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Abstract

In this paper, we propose a multi-sensor super-resolution framework for hybrid imaging to super-resolve data
from one modality by taking advantage of additional guidance images of a complementary modality. This
concept is applied to hybrid 3-D range imaging in image-guided surgery, where high-quality photometric
data is exploited to enhance range images of low spatial resolution. We formulate super-resolution based
on the maximum a-posteriori (MAP) principle and reconstruct high-resolution range data from multiple
low-resolution frames and complementary photometric information. Robust motion estimation as required
for super-resolution is performed on photometric data to derive displacement fields of subpixel accuracy
for the associated range images. For improved reconstruction of depth discontinuities, a novel adaptive
regularizer exploiting correlations between both modalities is embedded to MAP estimation. We evaluated
our method on synthetic data as well as ex-vivo images in open surgery and endoscopy. The proposed
multi-sensor framework improves the peak signal-to-noise ratio by 2 dB and structural similarity by 0.03 on
average compared to conventional single-sensor approaches. In ex-vivo experiments on porcine organs, our
method achieves substantial improvements in terms of depth discontinuity reconstruction.
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1. Introduction

Hybrid imaging is an emerging field of research
in medical imaging describing the fusion of differ-
ent modalities. From a general perspective, sen-
sor fusion enables an augmented representation of
complementary information. Common setups are
the combination of positron emission tomography
(PET) in nuclear medicine with computed tomog-
raphy (CT) or magnet resonance imaging (MRI) to
visualize metabolism and internal structures simul-
taneously. A novel hybrid imaging setup addressed
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in this paper combines range imaging (RI) technolo-
gies with RGB sensors to augment 3-D range data
with photometric information.

1.1. Applications

In recent years, RI has been proposed for several
applications in healthcare (Bauer et al., 2013). In
this work, we examine two different applications of
hybrid RI in the field of image-guided surgery.

In terms of minimally invasive procedures, vari-
ous approaches to gain intra-operative range data
have been introduced and evaluated with respect
to their clinical usability (Maier-Hein et al., 2014).
Stereoscopy (Field et al., 2009) has been proposed
as a passive technique to capture 3-D range data
for interventional imaging. On the other hand, ac-
tive sensor technologies based on structured light
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(SL) (Schmalz et al., 2012) or Time-of-Flight (ToF)
(Penne et al., 2009) have been examined. These
sensors can be augmented with photometric infor-
mation to enable hybrid RI within one single en-
doscope, e. g. to facilitate ToF/RGB endoscopy
(Haase et al., 2013a). This fusion of complemen-
tary modalities provides the surgeon a comprehen-
sive view of a scene including 2-D and 3-D infor-
mation. In addition, sensor fusion is beneficial to
enhance robustness and reliability of many image
processing tasks, e. g. for localization and tracking
of laparoscopic instruments (Haase et al., 2013b).

In open surgery, one common workflow is to reg-
ister pre-operative 3-D planning data acquired, e. g.
by CT, with intra-operative range data gained by
means of marker-less RI technologies (Bauer et al.,
2013). As for minimally invasive procedures, stereo
vision is a common technique for intra-operative
imaging evaluated, e. g. for brain shift compen-
sation in image-guided neurosurgery (Sun et al.,
2005). In the field of active sensor technologies,
laser scanning (Cash et al., 2007) and ToF (Mers-
mann et al., 2011; Kilgus et al., 2014) have been
introduced as marker-less approaches to facilitate
augmented reality. Similarly to 3-D endoscopy,
range data acquired in open surgery can be aug-
mented by photometric information to enhance the
intuitive representation of the underlying scene.

1.2. Technical Challenges

As demonstrated in recent studies (Maier-Hein
et al., 2014), active and passive approaches are com-
plementary RI technologies. While passive stereo
vision is able to provide highly accurate range in-
formation under ideal situations, it might be error-
prone on surfaces without texture or with repet-
itive structures. Active sensors are less influenced
by texture but are limited in their spatial resolution
and the signal-to-noise ratio (SNR) due to inherent
physical or economical limitations. In particular,
the resolutions of low-cost ToF or SL sensors are
rather low compared to photometric information.
For minimally invasive procedures or open surgery,
this means a major limitation and restricted the
integration of RI to many clinical workflows.

In order to enhance the spatial resolution of
digital images, super-resolution (Milanfar, 2010)
is a technique to reconstruct high-resolution (HR)
data from the acquired raw images. One common
approach is to fuse multiple low-resolution (LR)
frames into a new HR image (Greenspan, 2008).

Most conventional super-resolution algorithms ex-
ploit only images from a single modality and are
termed as single-sensor methods below. Opposed
to this approach, multi-sensor techniques take ad-
vantage of additional guidance by multiple modali-
ties. In terms of RI, high-quality photometric data
can be exploited for range super-resolution.

1.3. Contribution and Outline

We propose a multi-sensor super-resolution
framework and present its application for hybrid
RI in image-guided surgery. This paper is an ex-
tension of a conference proceeding (Köhler et al.,
2013) introducing this concept for 3-D endoscopy
for the first time. In this work, we examine sen-
sor data fusion of range and photometric informa-
tion for two RI setups applicable to 3-D endoscopy
and open surgery as generalization of (Köhler et al.,
2013). This concept is used to derive subpixel dis-
placement fields for range super-resolution under
the guidance of photometric information. As ex-
tension of our prior work, we also introduce a novel
adaptive regularization technique, where photomet-
ric data is exploited for improved edge reconstruc-
tion in range super-resolution. In our experimental
evaluation, we demonstrate the performance of our
method on ex-vivo porcine organs qualitatively and
quantitatively.

