Thinking Beyond the Block: Block Matching
for Copy—Move Forgery Detection Revisited

Matthias Kirchner?, Pascal Schottle?, and Christian Riess®

®Electrical Engineering and Computer Engineering Department, Binghamton University, USA;
Department of Information Systems, University of Miinster, Germany;
bRadiological Sciences Lab, Stanford, CA, USA

ABSTRACT

Detection of copy—move forgeries is one of the most actively researched topics in image forensics. It has been
shown that so-called block-based methods give the highest pixelwise accuracy for detecting copy—move forgeries.
However, matching of block-based features can be computationally extremely demanding. Hence, the current
predominant line of thought is that block-based algorithms are too slow to be applicable in practice.

In this paper, we revisit the matching stage of block-based copy—move forgery detection methods. We propose
an efficient approach for finding duplicate patterns of a given size in integer-valued input data. By design, we focus
on the spatial relation of potentially duplicated elements. This allows us to locate copy—move forgeries via bit-wise
operations, without expensive block comparisons in the feature space. Experimental investigation of different
matching strategies shows that the proposed method has its benefits. However, on a broader scale, our experiments
demonstrate that the performance of matching by lexicographic sorting might have been underestimated in
previous work, despite its remarkable speed benefit on large images. In fact, in a practical setting, where accuracy
and computational efficiency have to be balanced, lexicographic sorting may be considered the method of choice.

1. INTRODUCTION

Copy—move (CM) forgeries are a common form of local image processing, where parts of an image are copied
and then re-inserted into another part of the same image. Localizing and detecting such manipulations has been
among the most actively investigated fields in the image forensics community.! More than a decade? of research
has led to a vast body of proposed methods, the majority of which can be categorized into block-based methods
(for example, works by®®) and methods based on local key point descriptors”®. Recent literature concludes that
the former tend to be more accurate, in particular when relatively smooth image regions are copied.’? A major
disadvantage of block-based approaches is their high computational load in the matching stage: in contrast to
keypoint-based methods, the number of blocks essentially is the number of image pixels. For megapixel-sized
images, comparing and matching all blocks of the image to a suitable number of candidate blocks can easily take
hours. This is a particularly well-known issue® for the otherwise highly accurate method of kd-tree matching*.
Particularly the (for large images) excessive runtime of kd-tree matching lead to the “common knowledge” in
the community that keypoint-based CM detectors are the only approaches that are also feasible in the forensic
practice. Recently, this assumption has been challenged by methods that are based on new ideas from the
domain of approximate nearest neighbor search.” 19 Besides, these approaches still leave considerable room for
improvement. Another, very hands-on approach to reduce the computational time of block-based algorithms is to
implement selected methods on a graphics processing unit (GPU).!!

In this paper, we investigate different matching strategies for block-based algorithms. We propose a matching
procedure that explicitly exploits the underlying structure of CM forgeries. We leverage the fact that a matching
procedure not necessarily has to be decomposed into multiple independent block queries, when we really search
for a duplicated patch of multiple adjacent elements. Our procedure focusses on this spatial relation by design,
which allows us to find duplications by means of bit-wise operations—and thus potentially more efficiently than
through direct block-wise comparisons. In fact, the method is considerably more runtime efficient than kd-tree
matching. However, its runtime efficiency is outperformed by lexicographic sorting, a classic method proposed

Further author information: kirchner@binghamton.edu, pascal.schoettle@uni-muenster.de, riess@stanford.edu

d
d
x: 2032310032 2 d
(a)
1 11 - [~ N 11
1 - 1 1 1
1:1 1 11 - 1 1 11
1 1 1

(b) (c)

Figure 1. (a) Our approach exploits the fact that all elements within a copied sequence exhibit the same shift distance.
(b) The matching problem is reformulated as identifying repeating sub-matrices in a binary index matrix. (c) Interpreting
each matrix row as a binary sequence, matrix rows corresponding to consecutive input elements are horizontally realigned
(i.e., shifted) and can then be compared through a simple bit-wise AND operation.

in the earliest work on CM detection,? and used in several follow-up works by other groups. Later analysis
has shown that, for many feature sets, matching using kd-tree outperforms lexicographic sorting.'? However,
if the tremendous runtime benefit is taken into account, we demonstrate that lexicographic sorting may have
considerable advantages in practical, real-world applications.

