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Abstract. Volume-of-interest (VOI) C-arm computed tomography (CT)
imaging is a promising approach to acquire anatomical information in a
pre-defined target volume at low dose, using both axial and trans-axial
collimation. However, also the region outside the target volume, be-
low referred to as peripheral region (PR), could contain some valuable
information for image guidance. The potential use of a fast dynami-
cally changing collimator would allow for new acquisition schemes, that
acquire projection data in a way that allows for both a high-quality re-
construction of the diagnostic VOI and a low-quality reconstruction of
the peripheral region, still at a low overall dose. In this paper, we present
a novel reconstruction algorithm for an acquisition scheme that acquires
a large portion of the projections in a collimated manner, while acquiring
a small portion of the projections in a non-collimated manner. Exper-
imental results indicate that few non-truncated projections can help to
improve the image quality compared to a conventional VOI acquisition,
while simultaneously providing valuable information about the periph-
eral region.

1 Introduction

Reducing dose while maintaining image quality has become an emerging field
in CT imaging and a general rule for any practical medical X-ray imaging ap-
plication. In some clinical applications, in particular in image guided therapy,
only a small portion of the patient is required to be examined. A promising
approach is Volume of Interest (VOI) computed tomography (CT). In order to
reduce the field of view (FOV) to the region-of-interest (ROI), an X-ray beam
collimator is deployed to laterally and axially block the radiation during the
scan. As a consequence, VOI imaging results in truncated projections which
pose a challenge to conventional 3D cone beam reconstruction algorithms. Fur-
thermore, no information of the region outside the VOI, the peripheral region
(PR), is provided. However, some knowledge about the PR could be helpful in
image-guided therapy and interventional procedures. Certain procedures require
a high image quality of the VOI, while a low image quality of the PR might be
sufficient. Even though that would involve the acquisition of a sparse set of
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non-truncated projections, the overall applied dose would remain well below the
amount of a conventional scan. When it comes to the deployment of an implant
for instance, not only the VOI but also the PR may contain relevant information.
This information might be helpful in image guided procedures in order to reach
the target location. Another application could be in cancer or tumor treatment,
where the PR covers organs-at-risk, holding valuable information to optimize
the treatment plan.

Leary and Robar [1] demonstrated the acquisition of multiple volumes, an
inner VOI and a nested VOI. In particular, they performed one acquisition and
modified the collimation during the scan. The projection data was processed us-
ing the conventional FDK [2] algorithm in combination with an extrapolation [3]
of the truncated projection data, followed by an additional normalization of rel-
ative image intensity of the inner and the nested VOI. However, as stated in
the paper, the approach does not preserve HU values compared to the FDK
reconstruction of non-truncated data.

In this paper, we performed a simulation study of a new acquisition scheme
that provides truncated and non-truncated projections within one scan. To our
knowledge, no reconstruction algorithms have been developed so far that are
specifically dedicated to this kind of acquisition scheme. This work introduces a
novel algorithm that is capable to reconstruct such data, yielding both a high-
quality VOI reconstruction and a low-quality PR reconstruction.

2 Materials and methods

2.1 Acquisition scheme

In this work, which is a simulation study, we made use of the concept of a ded-
icated acquisition scheme (Fig. 1). It acquires two sets of different projections,
non-truncated and truncated projections. In practice, this would require a fast
dynamic collimator that blocks the radiation both axially and laterally during a
C-arm CT acquisition and that is capable of changing its size dynamically over
the entire possible range, while the C-arm is rotating from one angular position
to another. While the FOV is collimated to the ROI for most projection angles,
every n-th frame the collimator opens completely to acquire a non-truncated
projection. This results in a sparse number of full FOV projections and a dense
number of ROI projections, within one single scan. In this context, let us intro-
duce the term sparsity, referring to the frequency of full projections. For instance,

Truncated projections Non-truncated projections
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Fig. 1. Schematic illustration of the acquisition scheme.
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a sparsity of £ = 10 corresponds to an acquisition protocol where every 10-th
projection is a full projection. The parameter k is calculated by dividing the
total number of acquired projections by the number of acquired full projections.

2.2 FDK reconstruction

From our simulated acquisition scheme we obtain two data sets, a dense set of
truncated projections and a sparse set of non-truncated projections. In a first
step, we perform an initial reconstruction of the sparse set of non-truncated
projections. To this end, we use an iterative total-variation (iTV) based algo-
rithm [4] to obtain acceptable reconstruction results from such sparse data. In
a second step, we perform a forward projection of the initial reconstruction to
de-truncate the subset of truncated projections. The forward projections are be-
ing adapted by using the unprocessed truncated projection data. That way, we
obtain a full set of non-truncated data, consisting of a dense set of detruncated
projection data as well as the sparse set of non-truncated projection data, being
eventually backprojected along the lines of a conventional FDK algorithm [2].
An illustrative overview of the algorithm is given in Fig. 2. Below, we elaborate
on the individual processing steps.