The remainder of this paper is organized as fol-
lows: Sect. 2 discusses relevant work on upsampling
of range data. Sect. 3 introduces our system cal-
ibration approach to perform sensor data fusion
for multi-sensor super-resolution. In Sect. 4, we
introduce MAP super-resolution as computational
framework for our approach. Sect. 5 introduces our
super-resolution approach for hybrid RI. In Sect. 6,
our method is evaluated for image-guidance in min-
imally invasive as well as open surgery. A discussion
of our method is given in Sect. 7

2. Related Work

Multi-frame super-resolution algorithms exploit
relative movements of a camera with respect to a 3-
D surface. Due to subpixel displacements in the as-
sociated image sequence, an HR image of finer spa-
tial sampling can be reconstructed (Irani and Peleg,
1991). Unlike single-frame upsampling techniques
(Kopf et al., 2007; He et al., 2010; Park et al., 2011),
image deblurring and denoising may be treated in
a joint approach. In this paper, we distinguish be-
tween single-sensor and multi-sensor methods.
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2.1. Single-Sensor Approach

Early approaches divide super-resolution in a mo-
tion estimation and a reconstruction stage formu-
lated in the frequency domain (Tsai and Huang,
1984) or the spatial domain using set theoretic or
statistical parameter estimation (Elad and Feuer,
1997; Farsiu et al., 2004). The latter approaches
are attractive since prior knowledge can be easily
incorporated to regularize the reconstruction pro-
cess. However, most approaches are based on sim-
plified motion models, e. g. a rigid transformation
in the image plane ignoring the projective mapping
of a real camera. For this reason and to handle non-
rigid motion, optical flow estimation has been also
widely employed (Zhao and Sawhney, 2002; Mitzel
et al., 2009). As accurate motion estimation is a
major challenge for super-resolution, improved reg-
istration schemes have been proposed (Vandewalle
et al., 2006). Similarly, image reconstruction and
motion estimation can be treated in a joint opti-
mization procedure, e. g. based on joint MAP or
Bayesian approaches (Hardie et al., 1997; Pickup
et al., 2007), variable projection (Robinson et al.,
2009) or expectation maximization (Fransens et al.,
2007). Even if the reliability of super-resolution is
improved, joint optimization is a computationally
demanding and highly non-convex problem (Pickup
et al., 2007) or limited to simplified motion models.

Recently, such methods have been adopted to RI
by Schuon et al. (2009) or Bhavsar and Rajagopalan
(2012). However, these techniques super-resolve a
single modality, i. e. range data, without exploiting
sensor fusion with guidance images, i. e. photomet-
ric data. Our work shows that sensor fusion can be
employed to enhance super-resolution reconstruc-
tion in terms of motion estimation as well as regu-
larization in statistical, spatial domain algorithms.

2.2. Multi-Sensor Approach

There are only few multi-sensor methods, which
are often limited to specific applications. Multi-
sensor super-resolution for single RGB/infrared im-
ages has been proposed by Zomet and Peleg (2002).
One approach designed for PET/CT scanners has
been proposed by Kennedy et al. (2007), where
PET scans are super-resolved and augmented by
anatomical information gained from high-resolution
CT scans. Even if this approach is beneficial for
PET resolution enhancement, it does not gener-
alize to different applications. In terms of hybrid
3-D endoscopy, a first multi-sensor super-resolution

framework has been introduced, recently (Köhler
et al., 2013). In this approach, photometric infor-
mation is employed as guidance for range super-
resolution. Motion estimation is performed on high-
quality photometric data in order to derive accurate
displacement fields for range images. However, this
framework is based on a simplified setup for sensor
fusion exploiting a homographic mapping and has
not been investigated for more general systems, yet.

This work generalizes the approach of Köhler
et al. (2013) and demonstrates its application in
minimally invasive and open surgery.

3. System Calibration

Our framework exploits sensor data fusion be-
tween range images and complementary photomet-
ric information. The LR range data of size M1×M2

is denoted as Y defined on a rectangular grid
Ωr ⊂ R2. We consider a sequence of K range im-
ages denoted as Y (1), . . . ,Y (K). For convenience,
each image Y is linearized to a vector y ∈ RM with
M = M1 ·M2. For each Y (k) there exist an asso-
ciated image z(k) ≡ Z(k) of size L1 × L2 defined
on domain Ωz ⊂ R2 encoding photometric informa-
tion. Neglecting occlusions, each pixel uz ∈ Ωz is
related to one pixel ur ∈ Ωr in the corresponding
range image according to a mapping f : Ωz → Ωr.
We consider only static setups with fixed relative
positions between both sensors and thus f is as-
sumed to be fixed. Our aim is to estimate f and
align each z(k) to y(k) such that a pair (uz,ur) of
corresponding pixels relates to the same 3-D scene
point U ∈ R3 (see Fig. 1). Please note that f is de-
fined up to a scale factor to preserve the resolution
of photometric data with respect to range images.

We examine the system calibration of two hybrid
RI setups to perform sensor fusion.

3.1. Homographic Mapping

In the first setup, a 3-D surface is acquired by
one optical system to capture range and photomet-
ric data simultaneously. Therefore, incoming light
travels the same optical path and a beam splitter is
used for decomposition into photometric and range
information. Due to this setup, we assume that a
pair (ũz, ũr) of corresponding pixels given in ho-
mogeneous coordinates is related by a homography.
The mapping f used for sensor fusion is given by:

ũz ∼= Hrzũr, (1)

3



Figure 1: System setups investigated in this paper: In a beam splitter setup (left) range and photometric data is related to
each other according to a homography. In a general stereo vision setup (right), sensor fusion is addressed by stereo calibration.

where Hrz ∈ R3×3 denotes a homography to de-
scribe the transformation of the pixel coordinates
(see Fig. 1a) and ∼= denotes equality up to a scale
factor for homogeneous coordinates. The homogra-
phy Hrz is calibrated by means of least-squares es-
timation based on point correspondences obtained
from a checkerboard calibration pattern with self-
encoded markers (Haase et al., 2013a). Once Hrz

is estimated, photometric data is transformed pixel-
wise into the domain of range images.

3.2. Stereo Vision

In the more general case of a stereo camera setup,
the homography assumption does not hold true. In
our work, we use a range sensor and an RGB camera
to observe the scene from two different viewpoints
(see Fig. 1b). Both sensors are displaced to each
other with a small baseline to reduce occlusions. In
order to estimate f , we propose a two-stage stereo
calibration procedure:

1. An initial solution for f is estimated by ex-
trinsic stereo calibration as follows: To obtain
reliable depth information, we apply bilateral
filtering, temporal averaging and defect pixel
interpolation to raw range data y in a real-time
preprocessing pipeline (Wasza et al., 2011a,b).
Based on the preprocessed depth information
ỹ, each point ur in ỹ is reprojected to its 3-D
position Ũ in homogeneous coordinates:

Ũ ∼= P−1
r

(
ur ỹ(ur) 1

)>
, (2)

where P r ∈ R4×4 denotes the projection ma-
trix to transform 3-D scene points to the image
plane of the range sensor (Park et al., 2011).
Then, Ũ is projected to the RGB image plane
to determine the associated pixel position ũz:

ũz ∼= P zP
−1
r

(
ur ỹ(ur) 1

)>
, (3)

where P z ∈ R3×4 is the projection matrix of
the RGB sensor. The parameters of the pro-
jection matrices P r and P z are estimated by
means of stereo calibration using a calibration
pattern (Bouguet, 2013).