2. METHODS

Block-based copy—move forgery detection (CMFD) computes for each image block a feature vector f;. We assume
that copied regions are essentially a subset of feature vectors {f;}, extracted from a spatially connected region
and with only little difference to another subset of feature vectors {f;} from another spatially connected region.
We further assume that CMFD feature vectors can be quantized to integer values, i.e., there exists a deterministic
mapping m(f;) — x;, x; € N, that projects feature vectors onto scalars. The CMFD matching problem then
reduces to identifying duplicates of spatially connected regions in a matrix of integers. Note that this is also
known as the exact matching problem in the CMFD literature.? We describe a strategy that solves this task by
sequentially manipulating and analyzing a binary index matrix. We first illustrate the idea for the one-dimensional
case (e.g, CMFD along a single image row or column) before we extend the approach to full 2D matching.

2.1 Basic Setting: Matching Along One Dimension

Let x = (zg,...,2n-1), 0 < 2; < M, denote a vector of integers, which we want to examine for copied sub-
sequences. We use subscript {a : b} to refer to a subsequence with contiguous indices [a...b], i.e., X(4.p} =
(Zq,...,xp). Further, define binary M x N index matrix I with elements

0 otherwise |,

1 if ZT; :j
I = { (1)

and let Iy ; I () denote the i-th column and the j-th row of the matrix. Each column Iy, ; contains exactly
one non-zero element set. A row-wise summation over I would result in the histogram of x.
2.1.1 General Procedure

Figure 1(a) illustrates that a copied sub-sequence of length w + 1, X{;. 44}, is a sequence whose elements repeat
themselves at an unknown shift distance d, i.e., z;1x = Tiyxrd, 0 < k < w. Identifying such duplications is

equivalent to finding identical submatrices Ity (;:i4w) and Ipy fi1d:itwsay in matrix I, cf. Figure 1(b). We
exploit this by transforming the matching task into a sequence of binary shifts and AND operations over individual
rows of I. Specifically, the core idea of our backtracking-free algorithm for inspecting whether sequence x(; . ;1)
has duplicates is to horizontally shift rows I, (},...,1;, . relatively to each other, such that all non-zero
elements I, i, ..., Ip,, , i+w are vertically aligned, cf. Figure 1(c). Because all elements in a respective row are
shifted by the same amount, a duplication of xy;. ;4. exists, iff the Hamming weight of the binary sequence
obtained as the bit-wise AND over all shifted rows exceeds 1.

A straight-forward adaption of this procedure ignores duplications within a minimum spatial distance D to
reflect that very close neighbors are usually not considered as copy—move candidates (so as to avoid false positives
in homogenous regions of the signal).

2.1.2 Algorithmic Details

Without loss of generality, we work on the index matrix with a reversed column order in the remainder of this
text. Denote this reversed matrix I, with elements

Lii=Ijn-1-i- (2)

Interpreting rows ij,{_} as Big Endian bit strings (i..e, the i-th bit is set when z; = j), we use their decimal
representation, b;, for the sake of notational convenience,

N-—1
b= 2l (3)
=0

Shifting a matrix row r elements to the right is then equivalent to computing
7.’

b] =2". bj . (4)

For completeness, let us also define the equivalent of the bit-wise AND between two matrix rows b, and b, as
N
by Aby = 2" (|b] | mod2) - (b mod2) . (5)
n=0

Above notation allows us to establish that X(;. 4w} = X{itd:itwtd}, d > 0, iff

—

w d
(/\F> =1, (6)

k=0

Evaluating Eq. (6) for a specific input element z; thus implies identifying matrix row b, , that corresponds to
the k-th neighboring input element, shifting the k-th row i 4+ k elements to the right, taking the bit-wise AND
over all w + 1 shifted rows and testing wether the d-th bit of the resulting bit string is set.

