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Abstract

Glaucoma is one of the major causes for blindness with a high rate of unreported cases.

To reduce this number, screening programs are performed. However, these are charac-

terized by a high workload for manual and cost-intensive assessment. Computer-aided

diagnostics (CAD) to perform an automated pre-exclusion of normals might help to

improve program’s efficiency.

This chapter reviews and discusses recent advances in the development of pattern

recognition algorithms for automated glaucoma detection based on structural retinal im-

age data. Two main methodologies for glaucoma detection are introduced: (i) structure-

driven approaches that mainly rely on the automated extraction of specific medically

relevant indicators, while (ii) data-driven techniques perform a generic machine-learning

approach on entire image data blobs. Both approaches show a reasonable and compa-

rable performance although they rely on different basic assumptions. A combination of

these might further improve CAD for a more efficient and cost-sensitive workflow as a

major proportion of normals will be excluded from unnecessary detailed investigations.

Keywords: glaucoma, computer-aided diagnostics (CAD), computer-aided screening

(CAS), optic nerve head (ONH), structural retinal image analysis, classification, machine

learning



9.1 Introduction

Glaucoma is a retinal disease influencing the optic nerve head (ONH) by damaging

ganglion cells. Today, it is the second leading cause of blindness worldwide, affecting

more than 60 million people in 2010. This number is estimated to increase to about

80 million in 2020 (1). In the U.S., more than 2.2 million people suffer from glaucoma,

accounting for more than 9 % of all cases of blindness. In terms of economic impacts,

this causes more than 10 million physician visits and expenses of about 1.5 billion US-$

per year (2).

The untreated glaucoma disease causes a successive degeneration of retinal nerve fibers

particularly in the ONH region that leads to progressive narrowing of the visual field

up to complete blindness. Proper treatment can stop the progress although already

degenerated nerve fibers cannot be reactivated. Thus, the early detection and treatment

of the disease is essential.

The initial diagnosis of glaucoma (3, 4) is extensive and consists of the assessment of

1. risk factors such as high intraocular pressure, race, age etc.,

2. the front chamber angle,

3. the morphology of the ONH (Section 9.4.1) and

4. possible defects of the visual field.

Furthermore, a longitudinal assessment of the ONH is performed to confirm the initial

diagnosis. Despite the steady rise of diseases over the past years, glaucoma is often

undiagnosed until the unrecoverable structural damage of retinal nerve fibers gets evident

by the significant narrowing of the visual field. Several studies showed that screening

programs for glaucoma (5) can reduce this high number of unreported cases. The main

goal of these screening applications is the detection of suspicious cases from a large

population and their successful routing to more extensive clinical examination for a
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Figure 1: Computer-aided screening consists of subsequent building blocks: Initially,
the anamnesis and image data of the entire screening collective is analyzed to
preselect unsuspicious cases. The remaining set has to be manually assessed
for further exclusion of unremarkable subjects. Only a small proportion of the
initial set will forwarded to clinical assessment to gain a final diagnosis and
follow-up treatment if necessary.

final diagnosis. Common screening populations are characterized by a high amount of

normals which have to be assessed manually by the involved reading center (Figure 1

step (3)).

Computer-aided diagnostics (CAD) supports an ophthalmologist in the preparation

of a medical diagnosis based on automatic data mining methods. In particular, CAD

is applicable in screening setups in order to reduce the number of normals for man-

ual judgment, which helps to increase the efficiency of the reading centers (Figure 1

step (2)). This is done by an upstream analysis of the personal data, e.g. images or

anamnesis data, utilizing pattern recognition techniques that automatically perform a

pre-selection of suspicious cases. Here, a computer-aided assessment augments the man-

ual assessment provided by the reading center. As depicted in Figure 1, this approach is

considered as computer-aided screening (CAS). The proposed strategy can also be real-

ized in a telemedical setup where image acquisition and examination are done spatially

and temporally separated.

Scope. This contribution provides an overview on the recent advances in the develop-

ment of pattern recognition techniques for automatic glaucoma detection. We will focus

on fully automatic techniques applicable within a screening environment utilizing pure

structural retinal fundus data published 2008 or later.
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(a) (b) (c)

Figure 2: Sample images capturing the optic nerve head (ONH) region: (a) High-
resolution color fundus image, (b) topographic image acquired with Heidelberg
Retina Tomograph (HRT) and (c) OCT line scan intersecting the ONH and
depicting the different retinal layers including the retinal nerve fiber layer as
the top one (6).