2. Finally, we perform a further refinement of
the initial mapping to compensate for system-
atic errors in range images, e. g. intensity-
dependent errors (Kolb et al., 2010). There-
fore, we refine the translation vector of the ex-
trinsic camera parameters in a grid search to
maximize the normalized mutual information
(Pluim et al., 2003) between the range image
and the mapped photometric data.

4. Maximum A-Posteriori Framework

We reconstruct an HR image x ∈ RN from a set
of LR range images y(1), . . . ,y(K), yM ∈ RM that
are warped to each other by means of MAP esti-
mation. For this purpose, we exploit 2-D motion
in the image plane caused by 3-D camera or object
motion. The sampling of x is related to the sam-
pling of each LR image by the magnification factor
denoted by s, where N = s2 ·M . The HR image x
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coincides with one LR frame y(r), 1 ≤ r ≤ K used
as reference in our motion model.

4.1. Generative Image Model

We use a generative image model (Elad and
Feuer, 1997) to formulate the relation between an
ideal HR image x and a LR frame y(k) as follows:
Each y(k) is warped with respect to x according to
a 2-D geometric transformation in the image plane.
In addition, range values in successive frames cor-
responding to the same scene point are diverse due
to general 3-D motion, which cannot be modeled by
2-D displacements, e. g. out-of-plane movements.
Each frame is affected by blur induced by the point
spread function (PSF) originating from the optical
system and the sensor array. The blurred image is
downsampled with respect to x. Finally, each frame
is disturbed by random noise induced by the sen-
sor array and non-ideal optical components. The
model to obtain y(k) from x is given as:

y(k) = G(k)
m DBM (k)x+ g(k)

a + ε(k)

= G(k)
m W (k)x+ g(k)

a + ε(k),
(4)

where M (k), B and D model subpixel motion,
blur and downsampling, respectively. For conve-
nience, these effects are combined into one system
matrix W (k) ∈ RM×N . ε(k) ∈ RM denotes addi-
tive and space invariant noise. G(k)

m ∈ RM×M and

g
(k)
a ∈ RM models multiplicative and additive di-

versity of range values in successive frames caused,
e. g. by out-of-plane movements. This transforma-
tion is mathematically equivalent to those proposed
by Capel (2004) for modeling of photometric diver-
sity of color images. B and D are assumed to be

known, whereas M (k) as well as G(k)
m and g

(k)
a are

estimated using image registration. For the refer-

ence frame y(r), we set M (r), G(r)
m and g

(r)
a to the

identity such that x coincides with y(r).

If we assume a space invariant PSF given by the
blur kernel B(u), the system matrix is composed
according to:

Wmn = B (||vn − u′m||2) , (5)

where vn ∈ R2 are the coordinates of the nth pixel
in x and u′m ∈ R2 are the coordinates of the mth

pixel in y(k) mapped onto the HR grid according to
M (k) (Tipping and Bishop, 2003). We normalize

W (k) such that
∑
nWmn = 1.

4.2. MAP Estimator

In our work, we employ MAP estimation (Elad
and Feuer, 1997) to reconstruct the HR image x
from a sequence of LR frames y(1), . . . ,y(K). The
objective function requires a data term and a reg-
ularizer for x according to:

x̂ = arg min
x
{Γdata(x) + λΓreg(x)} . (6)

The data term Γdata(x) measures the fidelity of an
estimate x with respect to the observed LR range
data y(1), . . . ,y(K). If ε(k) is assumed to be addi-
tive, zero-mean and space invariant Gaussian noise,
the data term is given by:

Γdata(x) =

K∑
k=1

∣∣∣∣∣∣y(k) −G(k)
m W (k)x− g(k)

a

∣∣∣∣∣∣2
2
. (7)

Please see Sect. 5 for details on the design of the
data term in our approach.

Since super-resolution is known to be an ill-posed
problem, prior knowledge is incorporated into the
reconstruction process using a regularizer Γreg(x)
weighted by λ ≥ 0. This guides the estimation to
reliable solutions x̂. The specific regularizer em-
ployed in our framework is introduced in Sect. 5.3.

5. Multi-Sensor Range Super-Resolution

Next, we introduce our proposed multi-sensor
super-resolution framework, where super-resolution
of one modality is guided by a complementary
modality. In terms of RI, photometric information
is utilized as guidance for range super-resolution.
Depending on the system setup, we choose one
of the sensor data fusion approaches presented in
Sect. 3 to align both image types. In our framework,
motion estimation is realized by optical flow com-
putation on high-quality photometric data. Then,
photometric displacement fields are transferred to
range images to obtain accurate displacements of
subpixel accuracy for super-resolution reconstruc-
tion. Since 2-D displacement fields cannot model
3-D motion in general, an additional range cor-
rection scheme is introduced. Super-resolution is
formulated as MAP estimation guided by a novel
adaptive regularizer that exploits photometric data
for improved edge reconstruction. See Fig. 2 for a
flowchart of the proposed method.

5



Figure 2: Flowchart of the proposed method to obtain a super-resolved range image from multiple LR frames: We exploit sensor
fusion of range data with complementary photometric information. For motion estimation, displacement fields are obtained by
optical flow on photometric data and transferred to the associated range images. Range correction compensates diverse depth
values due to general 3-D camera motion (e. g. out-of-plane movements) not modeled by optical flow. Numerical optimization is
implemented as maximum a-posteriori (MAP) estimation guided by adaptive regularization based on photometric information.

5.1. Geometric Registration for Motion Estimation

We use non-rigid displacement fields estimated
by means of optical flow to model M (k) in the un-
derlying system matrix defined by Eq. (5). Zhao
and Sawhney (2002) have suggested that this is
feasible for small noise and accurate flow estima-
tion resulting in small warping errors. For these
reasons, optical flow is computed on high-quality
photometric data to obtain displacement fields of
subpixel accuracy. This avoids direct flow estima-
tion on LR range data. We determine photometric

displacement fields w
(k)
z : Ωz → R2, w

(k)
z (uz) =

(w
(k)
z,1(uz),w

(k)
z,2(uz))

> for z(k) with respect to the

reference z(r) to transform each point uz from z(k)

to its position u′z in z(r) according to:

u′z = uz +w(k)
z (uz). (8)

The central frame z(r), r = dK/2e is chosen as
reference to avoid error propagation in case of mis-
registration for individual frames. For optical flow
computation, we use a variational approach solved
in a coarse-to-fine scheme (Liu, 2009).