This general procedure is repeated for all input elements z; to find all duplicate subsequences of length w + 1
in the input sequence. Because each column I,y ; represents exactly one element only, earlier shifts don’t have to
be repeated in later iterations. Instead, we can re-use already shifted rows in following iterations. The number of

required shifts for a specific row b;,,,, 0 <k < w in the i-th iteration is obtained as

Oik = 1+ k— SJJ¢+7€ ’ (7)

where shift vector s = (s, ..., sp—1) is initialized with zeros and incremented by o, according to Eq. (7) after
every shift operation. This effectively reduces the length of the bit strings as we iterate over the input elements
and right-shift previous elements “out of scope”.

Constantly updating rows by their shifted versions requires special treatment of identical elements z, = z,,
|v — u| < w. This situation would impose multiple right-shifts of the same row b,, within the same iteration,

Algorithm 1 BitMatch
1: DONE < 0,C+ 0,s=0
2: for every element x; do

3: if i ¢ DONE then

4: 0i,0 < 1= Sz, [/ how many bits do we need to shift?

5: Bl — l;?i’o // shift

6: Sz, < Sz, + 040 // update shift vector

8 for k =1;k < w;k++ do

9: Oik < i+ k—5z,., // how many bits do we need to shift?

10: bii < biik [/ shift

11: Seisn & Sziy, T Ok [/ update shift vector

12: z4 zNbisy /| AND

13: if 2 < 2**! break

14: if kK == w then

15: d = () // empty vector of offsets

16: scan z for set bits // at least the w-th bit and one additional bit are set
17: if z[d+w] is set then add d + ¢ to vector of possible offsets d
18: for j = 0;j < length(d)—1;j++ do

19: DONE «+ DONE U d;

20: for all admissible correspondences (d;j,d; +n) do C + C U (d;j,d; + n)
21: end for

22: end if

23: end for

24: end if

25: end for

setting the index matrix into an inconsistent state at the beginning of the next iteration. We circumvent this by
initially augmenting I by w additional buffer columns, Bj = b;“’, so that right-shifts from the previous iteration
can be reversed without information loss if necessary. Equation (6) can then be decomposed into up to w + 1
evaluations of the following steps (0 < k < w):

Bi+k — Ef_:_;; (8)

Sxi+k — Ska + Gi,k (9)
~ ?

2k — (biJrk AN Zkfl) > qutl (271 = oN+w _ 1) (10)

This test procedure moves on to iteration i + 1 if Eq. (10) does not hold (no duplications found).

If Eq. (10) holds after all w neighbors have been inspected, we declare a duplication. The resulting bit string
Zw+1 1s then scanned for set bits. Their offset to the w-th bit reflects the distance d of the duplication (we start
scanning at offset w and ignore buffer bits). The result is a vector of absolute offsets d = (¢,i4+dy,i+da, ..., i+dk),
which is transformed into correspondence pairs {(i,7 4+ dy), (i,¢ + da) ..., (i,i + dg)}. After removing the first
element of vector d and adding it to the set of inspected indices, this procedure is continuously repeated, resulting
in correspondence pairs {(i +dy,i+dz),..., (i +dy,i+ dk)} etc. All correspondence pairs have been found when
there is only one element in d left, and the next iteration resumes. Note that correspondence pairs can be checked
for their admissibility (e.g., whether the two indices are at least D elements apart) before storing them for later
inspection. We also note that already inspected indices can be ignored in all following iterations of the algorithm.
Algorithm 1 outlines the general procedure of the BitMatch Algorithm. Figure 2 illustrates an indicative example
of the first few iterations of the matching procedure with w + 1 = 3.