Outline. The remainder of this chapter is organized as follows: After the introduction

of common imaging modalities to document ONH morphology, we provide an excursus

on pattern recognition. As major part of this work, two methodologies are presented

that arise from current automatic glaucoma detection literature on structural retina

image data: (i) structure-driven and (ii) data-driven techniques. Finally, the methods

are compared and evaluated towards the application in CAS.

9.2 Imaging Modalities

One main part in diagnosing glaucoma is the assessment of the ONH morphology. Be-

sides the slit lamp that allows a live examination of the eye background, several digital

imaging modalities got established. These devices allow the documentation of the ONH’s

structure by acquiring 2-dimensional (2-D) or 3-dimensional (3-D) image data as shown

in Figure 2.

Fundus imaging is one of the most commonly used technologies in ophthalmology to

obtain high resolution color photographs of the human retina (7, 8). The fast

image acquisition and relatively low costs of a digital fundus camera makes this
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modality attractive to document the retina during screening. The acquired images

can be analyzed to detect pathological degenerations caused e.g. by glaucoma (9).

Confocal laser ophthalmoscope commercially available as Heidelberg Retina Tomo-

graph (HRT) (10) acquires topographic and gray-scaled reflectance images of the

ONH. In particular, the topographic images capturing the ONH’s shape allow

the extraction of parameters to discriminate between normals and glaucomatous

subjects (11).

Optical coherence tomography (OCT) (12) as the optical pendant to ultrasound en-

ables the acquisition of depth profiles and even entire 3-D volumes of the retina.

As the image data also records the retinal nerve fiber layer (RNFL), OCT data

allows a detailed judgment of the retinal constitution and a reliable diagnosis of

glaucoma. In addition, OCT data can be utilized for CAD applications as it was

demonstrated by Huang et al. (13) and Burgansky et al. (14). As an alternative

device for measuring the RNFL thickness also scanning laser polarimetry (SLP)

can be utilized.

From this retinal image data, pattern recognition techniques can extract glaucoma re-

lated markers utilized during the computer-aided assessment within a screening scenario

as shown in Figure 1.

9.3 Excursus: Pattern Recognition Pipeline

The goal of pattern recognition is to analyze and classify patterns such as images or

speech. For this purpose, pattern recognition systems are divided into multiple process-

ing stages that are organized as a pipeline with similar underlying structure for different

real-word problems (15). In terms of glaucoma detection based on retinal image data,

this pipeline is outlined in Figure 3. Please also refer to Figure 1 as the pattern recog-

nition pipeline can be embedded within the automated glaucoma assessment step.
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Figure 3: Pattern recognition pipeline applied to automated glaucoma detection: Retinal
image data is (i) acquired with an eye imaging modality such as fundus imaging
or optical coherence tomography (OCT), (ii) preprocessed and analyzed as
preparation for pattern recognition techniques, (iii) used to extract relevant
features to detected traces of glaucoma and (iv) used in a classification stage
trained with manually classified image data. A common example workflow is
visualized for glaucoma detection based on fundus photographs.

Data Acquisition. In an initial data acquisition stage, sensor data such as images or

speech is captured. Analog sensor data is commonly converted into a discrete mathe-

matical representation for further processing by means of pattern recognition methods.

Example: For image-based glaucoma detection, the human eye is captured with an

imaging modality. In a common clinical workflow, digital fundus cameras are employed

to analyze the optic nerve for traces of glaucoma. As glaucoma detection relies on the

quality of the acquired image, data acquisition also involves quality assessment for image

data. In case of fundus imaging, several automatic and objective quality indices have

been proposed to recognize images not usable for further processing (16, 17, 18).

Data Preprocessing and Analysis. Pattern recognition techniques require an appro-

priate preparation of the acquired data. Therefore, preprocessing steps are required to
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correct invalid or erroneous measurements present in the raw data. Different parts of the

acquired signal that are relevant for a specific pattern recognition problem are extracted

and analyzed. Then, these parts are used to measure certain parameters and to classify

patterns in the underlying sensor data.

Example: Retinal image analysis (19) provides methods to process and analyze retinal

image data in order to measure clinical parameters of the eye. In terms of fundus

imaging, preprocessing for image enhancement includes illumination correction (20) to

adjust uneven contrast and denoising techniques (21) to enhance the quality of noisy

data. Preprocessing is also beneficial to remove features not related to glaucoma and

to make the measurement of disease-specific parameters more reliable (22). Common

analysis steps include a segmentation of the ONH for glaucoma assessment (23, 24, 25).