Based on sensor data fusion, photometric dis-
placements wz are transferred to associated range
displacements wr : Ωr → R2 according to a map-
ping ∆ : R2 → R2. Therefore, it is assumed that
each y(k) is fused with the associated photomet-
ric data z(k) using one of the techniques presented
in Sect. 3. Then, the mapping of photometric dis-
placement fields is realized as follows:

1. Intermediate displacements w̃r : Ωz → R2 are
calculated by component-wise rescaling of wz

with the relative resolution l = (l1, l2)>, li =

Figure 3: Range displacements wr (right) are determined
from associated photometric displacements wz (left) using
rescaling and resampling by ∆. We employ the element-wise
median for resampling.

Mi/Li denoting the ratio of image sizes be-
tween range data (size M1 ×M2) and photo-
metric data (size L1 × L2).

2. Finally, wr is obtained by resampling w̃r to
the coordinate grid Ωr expressed as:

wr(ur) = ∆

(
l1 ·wz,1(uz)
l2 ·wz,2(uz)

)
. (9)

In order to obtain accurate, denoised displace-
ment fields wr while preserving motion disconti-
nuities, the resampling operator ∆ is implemented
by element-wise median filtering. Resampling is
performed for the associated photometric displace-
ments wz in each coordinate direction in a patch-
wise scheme as shown in Fig. 3.

5.2. Range Data Correction

If we allow general 3-D motion for successive
frames, this cannot be modeled by 2-D optical flow
estimation in general. This becomes obvious in case
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Figure 4: Range correction in case of out-of-plane translation between two frames y(r) and y(k) (black, dashed lines) aligned
by optical flow: Without range correction, the super-resolved image x (red, solid line) does not render a true 3-D surface (left).
Range correction compensates out-of-plane motion (offset γa) resulting in the desired surface x aligned to y(r) (right).

of non-planar camera motion orthogonal to the im-
age plane, i. e. out-of-plane motion. Neglecting
this effect, super-resolution fails as demonstrated
in Fig. 4. This issue may be compared to fusing
multiple intensity images having photometric dif-
ferences. To take this effect into account for range
super-resolution, we introduce ga and Gm in our
model defined in Eq. (4).

One crucial type of motion is out-of-plane trans-
lation (see Fig. 4). This is modeled by ga = γa1M
for the all-ones vector 1M and an offset γa ∈ R.
Additionally, a tilting of the camera relative to
the scene or projective distortions are modeled by
Gm = γmIM for positive γm ∈ R, where IM de-
notes the M × M identity matrix. We neglect
higher-order effects such as non-rigid deformations
in out-of-plane direction and use the affine model:

y′ = γmy + γa, (10)

where y ∈ R and y′ ∈ R are corresponding range
values in reference y(r) and frame y(k), k 6= r af-
ter 2-D geometric alignment according to Eq. (8).
The estimation of γm and γa is formulated as line
fitting problem for given samples Y = {(ym, y′m)}.
However, robust parameter estimation techniques
are required due to the perturbation of range data
by random noise and outliers caused, e. g. by sys-
tematic errors or inaccurate geometric alignments.

We adopt a photometric registration scheme of
intensity images (Capel, 2004) for implicit correc-
tion of diverse range values. First, a 3 × 3 median
filter is applied to y(r) and y(k) for noise reduc-
tion. Then, the robust M-estimator sample consen-
sus (MSAC) algorithm (Torr and Zisserman, 2000)
is used. In contrast to conventional RANSAC, the
costs assigned to each inlier are proportional to its
data likelihood instead of a constant value to make

the threshold selection for inlier classification less
crucial. The objective function optimized by MSAC
in a probabilistic manner is given by:

(γ̂m, γ̂a) = arg min
γm,γa

∑
i

ρ((y′ − γmy − γa)2)

ρ(d2) =

{
d2 if d2 < T 2

T 2 otherwise
.

(11)

The threshold T is set to T = 1.96σn such that
5% of the inliers are suspected as outliers if we as-
sume range values disturbed by zero-mean Gaus-
sian noise with standard deviation σn. Finally, the
set of inliers Ỹ = {(ỹm, ỹ′m) |m is inlier} ⊆ Y hav-
ing minimal costs according to Eq. (11) is used to
obtain a refined solution for γm and γa using linear
least-squares optimization.

5.3. Regularization

Super-resolution is known to be an ill-posed prob-
lem (Baker and Kanade, 2002; Lin and Shum, 2004)
and thus regularization is required to obtain reli-
able solutions. Various regularization techniques
have been proposed in literature to incorporate
prior knowledge into the image reconstruction pro-
cess. Common priors exploit smoothness, piece-
wise smoothness or sparsity of images in gradient
or transform domains. However, these assumptions
often ignore discontinuities. For this reason, we pro-
pose a spatially adaptive regularizer plugged into
Eq. (6) for MAP estimation. Our regularization
term exploits range data as well as complementary
photometric information and is given by:

Γreg(x) = α(z,x)>φ(Hx), (12)

where α : Ωr × Ωz → RN are pixel-wise spatially
adaptive weights derived below and φ(x̃) denotes a
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loss function applied to a high-pass filtered version
of x given as x̃ = Hx. Due to the weights, Γreg(x)
is now parametrized by complementary photomet-
ric data z fused with the HR estimate x. For φ(x̃),
we use a pseudo Huber loss function given by:

φ(x̃) =

N∑
i=1

τ

√1 +

(
x̃i
τ

)2

− 1

 . (13)

The advantage of using the Huber loss function
compared to Tikhonov regularization is that edges
are better preserved. Unlike the L1 norm, the Hu-
ber function has continuous derivatives. For H, we
choose a Laplacian such that:

Hx ≡X ∗ H̃, (14)

where the Laplacian filter kernel H̃ is given as:

H̃ =

0 1 0
1 −4 1
0 1 0

 . (15)

5.3.1. Adaptive Regularization

Our basic idea is to decrease the impact of the
regularizer on edges compared to flat regions to
improve edge reconstruction. Recently, spatially
weighted regularization has been proposed working
solely on LR data based on edge detection (Yuan
et al., 2012). In order to improve robustness, we
exploit photometric data based on the assumption
that discontinuities in both domains are correlated.

