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Background: To evaluate the influence of temporal sparsity regularization and radial undersampling on compressed
sensing reconstruction of dynamic contrast-enhanced (DCE) MRI, using the iterative Golden-angle RAdial Sparse Parallel
(iGRASP) MRI technique in the setting of breast cancer evaluation.
Methods: DCE-MRI examinations of the breast (n 5 7) were conducted using iGRASP at 3 Tesla. Images were recon-
structed with five different radial undersampling schemes corresponding to temporal resolutions between 2 and 13.4 s/
frame and with four different weights for temporal sparsity regularization (k 5 0.1, 0.5, 2, and 6 times of noise level).
Image similarity to time-averaged reference images was assessed by two breast radiologists and using quantitative met-
rics. Temporal similarity was measured in terms of wash-in slope and contrast kinetic model parameters.
Results: iGRASP images reconstructed with k 5 2 and 5.1 s/frame had significantly (P< 0.05) higher similarity to time-
averaged reference images than the images with other reconstruction parameters (mutual information (MI) >5%), in
agreement with the assessment of two breast radiologists. Higher undersampling (temporal resolution<5.1 s/frame)
required stronger temporal sparsity regularization (k� 2) to remove streaking aliasing artifacts (MI> 23% between k 5 2
and 0.5). The difference between the kinetic-model transfer rates of benign and malignant groups decreased as tempo-
ral resolution decreased (82% between 2 and 13.4 s/frame).
Conclusion: This study demonstrates objective spatial and temporal similarity measures can be used to assess the influ-
ence of sparsity constraint and undersampling in compressed sensing DCE-MRI and also shows that the iGRASP method
provides the flexibility of optimizing these reconstruction parameters in the postprocessing stage using the same
acquired data.
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Compressed sensing (CS) 1–3 is emerging as a powerful

approach for rapid imaging that exploits image com-

pressibility (sparsity) to reduce the number of samples

required to reconstruct an image without loss of important

information. Dynamic contrast enhanced (DCE)-MRI is a

good candidate for the application of CS due to the pres-

ence of extensive spatiotemporal correlations in the time

series of images, and the possibility to use different k-space

sampling patterns for each temporal frame which introduces

additional incoherence along the temporal dimension.4

However, it remains challenging to assess the influence of

reconstruction parameters on temporal and spatial fidelity
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due to the difficulty of acquiring fully sampled conventional

images at the same temporal and spatial resolutions as the

images reconstructed with compressed sensing.

Similar challenges can also be found for combinations

of compressed sensing and parallel imaging with golden-

angle trajectories as in the iterative Golden-angle RAdial

Sparse Parallel (iGRASP) MRI method that we have

recently introduced,5 which exploits joint multicoil sparsity

rather than in each coil separately.6–8 This approach has the

advantage that data may be acquired continuously without a

priori definition of particular temporal frames, and the same

dataset may be used to reconstruct image series with tailored

temporal resolution, by grouping different numbers of adja-

cent radial spokes at any time point of interest. Hence, this

method provides a unique opportunity to assess how the

spatial and temporal characteristics of the reconstructed

dynamic images are affected by the choice of undersampling

and reconstruction parameters from one acquisition data set.

The main purpose of this study is to evaluate the

influence of temporal sparsity regularization and radial

undersampling on compressed sensing reconstruction of

dynamic contrast-enhanced (DCE) MRI, using the iGRASP

MRI technique in the setting of breast cancer evaluation.

Methods

iGRASP MRI Overview
iGRASP performs continuous data acquisition using a golden-

angle stack-of-stars trajectory to sample volumetric k-space infor-

mation. The stack-of-stars scheme samples the kx–ky plane using a

radial trajectory with golden-angle separation and the kz direction

on a Cartesian grid. Near-uniform coverage of the kx–ky plane is

achieved if the number of consecutive spokes in the kx–ky plane is

a Fibonacci number F(k12) 5 F(k) 1 F(k11) (e.g., 0, 1, 1, 2, 3,

5, 8, 13, 21, 34, and so forth), where F(0) 5 0 and F(1) 5 1.9

This type of acquisition has several advantages. First, each spoke

defines a different k-space trajectory, which introduces a high

degree of incoherence when the data are sorted into temporal

frames. Second, arbitrary temporal frames can be created using the

same raw data by grouping a different number of consecutive

spokes, as shown in Figure 1a. In this study, the iGRASP images

are reconstructed using a Fibonacci number of consecutive spokes

without any overlap or gap between adjacent temporal frames;

