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Abstract

For a variety of multi-sensor imaging systems, there is a strong need for resolution
enhancement. In this paper, we propose a unified method for single-image upsampling and
multi-frame super-resolution of multi-channel images. We derive our algorithm from a
Bayesian model that is formulated by a novel image prior to exploit sparsity of individual
channels as well as a locally linear regression between the complementary channels. The
reconstruction of high-resolution multi-channel images from low-resolution ones and the
estimation of associated hyperparameters to define our prior model is formulated as a
joint energy minimization. We introduce an alternating minimization scheme to solve
this non-convex optimization problem efficiently. Our framework is applicable to various
types of multi-sensor setups that are addressed in our experimental evaluation, including
color, multispectral and 3-D range imaging. Comprehensive qualitative and quantitative
comparisons demonstrate that our method outperforms state-of-the-art algorithms.

1 Introduction
The spatial resolution of a digital imaging system is one of its major quality indicators. If
the resolution provided by the underlying hardware does not meet the desired application,
software-based techniques to reconstruct high-resolution images are essential. Resolution
enhancement can be tackled by single-image upsampling [29] or from a multi-frame per-
spective, e. g. by exploiting sub-pixel motion between multiple frames [22]1. Most of the
established techniques [3, 6, 8] consider resolution enhancement of single-channel images,
e. g. monochromatic data. However, many imaging systems of practical interest are multi-
sensor systems. Thus, they provide multi-channel images that may even combine different
modalities. This can be achieved with a single camera equipped with a sensor array or by using
different camera technologies that are combined by sensor data fusion. For many multi-sensor

c© 2015. The copyright of this document resides with its authors.
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1Super-Resolution refers to multi-frame approaches [6] to discriminate it from single-image upsampling [29].
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systems, there is a strong need for super-resolution or upsampling as the sensor resolution is
often limited due to economical or technological constraints. From a resolution enhancement
point of view, these systems pose both challenges and additional benefits. One issue is, that a
straightforward application of resolution enhancement to each channel separately might not be
optimal as this strategy ignores dependencies between the channels. This is obvious if image
structures are visible in multiple channels. Moreover, these dependencies can be exploited as
prior knowledge to overcome the ill-posedness of the image reconstruction problem. Our key
idea is to exploit correlations between complementary channels as shown, e. g. in prior work
on color representation [24], dehazing [11] or restoration [21]. Inspired by these concepts,
we formulate a novel approach to super-resolution and upsampling in multi-sensor imaging.
We address three applications that are of great interest in computer vision.

Related Work. The majority of commercially available cameras provide multi-channel
images encoded in red (R), green (G) and blue (B) spectral components. In an early work,
Zomet and Peleg [32] have proposed multi-sensor super-resolution for such setups. In their
approach, the reconstruction of one color channel is guided by the set of the remaining
channels to upsample the multi-channel image. Moreover, some existing multi-frame methods
were extended to deal with color images. In this context, Farsiu et al. [9] as well as Gotoh
and Okutomi [14] have proposed inter-channel regularization in the RGB space, which is
driven by the assumption that color channels are correlated. These methods often share the
property that color space transformations, e. g. the HSV space [9], are used to represent color
images. This means a limitation towards multi-channel images with more spectral compo-
nents. For instance, multispectral and hyperspectral sensors widely used in remote sensing
capture the scene with a higher spectral resolution. Attempts have been made at extending
super-resolution for an arbitrary number of channels [2]. In some of these applications, a
panchromatic image needs to be used as guidance to super-resolve multispectral data [1].

In range imaging, one common setup is to combine 3-D range data with 2-D photometric
data. Stereo vision is a passive technique to provide a disparity map computed from a pair
of color images that is fused with one of these images. On the other hand, Time-of-Flight
(ToF) and structured light are active sensor technologies realized, e. g. in Microsoft’s Kinect.
In addition to range data, color images or amplitude data are acquired. This sensor fusion
can be interpreted as a multi-channel image. One emerging topic is to overcome the low
spatial resolution of range sensors, which can be performed by super-resolution on the range
channel [4, 30]. Over the past years, various single- and multi-frame methods have been
introduced to enhance this task using color channels as guidance, including guided filtering
[15], motion estimation techniques [19], spatially adaptive regularization [20, 25], anisotropic
total generalized variation [12] and joint photometric and range co-sparse analysis [18].
Similar to multispectral imaging, the drawback of these concepts is the need for high-quality
color data, which is hard to achieve with low-cost devices. To overcome this limitation, Ghesu
et al. [13] have proposed guided super-resolution applied to joint resolution enhancement of
range and photometric data. However, their formulation does only consider two channels.