Spatially adaptive weights α(z,x) are derived as
follows from super-resolved range data x and fused
photometric information z. First, we perform edge
detection on photometric data z to obtain a binary
edge map τ(uz), where τ(uz) = 1 for edge points.
While edges in x are usually also visible in z due to
scene illumination, vice versa this assumption may
be violated, e. g. for texture. To avoid transfer
of false edge information, we employ a similarity
measure D : Ωz×Ωr → R to weight the relationship
between x and z in a pixel-wise manner. First,
x is resampled to the dimension of z. Then, the
spatially adaptive weights are computed pixel-wise
according to:

α(z,x) =

{
exp

(
−D(uz,ur)

τ0

)
τ(uz) = 1

1 otherwise
. (16)

where τ0 ∈ R, τ0 > 0 denotes a contrast factor,
and (uz,ur) are corresponding pixels in z and x,

respectively. Thus, we assign to (uz,ur) a smaller
weight if uz in z is an edge point and the similar-
ity D(uz,ur) is high. Opposed to that, a constant
weight λ is used in flat regions.

5.3.2. Similarity Measure

We employ mutual information as multi-modal
similarity measure for D(uz,ur). Since pixel-wise
analysis is required, the local mutual information
(LMI) (Pluim et al., 2003) is used, which is given
by:

I(uz,ur) =
∑

vz,vr∈N
P (vz,vr) log

(
P (vz,vr)

P (vz)P (vr)

)
,

(17)
where P (vz,vr) is the joint probability distribu-
tion for range and photometric data, and P (vz)
and P (vr) are the marginals, respectively. LMI is
calculated pixel-wise for an image patch composed
from the p×p neighborhoodN centered at (uz,ur).
We use a normalized variant of LMI according to:

D(uz,ur) = − I(uz,ur)∑
vz,vr∈N

P (vz,vr) log (P (vz,vr))

(18)
This is not the first time that LMI is employed for
image improvement. Guo and Huang (2008) have
proposed LMI adaptive total variation denoising.
We adopt this idea to exploit statistical dependency
between range images fused with photometric data.

5.4. Numerical Optimization

In summary, multi-sensor super-resolution is im-
plemented as minimization of the objective func-
tion:

Γ(x) =

K∑
k=1

∣∣∣∣∣∣y(k) − γ(k)
m W (k)x− γ(k)

a

∣∣∣∣∣∣2
2

+ λ · α(z,x)>φ(Hx).

(19)

This is a non-convex problem and direct optimiza-
tion using gradient-based techniques is hard to per-
form as the adaptive weights are not given in a
closed-form solution. As extension of our approach
introduced in (Köhler et al., 2013), we propose an
efficient two-stage optimization procedure. In the
first stage, we initialize the weights by α(z,x) =
1N , resulting in multi-sensor super-resolution with-
out adaptive regularization. Then, if the weights
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are kept fixed, the gradient of Eq. (19) is given by:

∇xΓ(x) = λ · α(z,x)>H>
∂φ

x
(Hx)

− 2

K∑
k=1

γ(k)
m W (k)>

(
y(k) − γ(k)

m W (k)x− γ(k)
a

)
(20)

For numerical minimization of the resulting con-
vex optimization problem, we employ an iterative
Scaled Conjugate Gradients (SCG) scheme (Nab-
ney, 2002). An initial guess for SCG is obtained
by bicubic upsampling of the reference frame y(r).
For further refinement in a second stage, spatially
adaptive weights α based on x1 and fused pho-
tometric data z are derived according to Eq. (16)
yielding an adaptive version of our method. For
increased robustness, we take the temporal median
of z(1), . . . ,z(K) for z to derive spatially adaptive
weights. Then, SCG is performed for a second time
based on the weights α and x1 as initial guess,
which yields the final super-resolved image x2.

This procedure is a particular case of coordinate-
wise descent with S = 2 iteration stages. One may
also employ S > 2 iterations to update adaptive
weights gradually. However, we found that im-
provements becomes marginal while the computa-
tional effort is increased.

6. Experiments and Results

Our experiments are divided into two parts. Per-
formance and robustness of our framework are
quantitatively evaluated for synthetic images. In
the second part, we address image-guided surgery in
3-D endoscopy and open surgery and present results
for ex-vivo data. Supplementary material includ-
ing a Matlab implementation of our framework and
evaluation datasets is available on our webpage1.

6.1. Synthetic Images

Synthetic range images were generated based on
ground truth data. We used a RI simulator (Wasza
et al., 2011a) to obtain photometric data fused with
range data of a laparoscopic scene designed in col-
laboration with a medical expert (see Fig 5).

1See http://www5.cs.fau.de/research/software and
http://www5.cs.fau.de/en/research/data

6.1.1. Experimental Setting

We simulated the underlying conditions of 3-D
endoscopy. As resolution we chose 640×480 px for
photometric data and 64×48 px for range images re-
flecting the setup of the hybrid 3-D endoscope used
in ex-vivo experiments below. Photometric data
was given as color image in RGB space. In order
to simulate a real RGB sensor, each color image
was blurred with Gaussian filter (5 × 5 pixel) and
disturbed by additive, zero-mean Gaussian noise
(σn = 0.001). Range images were a downsam-
pled version of ground truth data and disturbed
by a Gaussian PSF (σb = 0.5) as well as zero-mean
Gaussian noise (σn = 0.05). Please note that we did
not consider hardware-dependent, systematic errors
in our general study opposed to specific simulations
as done, e. g. for ToF (Maier-Hein et al., 2010).

We generated 12 data sets (S1 - S12) each show-
ing the scene from a different perspective and with
different objects such as endoscopic tools. Three
types of camera motion were analyzed. Small pla-
nar motion was simulated for S1 - S4. For S5 -
S8, moderate out-of-plane motion compared to the
measurement range was simulated. For S9 - S12,
out-of-plane motion was substantially increased.
Camera motion was simulated by a random rigid
transformation in 3-D space. Additionally, we sim-
ulated independent movements of tools and organs
in all data sets.

6.1.2. Evaluated Methods

We compared three methods in our experiments:

1. As baseline, single-sensor super-resolution
(termed as SSR) (Schuon et al., 2009) was con-
sidered. Here, photometric information is not
taken into account and motion estimation is
performed on range data directly. For a fair
comparison, we also make use of our range cor-
rection scheme. Optical flow estimation and
regularization based on the Huber function is
done analogously to our method.

2. In our multi-sensor approach (termed as MSR)
(Köhler et al., 2013), we derive subpixel dis-
placements from photometric data. This cor-
responds to the outcome of the first stage in our
two-stage optimization proposed in Sect. 5.4.