hence the number of spokes per frame defines the temporal resolu-

tion. iGRASP reconstruction is formulated as a multicoil com-

pressed sensing problem, which searches for the sparsest solution in

the transform domain that is consistent with the multicoil k-space

data. This is achieved by numerically solving the following optimi-

zation problem: min kFSm2dk2
21kkTmk1, where F is the nonuni-

form FFT (NU-FFT) operator defined for the radial sampling

pattern, S is the multicoil sensitivity operator, m is the dynamic

image series to be reconstructed, d is the undersampled k-t data, k
is the reconstruction weight that defines the tradeoff between spar-

sity and data consistency and T is the sparsifying transform. The

reconstruction enforces joint multicoil sparsity on the image series

m that represents the contribution from all coils. This approach

exploits extra inter-coil correlations and yields higher performance

than enforcing sparsity on each coil separately.7 Coil sensitivity

maps (entries of the operator S) are estimated from the temporal

average over all spokes. The undersampled k-t data is obtained by

binning the continuously acquired data into time frames with the

target spatial resolution, as shown in Figure 1a.

A C11 implementation of iGRASP 5 using the split Breg-

man optimization 10 was used for image reconstruction. A fixed

number of 2 outer Bregman updates and 4 inner iterations was

carried out, where each inner iteration computed an approximate

solution to the l2 subproblem by five iterations of nonlinear conju-

gate gradient descent.11 In this implementation, k was defined as a

multiple of the noise level in the undersampled data, whereas it

was defined relative to the maximum intensity of NUFFT images

in our previous report.5 Note that the noise level is substantially

lower than the maximum intensity of images; k> 1 does not mean

an emphasis on sparsity that surpasses data consistency. The sparsi-

fying transform T was first-order temporal difference which corre-

sponds to minimization of temporal total variation.5

Data Acquisition
Breast DCE-MRI was performed on seven patients who underwent

MRI-guided biopsy scans on a whole-body 3 Tesla (T) scanner

(MAGNETOM TimTrio, Siemens Healthcare, Erlangen, Germany)

equipped with a seven element breast coil array (InVivo, FL). A pro-

totype radial stack-of-stars three-dimensional (3D) spoiled gradient

echo pulse sequence with golden-angle spoke ordering was used for

continuous data acquisition. All partitions (i.e., phase encodes in the

slice direction) corresponding to one radial angle were acquired

sequentially before rotating to the next angle. Frequency-selective fat

suppression was used after each partition loop and 60 initial calibra-

tion lines were acquired to estimate system-dependent gradient-delay

errors.12 Relevant imaging parameters were: sagittal slab orientation,

field of view (FOV) 5 280 3 280 3 144 mm3, flip angle (FA) 5 12

degrees, echo time/repetition time (TE/TR) 5 1.47/3.6 ms, and

bandwidth (BW) 5 710 Hz/pixel. A total of 2280 spokes were

acquired for each of the 35 partitions during free breathing to cover

one breast planned for biopsy. Two-fold readout oversampling (512

sample points/spoke) was used to avoid spurious aliasing along each

spoke. The reconstructed image matrix size per frame is 256 3 256

3 72 with zero padding along the slice direction. The total acquisi-

tion time was 5 min 40 s. After baseline acquisition of 57 s (380

spokes), a single dose of Gd-DTPA (Magnevist, Bayer Healthcare,

Leverkusen, Germany) at 0.1 mM/kg body weight was injected at

2 mL/s into an antecubital vein while the scan continued for another

4 min 45 s (1900 spokes).

Based on the pathology evaluation of the biopsy specimens,

lesions were divided into benign (n 5 4; 4 with fibrocystic changes;

50.3 6 8.9 years) and malignant (n 5 3; 2 with ductal carcinoma

in situ and 1 with invasive ductal carcinoma; 52.0 6 10.1 years)

categories. This retrospective study with a waiver of written

informed consent was approved by our Institutional Review Board.

Image Reconstruction
Images were retrospectively reconstructed with different temporal

resolutions, including 2.0, 3.2, 5.1, 8.3, 13.4, and 57 s/frame

using 13, 21, 34, 55, 89, and 380 spokes/frame, respectively. For
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each temporal resolution, the multicoil k-space data was normal-

ized to have unit noise intensity in each coil, which enabled to use

the same range of reconstruction weights (k). k defines the trade-

off between sparsity and data consistency. Image reconstruction

was repeated with four different k values, 0.1, 0.5, 2.0, and 6.0.