1330023330 2

N—-1—i4w 12 11 10 9 &8 7 6 5 4 3 2

|
:
: w =2
|
\
1=0 s k=0 3 j z (] Dw
0 B = = o, 0
0 = S 1 0 =0, by =132
0 m S m 2 z=by =132
0 B EEE - 3 3
E=1 | z m m
1 [- om, 0
0 m . 1 o=1,by =776 =388
0] S om 2 2 =21 ANby =132
0 B EEE 3 3
l
k=2 : z (]
1 (== -om, 0
0 m o 1 =2 b =3184%7 =796
0 5] . 1 2 z2=2Abg =4 < 2¥t! 5 break
2 Em SIS 3 3
l
i=1 k=0 | z Em =
1 HE . l: [
0 = S 1 o =0, bp = 388
0 m . 3 2 z = by = 388
2 B = I Em, 3
l
k=1 : z m (]
1 C S om 0
0 . oo . o =0, bs =796
0 m . 3 2 z =2z Abs =260
2 Em B DN, 3
l
k=2 : z m (]
1 C Y 0
0 B : 3 : o=1,b3=769" =398 | quplication
0 . m 5 2=z Abs =260 found
3 I E]:E] . 3 7—2=5>d =4 = duplication admissible
|

Figure 2. First two iterations of the matching procedure for input x = (2,0,3,3,3,2,0,0,3,3,1), w =2 and d = 4. Reversed
index matrix I is shown at the top (i = 0, k = 0). Squares symbolize a ‘1’, small dots a ‘0’. A blue square denotes the
current element z;, a green square is the k-th neighbor, and a red square indicates potentially duplicate elements after the
k-th iteration.

k<D “default” k>K—-D

EENEE EEE EEE - -ttt e e e e e e e e e e e e
pEEE EENEE 0 R
DEEE DEED - EEEE EEE- - e e e
EEED EEED - pEEE gEE- - e
...... EEEE - EEEE mE@E o oo
............ EEEE EEEE EEE e e
.................. EEEE oEE EEE coeoc
.................. EEEE gEm@ - mEE EEE
.................. EEEE EEEDE - EEE EEm
........................ EEEE EDEE oEE
........................ EEEE pEEE EEEE

Figure 3. Inadmissible relative offsets for 2D input with K = 11 rows, assuming column-major vectorization, D = 3, and a
Loo-based distance measure. The blue square indicates the corresponding spatial position 0 < k < K of the i-th vectorized
element within it’s column.

2.2 Extension to Two-Dimensional Data

An extension of the above procedure to the analysis of rigid translations in two-dimensional signals is straight-
forward, after vectorization of the input. We assume column-major order without loss of generality, i.e., two-
dimensional matrix indices (k,!) of input elements z;, 0 < k < K, 0 <[< L, are mapped to vector indices as
(k,) »i=k+1K,0<i< KL. All elements of a duplicated (w + 1) x 1 patch will still exhibit the same offsets
with respect to the original elements after vectorization. The result is a matching procedure to find duplications
of (w+ 1) x 1 patches. A (w+ 1) x (w+ 1) block consists of w + 1 horizontally adjacent patches.*

A mandatory adaption is the special treatment of elements close to image borders to avoid matching across
column jumps. This can be achieved by excluding the last w rows from the set of indices that should be
analyzed (to avoid erroneous “original” patches), in combination with a corresponding test when checking for the
admissibility of a match (to eliminate cases where the original patch is located elsewhere in the image). The
test for admissible correspondences requires further careful adjustments when only duplications outside a certain
spatial distance D are to be considered. In contrast to the one-dimensional case, the relative offset of vectorized
indices that fall into this category here depends on the row index of the input element, cf. Fig. 3. Testing
whether a found relative offset d corresponds to an element z; 4 within spatial distance D can be implemented
via a lookup table that returns the set of inadmissible relative offsets for a given row index k =i — K|i/K|.
Assuming column-major vectorization of an input matrix with K rows, such lookup table contains a total of
min(D + max(0, D —w + 1), K — w) distinct masks.

2.3 Implementation

We have implemented a prototype of BitMatch using the GNU Multiple Precision Arithmetic Library! to handle
and manipulate bit strings of arbitrary length. Source code will be available from the first author’s website.