3. For an explicit evaluation of adaptive regu-
larization, we considered adaptive multi-sensor
super-resolution (termed as AMSR) as exten-
sion of MSR. The result of AMSR is the final
outcome of the two-stage optimization.
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(a) RGB image (b) LR range (c) Ground truth

(d) SSR (e) MSR (f) AMSR

Figure 5: Results obtained from synthetic data (magnification s = 4, K = 31 frames) for the different approaches: RGB data
(a), LR range data (b), our ground truth (c) and the outcomes of SSR (d) as well as the proposed MSR (e) and AMSR (f).

For MSR as well AMSR, we computed the opti-
cal flow in RGB space. Edge detection required for
adaptive regularization was performed using the So-
bel operator on the V-channel of color images trans-
formed to the HSV space. Super-resolution was
evaluated for different magnification factors and
number of LR frames. For magnification s = 2,
we used K = 7 frames, whereas for s = 4 we chose
K = 31. All approaches were implemented in a
sliding window scheme, where K successive frames
in a data set were utilized to reconstruct a super-
resolved image. Quantitative assessment was done
by comparing a super-resolved image to ground
truth data using the full-reference quality measures
peak-signal-to-noise ratio (PSNR) and structural
similarity (SSIM) (Wang et al., 2004).

6.1.3. Parameter Setting and Optimization

Throughout our experiments, SCG was applied
with termination tolerance 10−3 and the maximum
iteration number was set to 50. For regularization
using the Huber function, we set τ = 5 · 10−3 for
all evaluated methods2. For the selection of an ap-
propriate regularization weight λ, we performed a
grid search based on a single data set. This was

2One can also use automatic parameter selection (Nguyen
et al., 2001), which is beyond the scope of this work.
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Figure 6: Impact of regularization weight λ to super-resolved
data obtained by single-sensor (SSR) and multi-sensor super-
resolution (MSR) on one data set.

done for the SSR and MSR approach, where a sin-
gle weight is required. See Fig. 6 for the impact
of λ to PSNR and SSIM measures. If λ is set too
small, super-resolved data is affected by residual
noise, whereas a large value leads to oversmooth
solutions. The impact of λ was independent of the
super-resolution approach and we set λ = 0.4 for
further experiments.

For AMSR, we set the size of neighborhood N
to 25 × 25 pixels to compute LMI. In this experi-
ment, an artificial checkerboard scene was used as
worst-case scenario for adaptive regularization since
most edges of the checkerboard visible in photomet-
ric data did not correspond with depth discontinu-
ities (see Fig. 7). We investigated the impact of the
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(a) RGB (b) Ground truth (c) AMSR (τ0 = 0.005) (d) AMSR (τ0 = 0.025) (e) AMSR (τ0 = 0.075)
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Figure 7: Checkerboard to adjust the contrast factor τ0 for adaptive multi-sensor super-resolution (AMSR): RGB data (a),
ground truth (b) and outcomes of AMSR for increasing τ0 (c) - (e). Please see the checkerboard texture transferred to super-
resolved data for τ0 = 0.005 but suppressed for higher τ0. Peak-signal-to-noise ratio (PSNR) and structural similarity (SSIM)
measures were averaged over ten sequences.

contrast factor τ0 to PSNR and SSIM measures. If
τ0 is chosen too large, AMSR converges to MSR
and is not longer adaptive. In case of too small
τ0, photometric texture is treated as range edge as
shown in Fig. 7. For further experiments, we chose
τ0 = 0.025 as appropriate value.

6.1.4. Experiment 1: Motion Estimation

The proposed MSR approach was compared to
conventional SSR. For an explicit evaluation of mo-
tion estimation derived from photometric displace-
ments, adaptive regularization was omitted in this
experiment. The outcome of super-resolution was
assessed for ten successive sub-sequences per data
set using sliding window processing. Boxplots for
PSNR and SSIM showing median values as well as
the 25th and 75th percentile based on ten samples
each are shown in Fig. 8. Mean and standard de-
viation over all data sets are reported in Tab. 1.
On average, the proposed MSR approach improved
PSNR (SSIM) by 1.8 dB (0.02) with respect to SSR
for magnification s = 4. In case of s = 2 we ob-
tained smaller changes for both error measures.

6.1.5. Experiment 2: Adaptive Regularization

We repeated our first experiment for comparison
of MSR and AMSR to assess the benefit of adaptive
regularization. The associated boxplots for both er-
ror measures are shown in Fig. 8. Please see Tab. 1
for comparison of mean and standard deviation over

all data sets. For magnification s = 4, the PSNR
(SSIM) measure was improved by 0.2 dB (0.01) if
our adaptive regularizer was used. In total, we ob-
served improved results by 2 dB (0.03) with respect
to conventional SSR.

6.1.6. Experiment 3: Range Correction

For an explicit evaluation of range correction,
its impact on the accuracy of super-resolved data
was studied. For this purpose, AMSR was eval-
uated with and without the proposed correction
scheme. Since diverse range values mainly cause
a bias in super-resolved images whereas structural
information is rendered correctly, PSNR was em-
ployed to assess super-resolution. See Fig. 9 for
the corresponding boxplots. For mean and stan-
dard deviation over all data sets if range correction
is not used see Tab. 1 (third and fourth row). In
case of both magnification factors, the mean values
were decreased and the standard deviations were
increased if range correction was not employed.

6.1.7. Significance Tests

Statistical tests for differences between SSR,
MSR and AMSR in terms of the error measures
were performed using linear mixed-effects models.
The dependency of observations within successive
sub-sequences due to sliding window processing was
accounted for by specification of autoregressive cor-
relation structures. Models for both measures were
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Figure 8: Peak-signal-to-noise ratio (PSNR) and structural similarity (SSIM) evaluated for single-sensor (SSR), multi-sensor
(MSR) and adaptive multi-sensor super-resolution (AMSR). Each boxplot S1 to S12 was created for ten image sequences per
data set. We calculated the median as well as the 25th and 75th percentile of PSNR (top row) and SSIM (bottom row) for
magnification s = 2 (first column) and s = 4 (second column).
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Figure 9: Comparison of adaptive multi-sensor super-resolution (AMSR) with and without range correction to evaluate the
proposed correction scheme: Each boxplot S1 to S12 was created for ten image sequences per data set. We calculated the
median as well as the 25th and 75th percentile of the peak-signal-to-noise ratio (PSNR) for magnification s = 2 (first column)
and s = 4 (second column).

fitted in R version 3.1.1 applying the nlme-package
(Pinheiro et al., 2014). P-values concerning differ-
ences between the approaches of ≤ 0.05 were con-
sidered to be statistically significant. For magnifica-
tion s = 4, the PSNR was improved by 1.9 dB (95%

confidence interval (CI): 0.6 - 3.1 dB, P = 0.004)
for the MSR approach and 2.1 dB (95%-CI: 0.9 -
3.4 dB, P = 0.001) for the AMSR approach with
respect to SSR. Similarly, SSIM was improved by
0.02 (95%-CI: 0.01 - 0.03, P < 0.001) for MSR and
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Table 1: Mean and standard deviation of peak-signal-to-noise ratio (PSNR) and structural similarity (SSIM) over all data sets
measured for the different super-resolution approaches. Each method was applied with (+, first and second row) and without
the proposed range correction scheme (-, third and fourth row) for magnification s = 2 and s = 4, respectively.