Contribution. This paper examines multi-channel super-resolution and upsampling in a
unified Bayesian framework. Unlike prior work in multispectral and range imaging, our
approach does not rely on additional guidance data. Moreover, it is not limited to a fixed
number of channels such as [13], making it relevant for a wide range of multi-sensor systems.
In detail, our contribution is threefold: 1) We formulate resolution enhancement using a
Bayesian multi-channel model and introduce a novel image prior that accounts for inter-
channel dependencies. Our prior is spatially adaptive and tolerates image regions that violate
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Figure 1: Proposed Bayesian model with a channel-wise observation model, an intra-channel
prior per channel and an inter-channel prior to exploit dependencies between channels.

the assumption of dependencies. 2) We propose a joint energy minimization algorithm for
single-image upsampling and multi-frame super-resolution. 3) The impact of our method is
investigated for various applications including color-, multispectral and range imaging.

2 Bayesian Multi-Sensor Model
We model multi-channel images by xxx = (xxx>1 , . . . ,xxx

>
n )
>, where xxxi (1≤ i≤ n) denotes the i-th

channel. Each channel xxxi is denoted by a Ni×1 vector and we assume uniform dimensionality,
i. e. Ni = N. For each xxxi, a camera captures K low-resolution frames yyyi = (yyy(1)>i , . . . ,yyy(K)>

i )>

due to camera or object motion. Each frame yyy(k)i is encoded by a Mi×1 vector with Mi = M
and M < N. The set of low-resolution channels is given by yyy = (yyy>1 , . . . ,yyy

>
n )
>. The goal is

to reconstruct the multi-channel image xxx from yyy. For K > 1, this results in a multi-frame
super-resolution problem. For K = 1, we face the problem of single-image upsampling. In
both cases, our algorithm is derived from the maximum a-posteriori (MAP) estimation:

x̂xx = arg max
xxx1,...,xxxn

{
p(yyy1, . . . ,yyyn |xxx1, . . . ,xxxn)p(xxx)

}
, (1)

where the probability density function p(yyy |xxx) = p(yyy1, . . . ,yyyn |xxx1, . . . ,xxxn) models the probabil-
ity of observing yyy from xxx and p(xxx) is the prior. If we would assume mutually independent
channels, each channel xxxi can be reconstructed separately using using single-channel ap-
proaches. However, this assumption would ignore correlations across the channels caused
by the fact that structures in one channel might be also present in the other channels. Our
approach is derived from the key idea to exploit these dependencies to guide the recon-
struction of the entire multi-channel image xxx. In doing so, we factorize p(xxx) in Eq. (1)
as p(xxx) = p(xxx1)p(xxx2 |xxx1) . . . p(xxxn |xxx1, . . . ,xxxn−1) that encodes these dependencies. The basic
structure of the Bayesian model that is employed for this purpose is shown in Fig. 1.

2.1 Observation Model
In this work, we limit ourselves to a general and very flexible observation model that describes
the formation of a low-resolution channel yyy(k)i from the high-resolution channel xxxi as follows.
First, yyy(k)i is displaced with respect to xxxi due to camera or object motion during image
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acquisition. Second, each displaced frame is affected by a blur kernel given by the camera
point spread function (PSF). Third, the spatial resolution in terms of pixel dimension is reduced
due to sub-sampling on a sensor array. Finally, each frame is disturbed by additive noise εεε i.
This is described by the image formation model yyyi = DDDiBBBiMMMixxxi + εεε i, where DDDi, BBBi and MMMi
model sub-sampling, blur and motion, respectively [6]. These transforms are combined to the
system matrix WWW i = DDDiBBBiMMMi for the i-th channel. Under the assumption of additive Gaussian
noise of standard deviation σi for channel i and the modeling of dependencies between yyyi and
the high-resolution channel xxxi, the observation model is given by:

p(yyy |xxx) ∝ exp
{
−

n

∑
i=1

1
2σ2

i
||yyyi−WWW ixxxi||22

}
. (2)

This model generalizes fairly well to many imaging systems and can be easily extended by
application-specific aspects, e. g. non-Gaussian noise [8], mosaicing in CCD devices [9],
photometric distortions of color images [26] or out-of-plane motion in range imaging [19].

2.2 Image Prior Model
The image prior p(xxx) models two complementary aspects. First, we use an intra-channel
prior defined for each channel xxxi separately. This exploits the sparsity of each channel xxxi
as a common assumption in image restoration. Second, each channel xxxi is assumed to be
correlated with all other channels. This is modeled by an inter-channel prior defined for all
pairs (xxxi,xxx j) for i 6= j. In summary, for the channel xxxi, the prior model is given by:

p(xxxi |Xi) ∝ exp
{
− (λiRintra(xxxi)+

n

∑
j=1, j 6=i

µi jRinter(xxxi,xxx j;ΦΦΦi j))
}
, (3)

where Xi = {xxx1, . . . ,xxxi−1,xxxi+1, . . . ,xxxn}, Rintra(xxxi) is the intra-channel regularization term for
xxxi and Rinter(xxxi,xxx j) is the inter-channel regularization term for (xxxi,xxx j) parametrized by the
hyperparameters ΦΦΦi j. The weight λi ≥ 0 specifies the strength of the intra-channel prior
for the i-th channel. Similarly, µi j ≥ 0 specifies how strong dependencies between the i-th
and the j-th channel are enforced. Note that the inter-channel prior can be employed in a
non-symmetric manner, i. e. µi j 6= µ ji. If µi j = 0, xxxi and xxx j are treated as independent.