3. RESULTS
3.1 Baseline Experiment

We test the viability of the BitMatch algorithm on 80 images of size 768 x 1024 from the GRIP-UNINA CMFD
database.!® These uncompressed images of varying content were generated with the Erlangen CMFD toolbox,*
each of them contains exactly one pair of duplicated regions of varying size. We set the matching procedure to
work on patches of size 5 x 1, excluding duplications within a spatial Euclidian distance of D = 50. We also ignore
constant patches as a rough measure against artifacts due to saturated or flat regions. Images are converted to
grayscale before analysis. We inspect the shift vectors of all found correspondences and declare the largest subset
with a common shift vector a manipulation.! The i-th and the (i + d)-th element in a binary correspondence

*The existence of duplicated blocks could be checked for in the post-processing phase, if needed. In theory, the described
matching procedure could also be adapted to find blocks directly by extending the definition of neighboring elements and
adding buffer bits correspondingly.

"https://gmplib.org

#We obtained similar results when reporting all subsets with at least 3000 entries, except for a few images with very
small copied regions.

SSELEA

SH— | - T—|

1 K| { .
=;,]_L ‘..AH_, '
|

T
lu 2 el

(d) (e)
Figure 4. BitMatch CMFD results. (a),(d) Four images from the GRIP-UNINA CMFD database. (b),(e) Ground-truth
maps. (c),(f) Obtained correspondence maps.

map are set to 1, if tuple (4,7 + d) is an element of this set. Correspondence maps are not subject to further
post-processing. Figure 4 depicts a selection of representative results.

Denoting TP (true positives), FP (false positives) and FN (false negatives), respectively, the number of correctly
marked, incorrectly marked and missed indices, the resulting pixel-level F-measure,

e 2TP
" 2TP+ FP+ FN’

(11)

averages to 0.95 over all images, with a standard deviation of 0.03. In line with the literature, we exclude
ground-truth indices at semi-transparent boundaries between forgery and background. The average runtime for
analyzing those images is 11.7s on a 2.2 GHz i7 MacBook Pro (single thread). The results indicate an overall
very reliable localization at an acceptable runtime.

3.2 The Rise of Lexicographic Matching

As we assume a setting where exact matching is viable, lexicographic matching? is a natural benchmark for our
approach. The general idea of this matching procedure is to row-wise arrange feature values of overlapping blocks
into a feature matrix, and to establish a lexicographic order over these rows. Duplicate blocks are found by
inspecting for each row index up to R neighboring rows in the sorted matrix. In the exact matching scenario,
the search for the current row index is stopped once a non-duplicate row is found. For a fair comparison, we
have implemented lexicographic matching using the same general software framework as used for implementing
BitMatch.

Not surprisingly, the localization accuracy of lexicographic matching increases with the number of inspected
rows, R. Table 1 indicates that about 500 rows are necessary to achieve the same average accuracy as BitMatch,
whereas the F-measure drops to 0.86 for R = 10. The strength of lexicographic matching is runtime, however.
Even for R = 500, lexicographic matching finishes on average in only 5.7s, although the high standard deviation
indicates outliers. Figure 5(a) depicts a per-image comparison of runtimes. The graph suggests that BitMatch
outperforms lexicographic matching for a few selected images, while the latter is considerably faster in the
majority of cases. A closer inspection of the dataset suggests that very homogenous images are usually the ones
that take longest with lexicographic matching, for instance the upper image in Fig.4(d). At the same time,
those images often result in relatively short analysis times with BitMatch. This can be expected as BitMatch is
designed to find all occurrences of a specific patch at once.

3.3 The Fall of BitMatch

For a better understanding of the runtime characteristics of BitMatch and lexicographic matching, we cropped 50
randomly chosen uncompressed images from the Dresden Image Database!'® (camera model Nikon D70, demosaiced
with Adobe Lightroom) to different sizes and fed them into the matching procedures,? keeping all other parameters

SRuntime does not depend on the presence of copied regions.

Table 1. BitMatch and lexicographic matching average F-measures and
runtimes. 80 GRIP-UNINA CMFD database images, size 768 x 1024.

F-measure runtime (sd)
BitMatch 0.9487 11.71598 (3.2)
LexilO 0.8617 2.43631 (0.3)
Lexil00 0.9343 3.78639 (1.9)
Lexi500 0.9477 5.73957 (5.8)

as before. Figure 5(b) reports average runtimes for images of size 256 x 256, 384 x 384, 512 x 512, 768 x 768,
1024 x 1024, and 1536 x 1536. The graphs clearly suggest the superiority of lexicographic sorting (we set R = 100).
While BitMatch is slightly faster for the smallest tested image size of 256 x 256 (0.16s vs. 0.22s), increasing the
number of pixels by a factor of four from 7682 to 15362, for instance, increases the average runtime from 6.3s to
87.9s (BitMatch) vs. 2.4s to 16.1s (lexicographic matching).