Feature Extraction. Feature extraction reduces the complexity of the prepared data by

modeling it with a finite set of features organized as a feature vector x ∈ Rd. Each single

feature xi is a mathematical description of a certain parameter or measurement. Features

can be either continuous, e. g. geometric measurements such as lengths or diameters

of anatomical structures, or discrete, e. g. the sex of a human subject. Additionally,

dimensionality reduction may be used in an optional step to reduce the complexity of

raw features x to obtain a compressed feature vector x′ ∈ Rd′ where d′ < d. Feature

selection techniques learn the most meaningful features x′ in an automatic manner based

on example data. Opposed to this approach, principal component analysis (PCA) is a

common tool to perform dimensionality reduction in an unsupervised procedure.

Example: Features that can be extracted from fundus images are geometric param-

eters of the ONH segmented in the previous stage of the pipeline. This includes the

well-known cup-to-disk ratio (CDR) denoted as x1 or the size of the optic disk denoted

as x2. The associated feature vector is given by x = (x1, x2)
>.
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Pattern Classification. Sensor data represented by a feature vector x is characterized

by a class label y ∈ Y where Y = {y1, . . . , yk} denotes a discrete set of k classes. How-

ever, the true class label is unknown and must be determined from the features. A

classifier predicts a class label y? from the features x in an automatic manner. There-

fore, the classifier is derived from a training set X = {(xi, yi)|i = 1, . . . , n} to learn the

relationship between the features xi and the associated class yi. The set X is composed

from n training patterns x1, . . . ,xn, where the true class label yi for each xi is known

and is used as gold standard. State-of-the-art classifiers commonly used in practical ap-

plications are support vector machines (SVM), random forests, artificial neural networks

(ANN) or boosting methods such as AdaBoost (15).

Example: In glaucoma detection, we are interested in the state of glaucoma and the

aim is to solve a two-class problem with y ∈ {N,G} whereas y = N for a normal

subject and y = G for a subject suffering from glaucoma, respectively. Nayak et al. (9)

proposed an ANN to discriminate between healthy normals and glaucomatoues eyes

based on features gained from fundus images. Therefore, the ANN is trained with

patterns obtained from manually labeled fundus images provided by an ophthalmologist.

9.4 Glaucoma Detection by Means of Imaging

One trend in ophthalmology is the quantitative survey of the retinal fundus based on

image data acquired in a non-invasive and in-vivo way. These techniques utilizes char-

acteristics of the ONH as parameter and can be embedded within glaucoma screening

programs (26). As already depicted in Section 9.1, they can be automatically employed

within a computer-aided assessment step to detect traces of glaucoma based on image

data and to provide an initial exclusion of most likely normal cases.

Two major types of methodologies can be distinguished:

Structure-driven techniques commonly automate the extraction of established struc-
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tural parameters of the ONH, e.g. the diameters of the optic disk and cup. These

parameters are already known in the medical community and also statistically

verified, but are often determined manually.

Data-driven techniques utilize data-mining methods applied on the entire image to

obtain discriminative markers for glaucoma detection. In contrast to structure-

driven techniques, no direct relation between the ONH structure and the marker

can be further obtained.

9.4.1 Structure-driven Glaucoma Detection

In structure-driven glaucoma detection, disease-specific indicators of clinical significance

are measured quantitatively. In general, glaucoma is characterized by a continuous,

irreversible loss of ganglion cells (3). This loss is the root cause for a set of structural

ONH changes which can be captured by fundus imaging modalities as introduced in

Section 9.2: (i) Thinning of the neuroretinal rim and (ii) a simultaneous extension of

ONH cupping can be measured in fundus photographies and HRT images (27) as shown

in Figure 4 for an example fundus image (8). (iii) The thinning of the retinal nerve fiber

layer can be quantified, e.g. by OCT devices, and correlates with visual field defects due

to glaucoma (28).

9.4.1.1 2-D Optic Nerve Head Analysis

A medically established feature accepted for glaucoma diagnosis is the cup-to-disk ratio

(CDR) defined as:

CDR =
dcup
ddisk

(1)

where dcup and ddisk denote the vertical cup and disk diameter, respectively. With a

thinned neuroretinal rim and an enlarged cup in case of glaucomatous eyes, a larger

CDR indicates an increased risk of glaucoma.
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Figure 4: Fundus image showing the optic nerve head (ONH): The optic cup is visible
as bright spot inside the optic disk enclosed by the neuroretinal rim. Image
data is taken from the high-resolution fundus (HRF) database.