Intra-Channel Model. For the intra-channel model in Eq. (3), we employ bilateral total
variation (BTV) [8] as an edge preserving image prior. This prior is defined by:

Rintra(xxxi) =
L

∑
l=−L

L

∑
m=−L

α |l|+|m|
∣∣∣∣SSSl

vSSSm
h xxxi− xxxi

∣∣∣∣
1, (4)

where SSSl
v and SSSm

h determines a shifted version of xxxi by l pixel in vertical and m pixel in
horizontal direction, respectively. The derivatives computed over different scales in an
2(L+1)×2(L+1) window are weighted by α > 0 and the magnitude of the shift.

Inter-Channel Model. The inter-channel prior in Eq. (3) models pair-wise dependencies
between complementary channels. To define this prior, we employ the locally linear regression
(LLR) model between xxxi and xxx j:

Rinter(xxxi,xxx j;ΦΦΦi j) =
∣∣∣∣κ(xxxi,xxx j)� (AAAi jxxxi +bbbi j− xxx j)

∣∣∣∣2
2 , (5)

where ΦΦΦi j = (AAAi j,bbbi j) denotes the LLR hyperparameters given by the filter coefficients
AAAi j ∈ RN×N and bbbi j ∈ RN and � is the Hadamard (element-wise) product. We restrict AAAi j to
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a diagonal matrix to define the LLR per pixel. To take a violation of the linear regression
assumption into account and make this prior spatially adaptive, we employ confidence
weighting κ :RN×RN→ [0;1]N to assign weights κκκ i j = κ(xxxi,xxx j) to each pixel in xxxi. κ(xxxi,xxx j)
is selected adaptively according to the following properties: 1) The weight κi j,l associated
with pixel l is set to κi j,l > 0 if the regression assumption holds true and a higher κi j,l denotes
a higher fidelity of this assumption. 2) Otherwise, κi j,l = 0 should indicate an outlier, which
is the case, e. g. if a particular structure is present in only one of the channels.

The LLR model in Eq. (5) extends and generalizes the guided filter prior recently intro-
duced in [13] and provides two desirable properties compared to prior work. On the one hand,
our prior generalizes directly to an arbitrary number of image channels. On the other hand,
due to its spatially adaptive definition, it tolerates outliers caused by a violation of the linear
regression assumption between individual channels enhancing its robustness.

3 Optimization Algorithm
Our approach is derived from the Bayesian multi-channel model and formulated as joint
energy minimization. The filter coefficients ΦΦΦi j and the confidence weights κκκ i j are assumed
to be unknown and are treated as latent variables. Taking the negative log-likelihood of Eq. (1),
we reconstruct the high-resolution image xxx and the unknown ΦΦΦi j by the joint optimization:

arg min
xxx,ΦΦΦ

n

∑
i=1
||yyyi−WWW ixxxi||22 + εΓ(ΦΦΦ)+

n

∑
i=1

λiRintra(xxxi)+
n

∑
i=1

n

∑
j=1, j 6=i

µi jRinter(xxxi,xxx j;ΦΦΦi j), (6)

where Γ(ΦΦΦ) denotes a prior for the set of unknown hyperparameters ΦΦΦ = (ΦΦΦ11, . . . ,ΦΦΦnn)
weighted by ε ≥ 0. This is a non-convex optimization problem due to the non-convexity of
the inter-channel regularization term Rinter(xxxi,xxx j;ΦΦΦi j). Moreover, Eq. (6) is underdetermined.

3.1 Alternating Minimization
For an efficient solution of Eq. (6), we alternately minimize it either with respect to xxx or ΦΦΦ

while keeping the remaining parameters constant. Each iteration t yields refined estimates xxx(t)

and ΦΦΦ
(t) of the multi-channel image and the hyperparameters, respectively. We also gradually

update the confidence weights in our algorithm at each iteration.