A more detailed analysis indicated that most time of a typical BitMatch call is spent on the AND operations
in the nested for-loop. Up to w ANDs are necessary for each unseen index 4, where the number of inspected
indices depends mainly on the image size, but also on the image’s smoothness. At the same time, longer signals
imply longer bit strings (the index matrix has N columns), i.e., a single AND operation takes longer. All three
effects are also apparent from Fig. 7(a), which depicts total runtimes of BitMatch as a function of the number of
AND operations performed when analyzing each 50 images of sizes 768 x 768, 1024 x 1024, and 1536 x 1536,
respectively. Observe that the total number of AND operations generally increases with the image size, while
there is a roughly linear relationship between the number of ANDs and runtime for a fixed image size. The same
number of ANDs for a larger image size is more expensive, however. In combination, the time spent for bitwise
operations (shifts and ANDs) almost completely determines the time needed to finish a BitMatch call. A similar
behavior can be observed for the runtime of lexicographic matching, which is mostly driven by the time needed
to inspect the sorted rows for duplicates, cf. Fig. 7(d). Sorting the feature matrix adds a size-dependent, but
relatively constant offset, which can be expected to be in the order of O(nlog(n)) .

© | x BitMatch —m— BitMatch
* LexilO 80 1| o— Lexil00
30 | o + Lexil00
© o Lexi500
20 +

10 |

total time for matching [s]
average time for matching [s]

0 20 40 60 80 256 384 512 768 1024 1536
image number image size
(a) (b)

Figure 5. Runtimes of BitMatch and lexicographic matching. (a) 80 GRIP-UNINA CMFD database images, size 768 x 1024.
(b) Average over 50 DDImgDB images of varying size.

150 1 [68 % 768 & 30 | |+ 768 % 768 o
x 1024 x 1024 g x 1024 x 1024
R 01536 x 1536
- 01536 x 1536 Soo g &
£ 100 | &° = oo
z o & °® £ 20 ©- o
g o <
Q
: o %089 : a
2 @ A)
= o & %,
S o e f | Lo
= o .
an} O —
% 5
L 3
0t il 0 L ; ; } ;

1) 3 4 5 6 0 5 10 15 20

number of ANDs 108 time to inspect rows [s]

(a) (b)
Figure 6. Runtimes of BitchMatch (a) and lexicographic matching (b) as functions of the number of AND operations and
the time needed to inspect sorted rows, respectively, for different image sizes.

3.4 Back to the Roots

The generally very favorable runtime performance of lexicographic matching appears to be in stark contrast to the
common dismissal of block-based CMFD methods as being too slow for practical analyses. Typical benchmarks
choose kD-tree matching? for its accuracy, accepting inferior (and admittedly impractical) runtimes in the range
of hours for megapixel-sized images. However, our observations above left us wondering whether lexicographic
matching might be the better trade-off in practice, when taking both accuracy and runtime into account.

Figure 7 compares lexicographic matching and kD-tree matching with 13 different feature representations
(cf. Tab. 2), computed from overlapping 16 x 16 blocks of the 48 uncompressed images in the Erlangen CMFD
database.! These images are substantially larger than the images in the GRIP-UNINA CMFD database, with
sizes assuming up to 10 megapixel. The four panels organize the different feature types into moment-based,
dimensionality-reduction-based, intensity-based and frequency-based features. The graphs report per-image
F-measures, for each combination of feature type and matching approach sorted in increasing order. We used the
same-shift-vector approach for determining the final matches, and set the minimum number of same shifts to 800.