Adaption and transition weighting We perform a transformation of the
forward projection values in order to handle incorrect values in the transition
region. We choose (vy — v1) X u; to be the size of the transition region, where
(vg —v1) is the size of the ROI in v-direction and w; corresponds to the number

..... > Input Projections

————————————————————— > Initial reconstruction

Fig. 2. Flowchart of the reconstruction approach.
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of columns in the w-direction, e.g. u; = 60. Similar to the suggested method
described in [5], we designed two 2D parameter masks A(Ar, u, v) and B(Ar, u, v)
(1) for each projection of the set of forward projections that correspond to the
same angular position as a truncated projection. We used these filter masks to
perform the scaling and offset correction of the forward projections

AZUT—R and B=purg—A-purp (1)

OFpP
where orr and o pp correspond to the standard deviations, and purr and ppp to
the mean values of the transition region of the truncated projection grg (A, u,v)
and the corresponding forward projection gpp (A, w, v), respectively.

As a first step, the mean values and the standard deviations are calculated
for each pixel (u,v) in the transition region over the entire column in u-direction
and over the entire row in v-direction of the forward projection and the truncated
projection. Filter values outside the transition region are obtained by constant
extrapolation of the most outer filter values of the transition region in u-direction.
Finally, the actual transformation of each pixel is achieved according to

QC,FP()\T;%"U) - A()\T,U,’U) . gFP()\Tyu7v) + B()\T,U,’U) (2)

where go pp(Ar, u,v) describes the corrected forward projection at rotation an-
gle Ap, which corresponds to the rotation angle of a truncated projection from
the proposed acquisition scheme. The filter mask A is employed as the scaling
correction parameter, while the filter mask B is used to compensate the offset
problem.

Cosine filtering and combination By applying a cosine filtering step, we han-
dle sudden changes of values at the boundary of the ROI and provide a smooth
transition region in the combined projection data. Finally, the reconstruction is
carried out by a standard FDK algorithm [2].

(a) FDK (b) ROT: 320x320 (c) ROT: 400x400 (d) ROT: 500x500

Fig. 3. Transversal slices of the reconstruction results. The grayscale window is [-
1000 HU, 2500 HU]. Slice thickness is 0.4 mm and volume size is 512 x 512x 350. The
sparsity-level is k = 10. (a) Ground truth reconstruction (FDK on non-truncated data),
(b) proposed reconstruction on partially truncated projection data from the proposed
acquisition scheme at a small ROI size, (¢) a medium ROI, (d) a large ROL.
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3 Experiments

The developed algorithm is evaluated in a qualitative and quantitative manner
using a clinical data set (data courtesy of St. Luke’s Episcopal Hospital, Houston,
TX, USA). It holds a full set of non-truncated projections. We used virtual trun-
cation to simulate the collimator and to generate the truncated projections. The
experiments were performed for different sparsity levels (k € {1,2,4,6,8,10}) as
well as for three different collimation sizes (320x 320 px, 400x400 px, 500 x 500
px). The VOI and the PR were evaluated separately and were visually compared
to the ground truth (FDK on full set of non-truncated projection data). Stan-
dardized image quality metrics (correlation coefficient (CC), root mean square
error (RMSE), both with respect to the FDK reconstruction on full set of non-
truncated projection data) were used for a quantitative evaluation.

3.1 Results

Fig. 3 shows the reconstruction results for three different ROI sizes, which are
visually compared to the ground truth. In Fig. 3(b), we observed slight streak
artifacts at the bone structures of the head, which are decreasing with an increas-
ing ROT size (Fig. 3(d)). Fig. 4 shows a rather comparable image quality in the
PR for different levels of sparsity, indicating that the dose reduction associated
with increasing sparsity levels comes with a much less pronounced degradation
of image quality in the PR. Only a slight increase in streak artifacts can be ob-
served in the PR at a higher sparsity level. In summary, both, for a decreasing
ROI size (Fig. 3) as well as for an increasing sparsity level (Fig. 4), the degra-
dation in image quality in the PR is rather low. In addition, details in the VOI
are well preserved and no additional artifacts could be observed. Furthermore,
a smooth transition region between the VOI and the PR is observed (Sec. 2.2).

In Fig. 5(a) and Fig. 5(b), quantitative results are shown for three different
ROI sizes. For all ROLI sizes, we notice that the RMSE of the PR is increasing
rapidly with a higher sparsity, while the RMSE of the VOI increases substantially
less. Furthermore, the CC of the PR decreases fast, while the CC decreases slow
for the VOI even at an increasing sparsity level. The previous visual observation
is also confirmed by the quantitative evaluation. Additionally, better results for
both, the CC and RMSE are achieved within the VOI with increasing ROI size.

(a) FDK

Fig. 4. Same slice and volume information as in Fig. 3. The ROI is 400 x 400 px.(a)
Ground truth, (b) proposed reconstruction at different sparsity levels.
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Fig. 5. RMSE (a) and CC (b) of the PR and VOI from the reconstruction result at a
medium ROI size of 400 x 400 px.
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4 Discussion

We presented an algorithm that is tailored to dynamically collimated acquisitions
and were able to obtain reconstruction results with a high image quality in the
VOI, while promising results for the PR were achieved. By incorporating the
sparse set of full FOV projections, we were able to not only improve the image
quality of the VOI but also to obtain additional information in the PR region,
while keeping the total radiation dose low. Furthermore, we showed that our
algorithm is robust in terms of different ROI sizes as well as for an increasing
level of sparsity.
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