Estimate Filter Coefficients. The filter coefficients AAA(t)
i j and bbb(t)i j are determined by exploiting

the LLR model for xxx(t−1). Similar to ridge regression, we use Γ(ΦΦΦ) = ||AAA||2F as prior for the
filter coefficients AAA = (AAA11, . . . ,AAAnn)

>, where || · ||F is the Frobenius norm. Then, for each
pair of channels, we need to solve argminAAAi j ,bbbi j{Rinter(xxxi,xxx j;ΦΦΦi j)+ ε||AAAi j||2F}. Since AAAi j is
diagonal, this optimization problem is separable with respect to the coefficients in AAAi j and
can be solved pixel-wise. However, since this problem is underdetermined, we minimize
a relaxation to Eq. (6). In doing so, we solve a spatially smoothed version of Eq. (6) with
respect to the filter coefficients, where smoothing is considered for a neighborhood ωk of
radius r ≥ 1 centered at each pixel k. The resulting sub-problem to determine AAA(t)

i j and bbb(t)i j at
pixel k is given by:

(Âi j,k, b̂i j,k) = arg min
Ai j,k,bi j,k

{
∑

l∈ωk

(
Ai j,kxi,l +bi j,k− x j,l

)2
+ εA2

i j,k
}
, (7)

where Âi j,k and b̂i j,k are estimates for AAA(t)
i j and bbb(t)i j at pixel k and xi,l and x j,l denote the l-th

pixel in the channels i and j extracted from xxx(t−1). This ridge regression problem is equivalent
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to the implicit formulation of unweighted guided filtering as shown by He et al. [15]. Hence,
the unknown coefficients are computed in closed-form according to:

Âi j,k =
Covωk(xxxi,xxx j)−Eωk(xxxi)Eωk(xxx j)

Varωk(xxxi)+ ε

∣∣∣
xxx:=xxx(t−1)

and b̂i j,k =Eωk(xxx j)−Âi j,kEωk(xxxi)
∣∣∣
xxx:=xxx(t−1)

,

(8)
where Eωk(·), Varωk(·), Covωk(·, ·) denote the mean, variance and covariance in the local
neighborhood ωk extracted from xxx(t−1). Finally, AAA(t)

i j and bbb(t)i j is composed element-wise by
the mean of the estimates Âi j,l and b̂i j,l in the neighborhood ωk.

Estimate Confidence Map. To define the confidence κ(xxxi,xxx j), we analyze the residual
error of the LLR model in Eq. (5) at iteration t given by r̃rr(t)i j = AAA(t)

i j xxx(t−1)
i +bbb(t)i j − xxx(t−1)

j . As
the fidelity of the LLR model is assumed to be spatially smooth, a filtered version rrr(t)i j is
determined from r̃rr(t)i j using 3×3 median filtering. Then, we compute κ(xxxi,xxx j) at iteration t
for each pixel position k using the iteratively re-weighted least square scheme [13, 28]:

κ(xi,k,x j,k) =


1 r(t)i j,k <

1
2 σ (t)

σ (t)/r(t)i j,k
1
2 σ (t) ≤ r(t)i j,k ≤ 2.5σ (t)

0 otherwise

, (9)

where σ (t) denotes a threshold to discriminate inliers and outliers of the LLR model. This
scheme assigns a higher confidence to smaller residuals r(t)i j,k as the fidelity of LLR for xxxi and
xxx j at pixel k can assumed to be higher. Otherwise, the confidence is decreased to make our
algorithm robust to violations of the model. The threshold σ (t) is estimated adaptively and
set to the standard deviation of the residual. For robust parameter selection, σ (t) is computed
from the median absolute deviation (MAD) according to σ (t) = 1.4826 ·MAD(rrr(t)i j ) [27].

Estimate Multi-Channel Image. Once the hyperparameters ΦΦΦ
(t) and the adaptive confidence

weighting κ(xxxi,xxx j) for each pair (i, j) are determined, we reconstruct xxx(t) according to:

xxx(t) = arg min
xxx1,...,xxxn

n

∑
i=1
||yyyi−WWW ixxxi||22 +

n

∑
i=1

λiRintra(xxxi)+
n

∑
i=1

n

∑
j=1, j 6=i

µi jRinter(xxxi,xxx j;ΦΦΦ
(t)
i j ). (10)

This minimization is performed jointly with respect to the channels xxx1, . . . ,xxxn while keeping
ΦΦΦ

(t) fixed. For numerical optimization of Eq. (10), we employ Scaled Conjugate Gradient
(SCG) iterations [23], where xxx(t−1) is used as initial guess to obtain xxx(t).

3.2 Implementation
In this work, image reconstruction is implemented in a non-blind, two-stage procedure:

1) In the first stage, we initialize the blur kernel BBBi for each channel according to the PSF
of the underlying imaging system. As we assume aligned channels, the sub-pixel motion MMMi
is the same for each channel, i. e. MMMi = MMM. For multi-frame reconstruction, MMM is estimated
using image registration, where the first frame yyy(1) is used as reference. For single-image
upsampling, MMM is set to identity. To initialize the multi-channel image xxx(1), the average image
[26] is computed and refined by means of a channel-wise reconstruction.