Figure 1b shows examples of iGRASP images in comparison with

corresponding nonuniform fast Fourier transform (NUFFT)

images.

Assessment of Spatial Quality
Since it is nontrivial to obtain a ground-truth reference image

simultaneously within a single DCE-MRI scan, spatial quality

assessment of the iGRASP images was carried out using only the

last 380 spokes of the dynamic data assuming that the contrast-

concentration change during that time period was negligible in all

voxels; the NUFFT image from the “fully-sampled” dataset with

380 spokes was used as a reference standard to assess iGRASP

FIGURE 1: a: Flexible image reconstruction at an arbitrary temporal resolution using golden-angle radial sampling. Different
temporal resolutions can be achieved by grouping different numbers of consecutive spokes at the desired temporal positions.
b: Images reconstructed at different temporal resolutions using conventional gridding (NUFFT) and the proposed iGRASP method.
Note that the spatial features of the breast parenchyma are well preserved for all images reconstructed using iGRASP.
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images reconstructed with smaller numbers of spokes and different

k values. The last 380 spokes after contrast injection were chosen,

as opposed to the first 380 spokes before contrast injection,

because delayed contrast enhanced images have more image con-

trast than the baseline images and the contrast enhanced lesions are

usually of interest for the DCE-MRI exam. Mean squared differ-

ence (MSD) is a simple and widely used quality metric.13–15 How-

ever, it has been reported that MSD can be misleading in image

reconstruction where images with a wide range of qualities can

have a same MSD value as demonstrated by Wang et al 16 and

other references therein. Hence, we included five additional image

similarity measures as defined in Supplementary Table S1, which is

available online.

Included were two intensity-based methods, MSD and inten-

sity cross-correlation (ICC). ICC was included in order to assess the

image similarity without any bias from the image intensity scaling

and/or offset, as demonstrated in various image co-registration appli-

cations.14,15,17,18 Similar types of measures based on the image gradi-

ent, gradient difference (GDF) 14,19 and gradient cross-correlation

(GCC),14,20,21 are also included as these measures give more weight

to edge information than differences in low spatial frequency compo-

nents. Mutual information (MI) or relative entropy is one of most

commonly used measures for multimodality image registration.22–26

Although the images compared in this study were acquired using a

single imaging modality, this measure has an advantage of not being

sensitive to possible differences in absolute pixel intensities of the

reconstructed images at different time points during the washout

phase. Another type of similarity measure is mean structural similar-

ity index (MSSIM) that has been widely used to assess the quality of

JPEG 16 and MPEG4 27 images as well as for remote sensing.28

MSSIM measures image similarity in terms of local luminance, con-

trast, and structure. The iGRASP images reconstructed with different

reconstruction parameters were assessed using these six measures.

Similarity measures with different reconstruction parameters were

compared using Wilcoxon signed-rank test. A p-value of less than

0.05 was considered significant.

In addition to the quantitative assessment of image similarity

with the reference standard images, the perceived image quality

was evaluated by two breast radiologists with 15 (L.M.) and 9

(H.T.) years of experience, respectively. The two readers were

blinded and independently evaluated the quality of images using

five levels of quality score: 1, nondiagnostic; 2, poor; 3, adequate;

4, good; 5, excellent. The reader agreement was assessed using the

weighted kappa statistics.

Assessment of Temporal Quality
Temporal quality of iGRASP images was assessed using the

enhancement slope of the time-intensity curve from the aorta. The

time-intensity curve of the aorta typically has the highest slope as

well as the largest peak enhancement level and, thus, is most sensi-

tive to any temporal blurring caused by different reconstruction

parameters, such as the regularization factor k and the selected

temporal resolution. NUFFT images reconstructed with the same

number of spokes were used as reference standards. An ROI was

manually drawn in the aorta of each subject. For two given time-

intensity curves, comparison of the enhancement slopes was made

with the wash-in part of the data selected in the following way. For

each time-intensity curve, the center of the enhancement slope was

detected by finding the time point with the maximum change in

the time-intensity curve. The average of the center positions found

in the two curves was used as the center position for comparison,

and segments of 20 s around the center from the two time-

intensity curves were used to assess temporal similarity. A test curve

segment, ST(t), was transformed to S
0

T(t) using the following

transformation:

