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Background Applications and Experimental Evaluation
Many multi-sensor imaging systems  that acquire multi-channel im- Evaluation of our method In several multi-sensor imaging setups:
ages require software-based resolution enhancement due to economi- 1. Application to color imaging:  Color upsampling/super-resolution
cal or technological constraints. e Channel-wise vs. multi-channel reconstruction using the prior in
Contribution: Novel approach to multi-sensor resolution enhancement [4] and the proposed model
e Unified framework for multi-frame super-resolution and single-image e Color super-resolution on simulated images (LIVE database):

upsampling using a spatially adaptive Bayesian model

) .. i ] Channel-wise Inter-channel
e General-purpose approach without limitation to a fixed number of Farsiu [4] Proposed
channels compared to prior work [1] Mean+Std 26.9+1.67 28.0+1.88 28.2+1.93
Median 26.8 28.2 28.3

e Does not rely on guidance data as used, e. g. in RGB-D imaging [2]
Figure 2. PSNR of color super-resolution on 29 simulated sequences (LIVE database)

Bayesian Modeling of Multi-Channel Images e Experiments with real RGB and multispectral image data:

Formulation of multi-frame super-resolution and single-image upsam-
pling as maximum a-posteriori (MAP) estimation problem:
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) /! Prior 1 Prior Figure 3: Top row: multi-frame super-resolution for color images (MDSP dataset). Bot-
: 11 p(x) e p(Xa|X1, X3 ..., %) tom row: single-image upsampling for multispectral data (Harvard dataset).
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3 Avoldance of color artifacts In channel-wise reconstruction
.[ nter Channel ] (Jagged edges) and avoidance of erroneously copied structures
P(XalX1, Xz - Xn1) 4 (in multispectral data) compared to the prior in [4]
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2. Application to RGB-D imaging: Joint color & range upsampling

Figure 1. Basic outline of the proposed Bayesian multi-channel model _ _ _ _ _
e Comparison of channel-wise upsampling, guided upsampling [3]

Multi-channel observation model: Formation of channel y; from x; (color Image guides range upsampling) and our approach

modeled by system matrix W; under Gaussian noise for each channel e Experiments on simulated RGB-D data (Middlebury dataset):
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Multi-channel image prior modeling two complementary aspe cts:

n
p(a?@) X exp{ — ( \)\z’Rintra(wz’)J + Z LLLz'jRinter(CBz’a Ly, q)ij)J)}
intra-channel prior J=Lj#i inter-channel prior
e [ntra-channel prior: EXxploits sparsity of individual channels in the
gradient domain using total variation like regularization

e [nter-channel prior:
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— Modeling of statistical dependencies across channels (a) Original (b) Guided ([3]) T e B
— Definition of locally linear regression (LLR): Figure 4:  Guided upsampling [3], channel-wise upsampling and proposed multi-

) channel upsampling on RGB-D images (Middlebury dataset)
Rinter(mz’a L, q)ij) — H/{(miv CE]') © (Aijmz T b’ij _ mj)||2 . :
Improved reconstruction of smooth surfaces and edges without

— LLR defined by filter coefficients (hyperparameters) ©;; = (A;;, b;) texture copying artifacts compared to guided upsampling [3]

and spatially adaptive confidence weighting x(x;, x;)

Numerical Optimization Conclusion

Unified framework for multi-channel super-resolution and upsampling:
e Applicable to various imaging setups: no limitations regarding the
number of channels or the existence of guidance data
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LLR filter coefficients described by prior I'(®) with weight ¢

Energy minimization problem:  Joint estimation of all high-resolution
channels x and unknown LLR filter coefficients ®

e Matlab code available on our webpage to facilitate future research
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