2) In the second stage, our algorithm alternates between the estimation of filter coefficients
in Eq. (8) and the confidence weights in Eq. (9) for all pairs of channels (i, j) as well as the joint
multi-channel reconstruction in Eq. (10). This stage infers the inter-channel hyperparameters
across all channels (see Fig.1) and refines the initial guess xxx(1). Alternating minimization is
performed until convergence or a maximum number of iterations tAM is reached.
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4 Applications and Experimental Evaluation
We examined our method for various multi-sensor imaging setups in computer vision including
quantitative evaluations by the peak-signal-to-noise ratio (PSNR). Throughout all experiments,
we limited ourselves to the application of our image prior in Eq. (3) with fixed regularization
weights µ = µi j for n channels i, j ∈ [1;n]. Numerical optimization was applied with tAM = 10
iterations of alternating minimization and tSCG = 10 SCG iterations.

4.1 Application to RGB and Multispectral Imaging
First, we studied single- and multi-frame reconstruction on color (n = 3 channels) and
multispectral data (n� 3 channels). As a baseline approach, we processed the channels
separately without inter-channel prior. Additionally, we evaluated the inter-channel prior
proposed by Farsiu et al. [9] as a state-of-the-art technique in color super-resolution2. This
prior penalizes mismatches of edges across the channels but is not spatially adaptive. BTV
was used for intra-channel regularization with L = 2 and α = 0.5. For our model, we set r = 1
and ε = 10−4 with the same weight λ = λi for each channel. The regularization weights µ
and λ as well as the parameters of [9] were adjusted for the different applications on a training
dataset by optimizing the PSNR or by visual comparison in the absence of a ground truth.
Color Image Super-Resolution. For quantitative evaluation, we simulated 29 low-resolution
image sequences from the reference color images of the Live Database [31] used as ground
truth. For each channel in the range [0;1], K = 10 frames were generated simulating a
randomly selected rigid motion, a Gaussian PSF of width 3 ·σPSF low-resolution pixels where
σPSF = 0.25, a sub-sampling factor of 3 and additive Gaussian noise with standard deviation
σi = 0.05. The sub-pixel motion was assumed to be known to explicitly evaluate the influence
of the different priors and the PSNR was used for their quantitative comparison.

In this setup, we conducted a parameter sensitivity study regarding the regularization
weights µ and ε . The influence of these parameters to the PSNR is plotted in Fig. 2 (left).
Our method was applied with confidence weighting (κi j adaptive using Eq. (9)) and without
adaptive weights (κi j = 1). We observed more stable results if confidence weighting in the
LLR model was employed. This shows the merit of our adaptive prior. The statistics of the
PSNR for all simulated datasets is summarized in Fig. 2 (right). Compared to channel-wise
super-resolution, we observed substantial improvements by our multi-channel method of
≈ 1.3 dB on average. On simulated data, our LLR model achieved competitive results to the
prior of Farsiu et al. [9] but shows an increased mean PSNR. A qualitative comparison of the
different approaches for the parrots image is shown in Fig. 3. Our method achieved reduced
noise levels in homogeneous regions as depicted by the color and composite images. Here,
we also analyzed the convergence of our alternating minimization by depicting the PSNR of
the super-resolved image over the iterations on two example sequences. We observed fast
convergence of alternating minimization within ≈ 5 iterations.

We also conducted experiments with real images taken from the MDSP benchmark
dataset [10] as depicted in Fig. 4. In this example, the first K = 10 frames of the bookcase
sequence were used for super-resolution with a magnification factor of 3. Sub-pixel motion
was estimated using the method in [7] based on an affine motion model. We used a Gaussian
PSF (σPSF = 0.3). In our experiments, inter-channel regularization got rid of color artifacts
caused by a channel-wise super-resolution, e. g. jagged edges highlighted in Fig. 4. Compared
to the regularization technique in [9], these artifacts were well suppressed by the proposed

2We omitted chrominance regularization and de-mosaicing as these concepts are only applicable for RGB data.
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Figure 2: Left: Influence of regularization weights µ and ε to the peak-signal-to-noise ratio
(PSNR) evaluated with and without confidence weighting. Right: Statistics of PSNR of for
color super-resolution on 29 simulated sequences obtained from the Live database [31].
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Figure 3: Color super-resolution on simulated data (K = 8 frames, 2 × magnification). Top
row from left to right: low-resolution parrots frame, channel-wise super-resolution, multi-
channel super-resolution using the prior in [9] and our multi-channel method visualized as
composites showing colors and green channel intensities. Bottom row: convergence of our
alternating minimization on two image sequences measured by the PSNR over the iterations.

