576