Originally, the CDR was manually determined. An automated calculation is possi-

ble when utilizing recent image segmentation algorithms. A supervised procedure em-

ploys pixel classification to discriminate between disk, cup and remaining background,

e.g. based on superpixels (25). Contrary, region-based methods rely on active contour

models for disk segmentation and vessel-bend detection (23). In case of stereo fundus

imaging, the depth map obtained from a stereo image pair can be utilized to increase

the reliability of the cup segmentation (29). Once disk and cup are segmented, dcup and

ddisk are measured to determine the CDR according to Eq.(1).

The CDR may also be combined with further structural features such as the blood

vessel areas in inferior, superior, nasal and temporal (ISNT) quadrants or the distance

between optic disk center and ONH as proposed by Nayak et al. (9). The optic disk size

should also be included to glaucoma classification as it highly correlates with CDR (30).
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9.4.1.2 Topographic Optic Nerve Head Analysis

One inherent limitation of the CDR is that it ignores the underlying surface of the ONH

as it is a 2-D feature only. HRT imaging enables the topographic analysis of the optic

nerve which has been also investigated for glaucoma detection (11, 31).

In the approach of Swindale et al. (11), a surface model zx : R2 7→ R estimated from

ONH images defines the depth z as a function of the position (u, v) on the ONH. This

model consists of two parts modeling the surface: (i) The parabolic retinal fundus and

(ii) the ONH cup, which is parametrized by 10 features. These encode meaningful

structural features such as center, radius, slope or depth of the optic cup as well as

secondary parameters such as cup gradient measures derived from the model. They

differ for healthy and glaucomatous subjects and are utilized for glaucoma detection.

The resulting Glaucoma Probabilty Score (GPS) is obtained by a Bayes classifier which

allows to introduce an adapted loss functions (15) in order to penalize a misclassification

of a glaucoma patient as a healthy one, usually referred to as false negative. This is useful

in a screening scenario where unrecognized cases should be avoided.

Twa et al. (32) modeled the ONH depth profile utilizing pseudo-Zernike radial poly-

nomials. The parameters are then used as features within a decision tree classification.

This method can be considered as a generalization of Swindale et al. (11) as a generic

parametric function is used in comparison to a cup-specific parametric model.

9.4.1.3 Volumetric Retinal Nerve Fiber Layer Analysis

In addition to 2-D and topographic modalities, OCT imaging enables an in-depth anal-

ysis of the retinal layers. To enable a reliable determination of the RNFL, modality

specific image artifacts such as speckle noise (33, 34, 35) and motion artifacts (36) need

to be compensated beforehand. Afterwards, an automatic analysis of the RNFL by im-

age processing and classification methods is promising for glaucoma detection (13, 14).
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A threshold-based classification schema considering the single average RNFL layer

thickness is proposed by Pachiyappan et al. (37). The RNFL layer is automatically seg-

mented by active contours.

The amount of input features is extended by Bizios et al. (38) who added new pa-

rameters to the conventional structural measurements that capture percentile thickness

values of different retinal quadrants around the ONH. For classification, (i) a SVM and

(ii) neural network classifiers were applied and compared.

An automatic framework for glaucoma detection that also extends the feature space

has been proposed by Mayer et al. (39). Based on an automatic segmentation of the

RNFL in circular B-scans centered at the ONH (40), the following features are extracted

from the RNFL thickness profile and used as classifier input: (i) statistical features

including minimum, maximum and mean values of the profile, (ii) the entire thickness

profile compressed by a PCA model. The yielded feature vector x only represents the

appearance of the RNFL without including any anamnesis data and is utilized by a SVM

classifier.

Overall, the structure-driven methods for glaucoma detection mainly rely on a small

set of highly discriminative and medically motivated features.

9.4.2 Data-driven Glaucoma Detection

In data-driven approaches, the entire image data is exploited by general-purpose features

such as spectral or texture features that are established in signal- and image processing.

These features are neither directly related to glaucoma nor of clinical meaningfulness,

but represent an abstract mathematical description of the retina. Novel techniques

employing this concept for glaucoma detection are described in the following sections.
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9.4.2.1 Higher Order Spectra (HOS) and Texture Analysis

The glaucoma detection method introduced by Acharya et al. (41) exploits higher order

spectra (HOS) features that are combined with texture features.