method. In terms of run time, our method converged after 17 s on the bookcase sequence
of size 90×60 px using our experimental Matlab code 3. The run times of channel-wise
super-resolution and the approach of Farsiu et al. [9] were 6 s and 23 s, respectively.
Multispectral Image Upsampling. We applied our method to multispectral images and
performed experiments on real data taken from the Harvard dataset [5]. Each image consists
of n= 31 bands (channels) with central wavelengths λ between 420 and 720 nm. We evaluated
single-frame upsampling with a magnification factor of 2. In order to compare to the inter-
channel prior of Farsiu et al. [9], we also extended this approach for an arbitrary number of
channels. Our approach generalizes to multispectral data without further modifications of the
model. The original and upsampled images for an example dataset are visualized in Fig. 5
by a false-coloring method [17] and by depicting a single band at λ = 600 nm. We achieved
smaller residual noise in homogeneous regions reconstructed by our approach compared to
channel-wise upsampling. In the image region where the band at λ = 600 nm is depicted, we
can observe that the regularization of Farsiu et al. [9] erroneously copies structure from other,

3Experiments were performed on an Intel Xeon E3-1245 CPU with 3.4 GHz
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Figure 3: Color super-resolution on simulated data (K = 10 frames, 3× magnification). Top
row from left to right: low-resolution parrots frame, channel-wise super-resolution, multi-
channel super-resolution using the prior in [9] and our multi-channel method visualized as
composites showing colors and green channel intensities. Bottom row: convergence of our
alternating minimization on two image sequences measured by the PSNR over the iterations.

method. In terms of run time, our method converged after 17 s on the bookcase sequence
of size 90×60 px using our experimental Matlab code3. The run times of channel-wise
super-resolution and the approach of Farsiu et al. [9] were 6 s and 23 s, respectively.
Multispectral Image Upsampling. We applied our method to multispectral images and
performed experiments on real data taken from the Harvard dataset [5]. Each image consists
of n= 31 bands (channels) with central wavelengths λ between 420 and 720 nm. We evaluated
single-image upsampling with a magnification factor of 2. In order to compare to the inter-
channel prior of Farsiu et al. [9], we also extended this approach for an arbitrary number of
channels. Our approach generalizes to multispectral data without further modifications of the
model. The original and upsampled images for an example dataset are visualized in Fig. 5
by a false-coloring method [17] and by depicting a single band at λ = 600 nm. We achieved
smaller residual noise in homogeneous regions reconstructed by our approach compared to
channel-wise upsampling. In the image region where the band at λ = 600 nm is depicted,
we can observe that the regularization of Farsiu et al. [9] erroneously copied structure from
other, original channels to the reconstructed channel, as highlighted in Fig. 5. This effect was
avoided by our spatially adaptive confidence weighting.

3Experiments were performed on an Intel Xeon E3-1245 CPU with 3.4 GHz.
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Figure 4: Color super-resolution (K = 10 frames, 3× magnification) on the bookcase dataset
[10]. From left to right: original frame, super-resolution applied channel-wise without
inter-channel regularization, inter-channel regularization proposed in [9] and our method.

Figure 5: Upsampling (2× magnification) of multispectral data with n = 31 channels [5].
From left to right: original image, channel-wise upsampling, upsampling using inter-channel
regularization in [9] and our method. Multispectral data is depicted by false-color visualization
[17] (left), and by a single image band centered at wavelength λ = 600nm (right).

4.2 Application to 3-D Range Imaging

We examined joint upsampling in RGB-D imaging using the Middlebury datasets [16] for
a quantitative evaluation on synthetic data. For each ground truth range and color image,
low-resolution versions were generated by simulating a Gaussian PSF (σPSF = 0.5) and
sub-sampling by a factor of 3. To simulate conditions of low-cost devices, RGB and range
images given in the range [0;1] were corrupted by additive Gaussian noise with σi = 0.015
and σi = 0.04, respectively. Our method was compared to channel-wise upsampling without
inter-channel prior. In addition, we evaluated guided upsampling proposed by He et al. [15]
as a state-of-the-art technique, where range images are filtered under the guidance of the color
image followed by bicubic interpolation. For RGB data, bicubic interpolation was directly
applied to the low-resolution image. The BTV parameters were set to L = 2 and α = 0.7 and
for the LLR model we set r = 2 and ε = 10−4. We used two intra-channel regularization
weights λi for the color and the range channels and one inter-channel regularization weight µ
across all channels that were adjusted on one training dataset. Upsampled data was compared
for ten randomly generated images per dataset as depicted in Tab. 1.

Multi-channel upsampling outperformed both, guided as well as channel-wise upsampling.
As shown in Tab. 1, the mean PSNR was enhanced by≈ 1 dB compared to guided upsampling
on range data. Here, our method takes advantage of the fact that color images are upsampled
simultaneously, opposed to guided upsampling that directly employes low-resolution color
images as guidance. The comparison in Fig. 6 shows that our multi-channel method achieved
better reconstructions of smooth surfaces and depth edges. In particular, in comparison to
guided upsampling, the LLR model in multi-channel upsampling was less prone to texture-
copying artifacts. Our method also enhanced color images measured by the PSNR in Tab. 1.
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Figure 6: RGB-D upsampling (3× magnification) on the simulated Moebius dataset [16].
From left to right: original data, guided upsampling [15] using color images as guidance,
channel-wise upsampling without inter-channel prior and our method with inter-channel prior.