S 0T tð Þ5p1ST p3t1p4ð Þ1p2 (1)

where four parameters (p1, p2, p3, and p4) were estimated by mini-

mizing the sum of the squared difference between S
0

T(t) and a ref-

erence curve segment SR(t). The scaling factor of the time axis, p3,

is 1 in the absence of temporal blurring, and smaller than 1 when

FIGURE 2: Evaluation of spatial quality by two readers (a,b) and MI (c), one of six image similarity measures used in this study. MI
shows trends similar to the other measures. See Supplementary Figure S1 for all the image similarity measures. MI values are nor-
malized by their maximum value prior to calculating the mean and standard deviation. The error bars represents 6 1 standard
deviation.
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there is temporal blurring. p3 could be larger than 1 if the test

curve has a steeper slope than the reference curve for any reason

including noise effect. p3 was used as a measure of temporal

similarity.

We investigated whether p3 is a valid indicator for temporal

similarity using the time-intensity curves of the aorta from the

iGRASP images reconstructed with 13 spokes/frame and k 5 2.0.

Temporal blurring was simulated by applying a moving-average fil-

ter with the average length up to 10 points. The simulated tempo-

ral blurring was measured using the above method; the original

aorta time intensity curve was SR(t) and the filtered curve was

ST(t). Then, we examined how the reconstruction parameters affect

temporal blurring as measured by p3. In order to assess the influ-

ence of k on temporal quality, the NUFFT images reconstructed

with the same number of spokes were used as the reference images.

For assessment of the effect of the number of spokes used for each

frame on temporal quality, the images reconstructed with 13

spokes/frame (the highest temporal resolution in this study) were

used as the reference images and were compared with the images

reconstructed using the same k for different temporal resolutions.

The one-sample t-test was used to compare the mean of the esti-

mated p3 values to 1.

Contrast Kinetic Model Analysis
For contrast kinetic model analysis in this study, we used the gen-

eralized kinetic model (GKM) with a plasma compartment, in

which the contrast-agent concentration in a voxel (Ct(t)) is

described by 29:

FIGURE 3: Evaluation of temporal quality on the rising edge of the time-intensity curve from the aorta. a: Example fit: the thin
black line is a time intensity curve from the aorta; the dashed line is a filtered curve using a moving-average of 10 points; the
thick line is the modified original curve fitted to the filtered one. b: Time scaling parameter, p3, measured using the aorta time-
intensity curves from 18 subjects decreases monotonically as the length of moving average increases. c: Effect of regularization
factor with respect to the time-intensity curve from NUFFT images. d: Effect of temporal resolution with respect to the time-
intensity curve with 13 spokes/frame. An asterisk indicates that the mean is significantly different from 1 (P < 0.05, t-test). The
error bars represents 6 1 standard deviation.
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Ct tð Þ5vpCp tð Þ1K trans

ðt

0

Cp uð Þexp kep u2tð Þ
� �

du (2)

where Ktrans is the volume transfer constant between blood plasma

and interstitial space, kep denotes the rate constant between intersti-

tial space and blood plasma, vp the volume fraction of the plasma

space, and Cp the contrast agent concentration in plasma. Note

that Cp was measured from the axial artery in the same recon-

structed images for evaluation, as opposed to using a fixed high-

temporal resolution data; hence, the estimated kinetic parameters

are not direct reflection of the temporal characteristic of the lesion

time-intensity curve with respect to a fixed reference input func-

tion. We assessed whether differentiation of lesion types can be

affected by different reconstruction parameters. The precontrast T1

relaxation value of the lesion and the contrast agent relaxivity were

assumed to be 1.5 s and 4.3 mM21s21, respectively, based on liter-

ature data.30,31 Parameter estimation was performed using the Sim-

plex algorithm 32 provided in IDL (Exelis VIS, Boulder, CO).