Overall, the graphs justify the use of kD-trees over lexicographic matching, when accuracy is the only concern.
For the large majority of feature sets, sorting by approximate nearest neighbors outperforms lexicographic
sorting. However, for most moment-based, intensity-based, and frequency-based features, the relative difference
between the two matching approaches is rather small. A number of feature representations even work better
with lexicographic matching (most evidently the WANG features, for which the average lexicographic matching
F-measure is about 3 percentage points higher). Taking into consideration that lexicographic matching reduces
the matching time from hours to minutes, a practical trade-off would most likely always opt for speed over a
slightly higher accuracy, in particular when the resulting correspondence maps undergo manual inspection.

4. LESSONS LEARNED AND FUTURE WORK

Copy—move forgery detection (CMFD)—despite being one of the most established problems in image forensics
is still among the most actively researched topics in this community. While most efforts have traditionally focussed
on suitable feature representations, more recent works have started to question the frequently postulated believe
that only methods based on key points are suitable for practical analyses where runtime can be a crucial factor.'?
This paper has reported findings from an attempt to devise a novel matching procedure for a setting where the
CMFD problem can be formulated as an instance of the exact matching problem.? Driven by the belief that

1,2

g o
% Z
g 5
& 04l —e— BLUR kD = 04 | 8 —— KPCA kD
Sl —o— BLUR lexi S —o— KPCA lexi
—s— Hu kD —=—PCA kD
0.2 | —e— Hu lexi 0.2 | —a— PCA lexi
—— ZERNIKE kD ——SVD kD
—+— ZERNIKE lexi ——SVD lexi
0 0
1 12 24 36 48 1 12 24 36 48
sorted image index sorted image index
(a) moments (b) dimensionality reduction
1 1
0.8 f
206 | —e— BRAVO kD =
n . n
b5 —o— BRAVO lexi 5
g 04 | —=— WaNG kD g 04l —e—DCT kD
S —a— WANG lexi S —o— DCT lexi
——LIN kD —=— DWT kD
0.2 | —— LIN lexi 0.2 | —e=— DWT lexi
——Luo kD ——FMT kD
ol —o— LU0 lexi ol ——FMT lexi
1 12 24 36 48 1 12 24 36 48
sorted image index sorted image index
(c) intensity (d) frequency

Figure 7. Comparison of F-measures for lexicographic matching (red) and kD-tree matching (blue). Erlangen database.

bitwise operations are computationally cheaper than feature space comparisons we perform the matching by
manipulating and analyzing bit strings derived from the spatial relation of input elements.

Experimental results indicate that our implementation of BitMatch can be advantageous by a small margin,
however, only under very specific circumstances (smooth images of rather small size), and only when finding all
duplicate patches is of concern. For the majority of cases—including also the practically relevant ones—matching
via lexicographic sorting of feature values turned out to be computationally much more efficient. We can only
speculate that a more efficient handling of (very) long bit strings might reduce the runtime of BitMatch further,
and we welcome any suggestion from the community. The admittedly high speed of lexicographic matching came
much to our surprise, and it also appears to be a somewhat disregarded fact in the current literature. Except
for some recent alternative works,” !0 kD-tree matching is the method of choice. This nearest neighbor search
strategy can easily consume time in the order of an hour or more for large images,' compared to less than a few
minutes for lexicographic matching. We suspect that this latent unawareness in the recent literature (including
our own work) can be explained to some degree by the “age” of lexicographic matching. When it was first

Table 2. Grouping of evaluated feature sets for copy-move forgery detection.

Group Methods
BLur?
Moments Hu™
ZERNIKE®
PCA3
Dimensionality reduction | SVD!®
KPCAS
Luo'®
Bravol?
LiN'®
WaNG!?
DCT?
Frequency DWT®
FMT?0

Intensity

proposed in 2003,2 typical computers were most likely too slow to analyze larger images in reasonable time per se.
Over the years, lexicographic matching went out of age and got replaced by more sophisticated, but relatively
much slower, methods. Considering that some of the best feature representations may indeed work better with
lexicographic matching, and many others will still give reasonably good results in practice, we believe that it is
important to carefully (re)evaluate what the best trade-off is, in particular also when benchmarks of new schemes
claim runtime efficiency.

[1]

[10]

REFERENCES

Christlein, V., Riess, C., Jordan, J., Riess, C., and Angelopoulou, E., “An evaluation of popular copy-move
forgery detection approaches,” IEEE Transactions on Information Forensics and Security 7(6), 1841-1854
(2012).