Table 1: Peak-signal-to-noise ratio (PSNR) of different upsampling methods on simulated
range data (in brackets: RGB data) obtained from the Middlebury 2005 database [16].

Data set Guided upsampling [15] Channel-wise Proposed
Art 27.4 ± 0.01 (32.2 ± 0.01) 28.3 ± 0.03 (33.8 ± 0.02) 28.5 ± 0.02 (34.1 ± 0.01)
Books 29.6 ± 0.02 (27.3 ± 0.01) 30.1 ± 0.10 (28.4 ± 0.01) 30.3 ± 0.03 (28.5 ± 0.01)
Dolls 28.9 ± 0.02 (29.3 ± 0.01) 30.1 ± 0.11 (30.4 ± 0.01) 30.3 ± 0.05 (30.6 ± 0.01)
Laundry 31.3 ± 0.03 (31.3 ± 0.01) 32.1 ± 0.07 (33.2 ± 0.03) 32.3 ± 0.02 (33.5 ± 0.03)
Moebius 25.5 ± 0.01 (28.8 ± 0.01) 26.7 ± 0.03 (29.8 ± 0.01) 26.8 ± 0.02 (29.9 ± 0.01)
Reindeer 34.5 ± 0.04 (29.2 ± 0.01) 34.8 ± 0.14 (29.6 ± 0.01) 35.3 ± 0.06 (29.7 ± 0.01)

5 Conclusion

We proposed a unified approach to multi-frame super-resolution and single-image upsampling
of multi-channel images. Our approach is derived from a novel Bayesian model that exploits
sparsity of the individual channels as well as a local regression between them. We demon-
strated the wide applicability of our method for several common multi-sensor imaging setups
ranging from color and multispectral imaging to 3-D range imaging. The proposed method
outperforms channel-wise image reconstruction that does not exploit local correlations as well
as other state-of-the-art approaches. One of the main novelties is the underlying model being
neither limited to a certain imaging setup nor to a fixed number of channels. Furthermore,
unlike related work, our approach does not need reliable guidance data.

Future work should consider an adaption of our prior to blind super-resolution where the
camera PSF is unknown or other image restoration problems, e. g. image deconvolution. To
facilitate open research, Matlab code of our method is provided on our website4.

Acknowledgments. The authors gratefully acknowledge funding of the Erlangen Gradu-
ate School in Advanced Optical Technologies (SAOT) by the German National Science
Foundation (DFG) in the framework of the excellence initiative.

4http://www5.cs.fau.de/research/software/

Citation
Citation
{Hirschm{ü}ller and Scharstein} 2007

Citation
Citation
{He, Sun, and Tang} 2013

Citation
Citation
{Hirschm{ü}ller and Scharstein} 2007

Citation
Citation
{He, Sun, and Tang} 2013



KÖHLER et al.: SUPER-RESOLUTION & UPSAMPLING IN MULTI-SENSOR IMAGING 11

References
[1] M. Aguena and N. Mascarenhas. Multispectral image data fusion using POCS and

super-resolution. Computer Vision and Image Understanding, 102(2):178–187, 2006.

[2] T. Akgun, Y. Altunbasak, and R. Mersereau. Super-resolution reconstruction of hyper-
spectral images. IEEE Transactions on Image Processing, 14(11):1860–1875, 2005.

[3] S. D. Babacan, R. Molina, and A. K. Katsaggelos. Variational bayesian super resolution.
IEEE Transactions on Image Processing, 20(4):984–999, 2011.

[4] A. V. Bhavsar and A. N. Rajagopalan. Range map superresolution-inpainting, and
reconstruction from sparse data. Computer Vision and Image Understanding, 116(4):
572–591, 2012.

[5] A. Chakrabarti and T. Zickler. Statistics of Real-World Hyperspectral Images. In Proc.
IEEE Conference on Computer Vision and Pattern Recognition, pages 193–200, 2011.

[6] M. Elad and A. Feuer. Restoration of a single superresolution image from several blurred,
noisy, and undersampled measured images. IEEE Transactions on Image Processing, 6
(12):1646–1658, 1997.

[7] G. D. Evangelidis and E. Z. Psarakis. Parametric image alignment using enhanced
correlation coefficient maximization. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 30(10):1858–65, 2008.

[8] S. Farsiu, M. D. Robinson, M. Elad, and P. Milanfar. Fast and robust multiframe super
resolution. IEEE Transactions on Image Processing, 13(10):1327–1344, 2004.

[9] S. Farsiu, M. Elad, and P. Milanfar. Multiframe demosaicing and super-resolution of
color images. IEEE Transactions on Image Processing, 15(1):141–159, 2006.

[10] S. Farsiu, D. Robinson, and P. Milanfar. Multi-Dimensional Signal Pro-
cessing Dataset, 2014. URL http://users.soe.ucsc.edu/~milanfar/
software/sr-datasets.html.