The proposed HOS features exploit phase and amplitude information of fundus images.

Spectral descriptors are obtained from this information and are used as features for

glaucoma classification.

The variation of pixel values in an image encodes its texture. For the extraction of

texture features, two quantities are analyzed: (i) The gray-level co-occurrence matrix

encodes the number of combinations for different pixel values in an image. Additionally,

a difference matrix encodes probabilities that a certain gray-level differences between

two pixel occur. This is derived from the co-occurrence matrix. (ii) The run-length

matrix Pθ(i, j) encodes how often a pixel value i successively appears j time for a

certain direction given by angle θ. From these quantities, texture descriptors are derived

as features. For a mathematical definition of the complete feature set, the interested

reader is referred to (41).

HOS and texture features are combined as a joint feature set to discriminate healthy

and glaucoma subjects. Therefore, SVM, random forests, and naive Bayes classifiers

have been investigated showing competitive performance in terms of sensitivity and

specificity.

9.4.2.2 Wavelet-based Features

Dua et al. (42) proposed to use the discrete wavelet transform (DWT) as a feature ex-

tractor in glaucoma detection from fundus images showing the ONH.

The DWT decomposes the input signal, i.e. the fundus image, into spatial and fre-

quency domains at different scalings and is well established in signal- and image pro-

cessing. To identify the most discriminative descriptors for glaucoma detection, this
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Figure 5: Glaucoma Risk Index (GRI): the processing pipeline performs three major
steps: (i) preprocessing to eliminate disease independent variations, (ii) data-
driven feature extraction based on different feature types and Principal Com-
ponent Analysis (PCA), and (iii) two-stage probabilistic classification using
support vector machine (SVM) to achieve the final risk index.

extensive set of features is then reduced by feature ranking and selection. Similar to

(41), several classifiers such as random forest, SVM, and naive Bayes have been investi-

gated.

9.4.2.3 Eigenimages and Glaucoma Risk Index (GRI)

The concept of appearance-based pattern recognition for glaucoma detection on fundus

images was introduced by Bock et al. (6) and is inspired by the Eigenimages originally

proposed for face recognition (43).

First, input images are preprocessed using ONH centering, illumination correction and

blood vessel inpainting to remove image characteristics not related to glaucoma. Then,

three different feature types are extracted from the images: (i) the raw image intensities,

(ii) the Fourier coefficients, and (iii) B-spline coefficients. Each of these feature sets is

separately compressed by an unsupervised PCA to condense the major image variations

into a compact format. Finally, a SVM classifier hierarchy is employed. In a first stage,

each feature vector per feature type is classified by one probabilistic SVM yielding three

distinct glaucoma probabilities. In the second stage, these three probabilities are then

merged to an intermediate feature vector and used as input for an additional probabilistic

SVM to obtain a final probabilistic Glaucoma Risk Index (GRI). The processing pipeline

for the GRI computation is outlined in Figure 5.
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9.4.2.4 Independent Component Analysis

A further appearance-based method for glaucoma detection has proposed by Fink et al. (44).

This method utilizes the Independent Component Analysis (ICA) (45) on images cap-

tured with a confocal laser ophthalmoscope (Heidelberg Retina Tomograph (HRT)). In

contrast to PCA, ICA decomposes the signal into statistically independent factors. The

entire HRT image is treated as a feature vector and used to derive its ICA decomposition

coefficients. The final classification is then achieved by applying a k-Nearest Neighbor

classifier utilizing these coefficients as a feature.

9.5 Summary

This section summarizes the performance of the described structural and data-driven

approaches. Subsequently, both paradigms are discussed and compared.

9.5.1 Performance Comparison

For quantitative evaluation, the following measurements are considered: (i) The accuracy

to assess the percentage of correctly classified images, (ii) the sensitivity and specificity to

quantify the trade-off between a sensitive glaucoma detection and an unreasonable high

false-positive rate, (iii) the area under the receiver operating characteristic curve (AUC)

to evaluate for the overall performance. While the AUC measurement is independent

from a binary cut-off threshold during classification, the remaining measurements might

be adjusted by selecting a different threshold, e.g. optimized for a screening scenario.

Table 1 summarizes quantitative results as reported in the cited original publications.