Range
correction

Measure Magnification s = 2 Magnification s = 4

SSR MSR AMSR SSR MSR AMSR

+ PSNR 30.4 ± 1.48 30.8 ± 1.63 31.2 ± 1.52 30.3 ± 1.69 32.1 ± 1.58 32.3 ± 1.54

+ SSIM 0.88 ± 0.03 0.90 ± 0.02 0.90 ± 0.01 0.89 ± 0.02 0.91 ± 0.01 0.92 ± 0.01

- PSNR 30.0 ± 1.63 30.3 ± 1.69 30.6 ± 1.65 29.1 ± 2.83 30.1 ± 2.62 30.3 ± 2.67

- SSIM 0.89 ± 0.02 0.90 ± 0.02 0.90 ± 0.01 0.89 ± 0.02 0.90 ± 0.02 0.91 ± 0.02

0.03 (95%-CI: 0.01 - 0.04, P < 0.001) for AMSR
compared to SSR.

The differences between MSR and AMSR of 0.3
dB (95%-CI: -0.9 - 1.5 dB, P = 0.652) in case of
PSNR and 0.005 (95%-CI: -0.005 - 0.02, P = 0.328)
in case of SSIM were considerably smaller and not
statistically significant. However, for ≈ 90% of our
test sequences, the errors measures were consider-
ably improved by AMSR compared to MSR.

6.1.8. Robustness Analysis

Resolution of Photometric Data. Throughout our
experiments, the resolution of photometric data was
chosen ten times higher (640×480 px) than for asso-
ciated range images (64×48 px). In practice there
are limitations even for photometric data due to
economical or technological constraints. We stud-
ied the impact of photometric resolution to the out-
come of our framework. Therefore, we rescaled pho-
tometric data from its original resolution to smaller
ones. The averaged error measures over ten se-
quences versus the scale of photometric data are
plotted in Fig. 10. Our MSR approach outper-
formed SSR even if photometric data of low res-
olution is used. In case of AMSR, we observed de-
creased performance for Scale < 0.6 corresponding
to a resolution of 384×288 px.

Disturbances in Photometric Data. In surgery, the
reliability of photometric data may suffer from dis-
turbances such as non-ambient lightning conditions,
smoke or blood, which affects motion estimation
and adaptive regularization. A frequently occur-
ring issue are specular reflections, which makes op-
tical flow estimation challenging. We studied the
robustness of our framework in presence of reflec-
tions on organ surfaces based on three synthetic
data sets R1 - R3. The associated boxplots for
PSNR and SSIM for ten successive image sequences
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Figure 10: Robustness of multi-sensor (MSR) and adap-
tive multi-sensor super-resolution (AMSR) with respect to
the resolution of photometric data scaled to different image
sizes relative to the original resolution. Single-sensor super-
resolution (SSR) is considered as baseline. The peak-signal-
to-noise ratio (PSNR) and structural similarity (SSIM) mea-
sures were averaged over ten sequences.

per data set are shown in Fig. 11. The MSR as
well as the AMSR method yield improved quality
of super-resolved data in each set even in the pres-
ence of reflections.

Inaccuracy of Sensor Fusion. In all experiments re-
ported above, perfect sensor data fusion was as-
sumed. However, in practice the accuracy is lim-
ited due to calibration errors. To assess the robust-
ness of our framework, we simulated misalignments
between range and photometric data. Therefore,
photometric data was shifted by a translation of
random direction and different lengths εt relative
to a perfect alignment. We increased εt measured
in units of RGB pixels gradually and assessed the
outcome of super-resolution. The error measures
averaged over ten sequences are reported in Fig. 12
for magnification s = 4. We observed a minor de-
crease of ∼ 0.5 dB for PSNR achieved by our meth-
ods even for large sensor fusion errors. In case of
more severe errors (εt > 5 px), AMSR was more
affected compared to the MSR approach.
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(a) RGB image (b) LR range (c) SSR (d) MSR (e) AMSR
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Figure 11: Results for synthetic data in presence of specular reflections (magnification s = 4, K = 31 frames): RGB data (a),
LR range data (b) and the outcomes of single-sensor super-resolution (SSR) (c) as well as the proposed multi-sensor (MSR)
(d) and adaptive multi-sensor (AMSR) method (e). The associated boxplots for the peak-signal-to-noise ratio (PSNR) and
structural similarity (SSIM) were calculated for data sets R1 to R3 based on ten images sequences each.
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Figure 12: Robustness of multi-sensor (MSR) and adaptive
multi-sensor super-resolution (AMSR) with respect to uncer-
tainty of sensor fusion modeled by a random translation εt
for photometric data relative to an ideal alignment. Single-
sensor super-resolution (SSR) is considered as baseline. The
peak-signal-to-noise ratio (PSNR) and structural similarity
(SSIM) measures were averaged over ten sequences.

Noise in Displacement Fields. Next, we evaluated
the robustness of the proposed MSR and AMSR
methods with respect to noise in optical flow dis-
placements fields. In practical applications, this sit-
uation appears in image regions without texture,
where optical flow displacement fields are less re-
liable. For this experiment, we added zero-mean
Gaussian noise to each component of the photo-
metric displacement fields. The noise standard de-
viation was gradually increased from σOFL = 0 to
σOFL = 5.0 in terms of pixels of the RGB im-
ages. The PSNR and SSIM measures were aver-
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Figure 13: Robustness of multi-sensor (MSR) and adaptive
multi-sensor super-resolution (AMSR) with respect to noise
in photometric displacement fields. Single-sensor super-
resolution (SSR) is considered as baseline. The peak-signal-
to-noise ratio (PSNR) and structural similarity (SSIM) mea-
sures were averaged over ten sequences.

aged for each level over ten sequences and plotted
in Fig. 13. Even for severe noise levels, the pro-
posed MSR and AMSR approaches reconstructed
accurate super-resolved images in terms of the ex-
amined error measures.