[11] R. Fattal. Dehazing using color-lines. ACM Transactions on Graphics, 34(1):13, 2014.

[12] D. Ferstl, C. Reinbacher, R. Ranftl, M. Ruether, and H. Bischof. Image Guided Depth
Upsampling Using Anisotropic Total Generalized Variation. In 2013 IEEE International
Conference on Computer Vision, pages 993–1000, 2013.

[13] F. C. Ghesu, T. Köhler, S. Haase, and J. Hornegger. Guided image super-resolution:
A new technique for photogeometric super-resolution in hybrid 3-d range imaging. In
Pattern Recognition, pages 227–238. Springer, 2014.

[14] T. Gotoh and M. Okutomi. Direct super-resolution and registration using raw CFA
images. In Proc. IEEE Conference on Computer Vision and Pattern Recognition,
volume 2, pages 600–607, 2004.

[15] K. He, J. Sun, and X. Tang. Guided image filtering. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 35(6):1397–409, 2013.

http://users.soe.ucsc.edu/~milanfar/software/sr-datasets.html
http://users.soe.ucsc.edu/~milanfar/software/sr-datasets.html


12 KÖHLER et al.: SUPER-RESOLUTION & UPSAMPLING IN MULTI-SENSOR IMAGING

[16] H. Hirschmüller and D. Scharstein. Evaluation of cost functions for stereo matching. In
Proc. IEEE Conference on Computer Vision and Pattern Recognition, pages 1–8, 2007.

[17] J. Jordan, E. Angelopoulou, and A. Robles-Kelly. An unsupervised material learning
method for imaging spectroscopy. In 2014 International Joint Conference on Neural
Networks (IJCNN), pages 2428–2435, 2014.

[18] M. Kiechle, S. Hawe, and M. Kleinsteuber. A Joint Intensity and Depth Co-sparse
Analysis Model for Depth Map Super-resolution. In 2013 IEEE International Conference
on Computer Vision, pages 1545–1552, 2013.

[19] T. Köhler, S. Haase, S. Bauer, J. Wasza, T. Kilgus, L. Maier-Hein, H. Feußner, and
J. Hornegger. Tof meets rgb: Novel multi-sensor super-resolution for hybrid 3-d
endoscopy. In Proc. MICCAI 2013, pages 139–146. Springer, 2013.

[20] T. Köhler, S. Haase, S. Bauer, J. Wasza, T. Kilgus, L. Maier-Hein, C. Stock, J. Hornegger,
and H. Feußner. Multi-sensor super-resolution for hybrid range imaging with application
to 3-d endoscopy and open surgery. Medical Image Analysis, 24(1):220–234, 2015.

[21] J. Mairal, M. Elad, and G. Sapiro. Sparse Representation for Color Image Restoration.
IEEE Transactions on Image Processing, 17(1):53–69, 2008.

[22] P. Milanfar. Super-Resolution Imaging. CRC Press, 2010.

[23] I. T. Nabney. NETLAB: Algorithms for Pattern Recognition. Springer, 1st edition, 2002.

[24] I. Omer and M. Werman. Color lines: image specific color representation. In Proc.
IEEE Conference on Computer Vision and Pattern Recognition, pages 946–953, 2004.

[25] J. Park, H. Kim, Y. Tai, M. S. Brown, and I. Kweon. High quality depth map upsampling
for 3D-TOF cameras. In 2011 International Conference on Computer Vision, pages
1623–1630, 2011.

[26] L. C. Pickup, D. P. Capel, S. J. Roberts, and A. Zisserman. Overcoming Registration
Uncertainty in Image Super-Resolution: Maximize or Marginalize? EURASIP Journal
on Advances in Signal Processing, 2007:1–15, 2007.

[27] P. J. Rousseeuw and A. M. Leroy. Robust Regression and Outlier Detection. John Wiley
& Sons, 1987.

[28] J. A. Scales and A. Gersztenkorn. Robust methods in inverse theory. Inverse Problems,
4(4):1071–1091, 1988.

[29] R. R. Schultz and R. L. Stevenson. A Bayesian approach to image expansion for
improved definition. IEEE Transactions on Image Processing, 3(3):233–42, 1994.

[30] S. Schuon, C. Theobalt, J. Davis, and S. Thrun. LidarBoost: Depth superresolution for
ToF 3D shape scanning. In Proc. IEEE Conference on Computer Vision and Pattern
Recognition, pages 343–350, 2009.

[31] H.R. Sheikh and L. Z. Wang. LIVE Image Quality Assessment Database Release 2,
2014. URL http://live.ece.utexas.edu/research/quality.

[32] A. Zomet and S. Peleg. Multi-sensor super-resolution. In IEEE Workshop on Applica-
tions of Computer Vision, WACV 2002, pages 27–31, 2002.

http://live.ece.utexas.edu/research/quality