Fridrich, J., Soukal, D., and Luk4s, J., “Detection of copy-move forgery in digital images,” in [Digital Forensic
Research Workshop], (2003).

Popescu, A. C. and Farid, H., “Exposing digital forgeries by detecting duplicated image regions,” Technical
Report TR2004-515, Department of Computer Science, Dartmouth College (2004).

Mahdian, B. and Saic, S., “Detection of copy-move forgery using a method based on blur moment invariants,”
Forensic Science International 171, 180-189 (2007).

Ryu, S.-J., Lee, M.-J., and Lee, H.-K., “Detection of copy-rotate-move forgery using Zernike moments,” in
[Information Hiding], Bohme, R., Fong, P., and Safavi-Naini, R., eds., Lecture Notes in Computer Science
6387, 51-65, Springer-Verlag, Berlin, Heidelberg (2010).

Bashar, M., Noda, K., Ohnishi, N., and Mori, K., “Exploring duplicated regions in natural images,” IEEE
Transactions on Image Processing (Mar. 2010). Accepted for publication.

Pan, X. and Lyu, S., “Region duplication detection using image feature matching,” IEFEE Transactions on
Information Forensics and Security 5(4), 857-867 (2010).

Amerini, I., Ballan, L., Caldelli, R., Bimbo, A. D., and Serra, G., “A SIFT-based forensic method for
copy-move attack detection and transformation recovery,” IEEE Transactions on Information Forensics and
Security 6(3), 1099-1110 (2011).

Ryu, S.-J., Kirchner, M., Lee, M.-J., and Lee, H.-K., “Rotation invariant localization of duplicated image
regions based on Zernike moments,” IEEE Transactions on Information Forensics and Security 8(8), 1355—
1370 (2013).

Cozzolino, D., Poggi, G., and Verdoliva, L., “Copy-move forgery detection based on PatchMatch,” in [I[EEE
International Conference on Image Processing (ICIP)], (2014).

[11] Singh, J. and Raman, B., “A high performance copy-move image forgery detection scheme on GPU,” in
[Advances in Intelligent and Soft Computing], 131, 239-246 (Dec. 2011).

[12] Christlein, V., Riess, C., and Angelopoulou, E., “A study on features for the detection of copy-move forgeries,”
in [GI SICHERHEIT], (Oct. 2010).

[13] Gloe, T. and Bohme, R., “The Dresden image database for benchmarking digital image forensics,” Journal
of Digital Forensic Practice 3, 150-159 (2010).

[14] Wang, J., Liu, G., Zhang, Z., Dai, Y., and Wang, Z., “Fast and robust forensics for image region-duplication
forgery,” Acta Automatica Sinica 35, 1488—1495 (Dec. 2009).

[15] Kang, X. and Wei, S., “Identifying tampered regions using Singular Value Decomposition in digital image
forensics,” in [International Conference on Computer Science and Software Engineering], 3, 926-930 (2008).

[16] Luo, W., Huang, J., and Qiu, G., “Robust detection of region-duplication forgery in digital images,” in
[International Conference on Pattern Recognition], 4, 746-749 (Aug. 2006).

[17] Bravo-Solorio, S. and Nandi, A. K., “Exposing duplicated regions affected by reflection, rotation and scaling,”
in [International Conference on Acoustics, Speech and Signal Processing|, 1880-1883 (May 2011).

[18] Lin, H., Wang, C., and Kao, Y., “Fast copy-move forgery detection,” WSEAS Transactions on Signal
Processing 5(5), 188-197 (2009).

[19] Wang, J., Liu, G., Li, H., Dai, Y., and Wang, Z., “Detection of image region duplication forgery using model
with circle block,” in [International Conference on Multimedia Information Networking and Security], 25-29
(June 2009).

[20] Bayram, S., Sencar, H., and Memon, N., “An efficient and robust method for detecting copy-move forgery,”
in [IEEE International Conference on Acoustics, Speech, and Signal Processing], 1053-1056 (Apr. 2009).