Results

The image quality assessment scores of two readers are pre-

sented in Figure 2a,b. The linear weighted kappa coefficient

was 0.62 that indicates a substantial agreement between two

readers. Both readers gave highest scores for images recon-

structed with k 5 2.0 or 6.0. For k 5 0.5 or smaller, the

image quality decreased noticeably when less spokes were

used per frame. Among the six similarity measures used in

this study, the result of MI is shown in Figure 2c as MI

shows most separations between different reconstruction

parameters. MI has trends similar to the other measures, as

summarized in Supplementary Figure S1, of which iGRASP

images reconstructed with k 5 2.0 and 34 spokes/frame are

most similar to the reference images. For k 5 2.0, MI values

with 34 spokes/frame are significantly (P< 0.05) higher

than those with other temporal resolutions. For k< 2.0 (0.1

or 0.5), MI increases when more spokes are used per frame,

except for 89 spokes/frame with k 5 0.5. In contrast, when

k> 2.0 (6.0), MI decreases when more spokes are used per

frame, except for 13 spokes/frame. Note that the similarities

of the images with k 5 6.0 for 13 or 21 spokes/frames are

not significantly different from those of the images with

k 5 2.0 for same spokes/frames; it indicates that strong reg-

ularization is helpful only when a small number of spokes

are used for iGRASP. Representative examples of images

reconstructed with different k values are provided in Supple-

mentary Figure S2.

Figure 3 presents results of the temporal quality assess-

ment. Figure 3a shows an example time-intensity curve

from the aorta of a patient (thin line) and the same curve

after filtering with a moving average of 10 points (dashed

line). Figure 3b shows the time scaling factor, p3, as a func-

tion of the moving average length, using all subject data. It

shows that p3 monotonically decreases as temporal blurring

increases due to the increase of the moving average length,

supporting that this parameter can be used to measure tem-

poral blurring of an enhancing slope.

Figure 3c,d shows comparisons of temporal quality

measured by the p3 parameter in all subjects. The results

summarized in Figure 3c show the influence of k on tempo-

ral quality; the mean p3 values of all cases were higher than

0.9 which corresponds to the p3 value from a moving aver-

age filter of length <5 3 as shown in Figure 3b. Figure 3d

shows the effect of the number of spokes used for each

frame on temporal quality; the blurring in the worst case

(p3 5 0.90 6 0.13 for k 5 6 and 34 spokes/frame) corre-

sponds to a moving average filter length of 3 in Figure 3b.

For the cases other than k 5 6, the p3 values were close to 1

(1.00 6 0.03 for NUFFT, 1.08 6 0.40 for k 5 0.1,

0.99 6 0.03 for k 5 0.5, and 0.99 6 0.04 for k 5 2.0).

Figure 4a shows the estimated Ktrans values of benign

and malignant groups with different k when the images

were reconstructed with 34 spokes/frame. The difference in

Ktrans values between benign and malignant lesions was

smallest when using NUFFT and increased with k. Ktrans

values of the benign group remain the same while the Ktrans

of the malignant group were substantially higher with larger

k (� 0.5). Figure 4b shows that the Ktrans values of the

benign group did not change noticeably over the range of

temporal resolutions used in this study, while the Ktrans

FIGURE 4: Comparison of transfer rates (Ktrans) between benign
and malignant lesions depending on (a) k when temporal resolu-
tion is 34 spokes/frame and (b) temporal resolution when k 5 2.
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values of the malignant group monotonically decreased as

the temporal resolution decreased. Figure 5 shows represen-

tative examples of images and lesion time-intensity curves

for benign and malignant lesions.

Discussion

With the recent rapid development of iterative image recon-

struction methods in MRI, the importance of quantitative

and reliable evaluation of image quality has increased. Sub-

jective image quality assessment is a crucial part of image

evaluation, since human observers, such as radiologists, are

the ultimate users in most MRI applications. However, sub-

jective assessment may not be sufficient to ensure the reli-

ability and accuracy of iteratively reconstructed images for

quantitative analysis. In this study, we used multiple spatial

and temporal similarity measures to investigate how tempo-

ral sparsity constraint and radial undersampling affect

iGRASP images.

The optimal reconstruction parameters can be depend-

ent on the target application and the values reported in this

study might not be appropriate for different applications.

The approach demonstrated in this paper can be used to

find the appropriate reconstruction parameters for other

applications. The reader assessment results suggest that a

wide range of k and temporal resolutions can be used to

generate a similar level of good quality images for readers.

On the other hand, this may also suggest that the sensitivity

of reader assessment is not high enough to measure the dif-

ferences among the high quality images. Future study is

warranted to investigate more detailed distributions of simi-

larity measures near the optimal values and whether maxi-

mizing the image quality based on a quantitative metric can

lead to a significant improvement in clinical interpretation

of the reconstructed images.