The numbers are not necessarily gained from the same sample set and may have different

distributions of glaucoma disease, age, sex or race. If multiple classifiers were evaluated

on the same feature set, we report the best performance achieved.
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The results indicate that image-based glaucoma detection achieves a notable accuracy

and an AUC of at least 80 %, respectively. Considering fundus photography and HRT

imaging, both, structural and data-driven methods can achieve an accuracy of around

90 %. However, volumetric analysis based on OCT data is characterized by an out-

standing AUC of up to 98 %. Thus, neither structural nor data-driven methodology is

outperforming the other one while the volumetric, structure-driven techniques seem to

be most discriminative.

9.5.2 Structure-Driven vs. Data-Driven Approach

The presented paradigms achieve a comparable glaucoma detection performance within

the same imaging modality although they both rely on contrary basic assumptions.

Structure-driven methods depend on a small, but highly discriminative set of features,

neglecting the bigger part of the image data. In general, these are either computed

by fitting a parametric model to the image data or segmenting retinal structures. The

obtained indicators were manually selected and proved by clinically studies and/or trials.

In mass screening, an automated and reliable analysis, e.g. of the CDR, relies on an

accurate segmentation of cup and disk. However, since boundaries of these structures

are not well defined and highly variable, such an automatism is difficult to achieve in

practice.

In data driven approaches, no manual preselection of the image content is performed,

but the entire image data is utilized. The desired compact set of discriminative features

required for a reasonable classification is then obtained by a subsequent automatic fea-

ture selection and compression. Thus, the data driven techniques might extract novel

features that are not yet captured by structure-driven approaches. A further medical

analysis of these data-driven features is promising as it might provide new insights to

glaucoma disease and its variations.
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Table 1: Summary of cited references for data-driven (D) and structure-driven (S) ap-
proaches. Imaging modalities utilized for glaucoma detection are fundus imag-
ing (FI), the Heidelberg Retina Tomograph (HRT) for topographic analysis
and optical coherence tomography (OCT) for volumetric analysis. A measure
is omitted (-) if it is not reported in the original publication.

Method S/D M
o
d
a
li
ty

Im
a
g
e
s

S
e
n
s.

(%
)

S
p
e
c.

(%
)

A
cc

.
(%

)

A
U
C

(%
)

Fundus images (2-D)
Cheng et al. (25)

superpixels, cup-to-disk ratio (CDR)
S FI 2326 - - - 82

Nayak et al. (9)
CDR, ISNT rule (inferior-superior-nasal-temporal)

S FI 61 100 80 90 -

Acharya et al. (41)
higher order spectra (HOS), texture

D FI 60 - - 92 -

Dua et al. (42)
wavelet

D FI 60 - - 93 -

Bock et al. (6)
eigenimages, Principal Component Analysis (PCA)

D FI 575 73 85 80 88

Topographic analysis
Swindale et al. (11)

Glaucoma Probability Score (GPS)
S HRT 200 88 89 89 -

Twa et al. (32)
Zernicke polynomial

S HRT 275 69 88 80 88

Fink et al. (44)
Independent Component Analysis (ICA)

D HRT 120 - - 91 -

Volumetric analysis
Bizios et al. (38)

retinal nerve fiber layer (RNFL) measurements
S OCT 152 - - - 98

Mayer et al. (39, 40)
(RNFL, PCA)

S/D OCT 204 90 90 - 94
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9.6 Conclusion

This chapter presents novel trends for glaucoma detection by means of pattern recog-

nition. These techniques employ non-invasive and in-vivo imaging of the human retina

and can be embedded to computer-aided screening. In the course of this chapter, meth-

ods based on fundus photography, topographic HRT imaging and volumetric analysis

using OCT are reviewed. The two major methodologies, i.e. (i) structure- and (ii) data-

driven techniques utilize complementary image information and showed a comparable

performance.

Even when first experimental evaluations showed promising results, there are several

ways to extend these techniques and to gain new insight to glaucoma disease and its

characteristics. Since all presented methods employ a single imaging modality, multi-

modal techniques are an interesting extension. Therefore, complementary information,

e.g. 2-D photometric data obtained from fundus photography augmented by volumetric

data acquired by OCT, can be used to extract a multi-modal feature set. In addition,

features obtained by structural and data-driven methods can be combined to a hybrid

classification approach. This might improve automatic glaucoma detection in order to

reduce the amount of manually assessed screening patients and may help to reduce the

costs of glaucoma screening programs.
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