The comparison of benign and malignant lesions in

this study suggests that, for the lesions with rapid enhance-

ments during wash-in, the temporal resolution of DCE-

MRI data needs to be high enough to capture the rapid ini-

tial enhancement. With a low temporal resolution, Ktrans

could be underestimated and also be subject to a large vari-

ability depending on the sampling position. However, a fur-

ther investigation on such effect of temporal resolution on

Ktrans estimation and its clinical significance, combined with

a high spatial resolution, needs to be conducted with a sub-

stantially large cohort to determine if this technique can

improve the differentiation of benign and malignant lesions.

The iGRASP reconstruction represents a new way of

performing breast DCE-MRI studies, in which data are con-

tinuously acquired for a period of time and image recon-

struction is performed with flexible temporal information,

FIGURE 5: Comparison of time-intensity curves from a slowly enhancing lesion (a,b) and a fast enhancing lesion (c,d), which were
proven to be a fibrocystic change and an invasive ductal carcinoma, respectively. The images in (a) and (c) were reconstructed
with the last 13 spokes with k 5 2. In (b) and (d), black dots with dashed lines are the time-intensity curves for images recon-
structed using 13 spokes/frame with k 5 2, whereas red crosses with solid lines are for 89 spokes/frame with k 5 2.
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such that multiple user-defined temporal resolutions with

distinct numbers and positions of temporal frames can be

obtained from the same dataset.5 This is a unique advantage

of the iGRASP reconstruction which is difficult to achieve

using other highly accelerated dynamic MRI methods with

Cartesian k-space trajectories, such as in the k-t SPARSE-

SENSE techniques.7,33,34 Another important advantage of

using radial trajectories, as in iGRASP, is the inherent pres-

ence of incoherent aliasing in multiple dimensions,6 even

with nonrandom undersampling. Its robustness to motion

artifact is another strength of radial trajectory based meth-

ods including iGRASP.

The iGRASP method used in this study used the stand-

ard stack-of-stars k-space trajectory for incoherent undersam-

pling in the kx–ky radial plane. This data acquisition scheme

provided sufficiently high and flexible accelerations for this

study as the raw data for each slice were processed in parallel

after performing an FFT along the kz dimension. However,

further acceleration and image quality improvement in 3D

data acquisitions can be achieved by using the shifted stack-

of-stars trajectory with random shifts between the kx–ky radial

planes.35 Although not presented in this study, our prelimi-

nary study found that the shifted stack-of-stars trajectory

increased incoherence and provided a better starting point for

compressed sensing reconstruction. Various other k-space tra-

jectories, such as 3D radial spokes, can also be used to fully

exploit the sparsity of the 3D DCE-MRI data.

One of the limitations of this study was the absence of

ground truth DCE-MRI images for the assessment of spatial

and temporal “fidelity.” Instead, we assessed the spatial and

temporal similarity with the selected standard references. Cur-

rently, there is no technique available to acquire fully sampled

data for DCE-MRI images of the breast at the high spatial

and temporal resolutions used in this study. Even if a smaller

volume is scanned for comparison, it is impractical to acquire

both reference and iGRASP MRI data at the same time dur-

ing a single injection of contrast agent. Due to this limitation,

the present study was conducted by using the best data avail-

able for each assessment. Alternatively, numerical simulation

or a standardized phantom for DCE-MRI could be used for a

similar assessment of spatial and temporal fidelity. Reference-

less image quality assessment 36 would also be an important

subject of future studies. Other limitations include a small

number of subjects as well as limited lesion types included in

this study. The influence of image reconstruction parameters

on the diagnostic accuracy needs to be assessed further with a

larger cohort of patients which can reflect the diverse distribu-

tion of patient characteristics.

In conclusion, the spatial and temporal qualities of

iGRASP breast DCE-MRI images were quantitatively

assessed using objective measures for image similarity and

temporal similarity. While there are a number of studies on

various compressed sensing methods for DCE-MRI, a quan-

titative evaluation of their reconstruction parameters and

temporal resolution is often not provided. Using the flexibil-

ity of iGRASP that allows image reconstructions with differ-

ent temporal resolutions from a same raw data set, we

demonstrated that optimization of reconstruction parameters

can be an important factor in contrast kinetic model analy-

sis and differentiation of malignant lesions from benign

ones. The optimization process for image reconstruction

parameters shown in this preliminary study with a small

cohort can also be applied to other applications utilizing

compressed sensing imaging methods similar to iGRASP.
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