6.2. Ex-Vivo Experiments

We examined our approach for image-guided
surgery on real, ex-vivo data. First, we consid-
ered image guidance based on ToF imaging for open
surgery. Second, we investigated super-resolution
for 3-D endoscopy in minimally invasive surgery.
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6.2.1. Quantitative Assessment

In order to assess the performance of super-
resolution in the absence of ground truth range
data, we employ two objective quality measures
for quantitative evaluation. First, we evaluate
the noise reduction on 3-D surfaces using a semi-
automatic blind SNR estimation. This measure de-
fined in dB is determined on flat surfaces selected
manually in range data and computed according to:

Qsnr = 10 log10

(
µflat

σflat

)
, (21)

where µflat and σflat denote the mean and standard
deviation of the range values in the selected region
of interest, respectively. High estimates Qsnr indi-
cate a more accurate reconstruction of flat surfaces.

Moreover, we aim at accurate edge reconstruc-
tion as it is desired to reconstruct range data with
sharp transitions between neighboring structures.
In our semi-automatic approach, we manually se-
lect regions of interest with a transition between
two structures. Range values in the selected region
are modeled by a Gaussian mixture model (GMM)
consisting of two components that represent fore-
ground and background. Then, our edge recon-
struction measure is computed by:

Qedge =
wb(µb − µ)2 + wf (µf − µ)2

wbσ2
b − wfσ2

f

, (22)

where µ denotes the mean in the selected region,
µb and µf are the mean range values of the back-
ground and the foreground, σb and σf are the cor-
responding standard deviations, and wb and wf de-
note the corresponding weights of the GMM. The
GMM is fitted automatically using k-means cluster-
ing. Lower standard deviations σb and σf as well as
higher distances between the mean values µb and µf
indicate a better discrimination between the fore-
ground and background range values, which leads
to higher values of Qedge.

6.2.2. Open Surgery

We measured a porcine liver using a
PMD CamCube 3 with resolution of 200×200 px.
Photometric information was obtained by a
Grasshopper2 camera with a resolution of
1200×1200 px fixed on a tripod and combined
with the ToF camera. For this stereo vision
system, the method presented in Sect. 3.2 was used
for fusion of both modalities. Subpixel motion
during image acquisition was induced by small

vibrations of the tripod. All parameters were the
same as specified in Sect. 6.1.1 for synthetic data.

Super-resolution was employed for K = 31
frames and magnification s = 4. Qualitative re-
sults for a comparison of the different approaches
are shown in Fig. 14. All super-resolution meth-
ods yielded an improved reconstruction of the liver
surface compared to raw data degraded by a high
amount of noise. However, in case of SSR edges
are blurred as shown on the lobe of the liver. For
MSR and AMSR, we observed similar results with
an improved reconstruction of the liver boundary.
The corresponding 3-D meshes rendered from raw
data and the super-resolved data obtained by the
AMSR method are presented in Fig. 16.

We carefully selected four image regions contain-
ing flat surfaces and four regions containing sharp
edges in each dataset. In total, we utilized four
datasets for quantitative evaluation. Using blind
SNR estimates according to Eq. (21) averaged over
all datasets, we observed substantial enhancements
achieved by super-resolution compared to LR range
data. In particular, AMSR achieved the best re-
sults for Qsnr given by 21.6 ± 1.08 dB. In terms of
the edge measure defined in Eq. (22), the proposed
multi-sensor methods achieved accurate edge recon-
struction compared to SSR. Here, AMSR achieved
the best results measured by Qedge = 6.75 ± 1.55.
The statistics for both quantitative measures are
summarized in Tab. 2.

We evaluated the runtimes of super-resolution
based on our non-parallelized Matlab implementa-
tion on an Intel Xeon E3-1245 CPU. For the afore-
mentioned setup, the SSR method reconstructed
one super-resolved image within ≈ 25 s includ-
ing motion estimation and non-linear optimization.
The MSR approach took ≈ 90 s due to the more de-
manding motion estimation on photometric data.
The second optimization stage to implement the
AMSR approach took ≈ 20 s.

6.2.3. Minimally Invasive Surgery

In terms of minimally invasive procedures, we ex-
amined hybrid 3-D endoscopy based on ToF imag-
ing. In our ex-vivo experiments, we used a 3-D en-
doscope prototype manufactured by Richard Wolf
GmbH, Knittlingen, Germany as used in (Köhler
et al., 2013) for a phantom study. We acquired
range data (64×48 px) and complementary RGB
images (640×480 px) of a porcine liver. Endoscopic
tools were included in each scene to simulate a real-
istic medical scenario. The homography approach
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Table 2: Mean and standard deviation of the blind SNR measure Qsnr and the edge reconstruction measure Qedge evaluated
for the ToF/RGB endoscope as well as the PMD CamCube used in our open surgery setup. Both measures were evaluated for
LR range data, single-sensor (SSR), multi-sensor (MSR) and adaptive multi-sensor super-resolution (AMSR).

Measure PMD CamCube ToF/RGB endoscope

LR data SSR MSR AMSR LR data SSR MSR AMSR

Qsnr 17.9 ± 0.86 21.2 ± 1.21 21.5 ± 1.11 21.6 ± 1.08 7.20 ± 2.76 10.6 ± 1.94 10.7 ± 2.30 10.9 ± 1.99

Qedge 3.85 ± 0.85 4.72 ± 1.02 6.71 ± 1.48 6.75 ± 1.55 1.89 ± 0.37 2.49 ± 0.76 2.87 ± 1.32 2.96 ± 1.66

(a) RGB image (b) LR range (c) SSR (d) MSR (e) AMSR

Figure 14: Results obtained from the surface of a porcine liver measured with a PMD CamCube 3 and a Grasshopper2 camera
in a stereo setup for open surgery (magnification s = 4, K = 31 frames): RGB data (a) fused with LR range data (b) and the
results obtained from the SSR (c), the MSR (d) and the AMSR approach (e) are shown in the top row. See the bottom row
for a visual comparison of the evaluated methods in terms of noise reduction and edge reconstruction in a region of interest.

presented in Sect. 3.1 was utilized for sensor fusion.
The endoscope was shifted and tools were slightly
moved during acquisition to simulate movements of
the surgeon. We used the same parameter setting
as for synthetic data described in Sect. 6.1.1.

Super-resolution was performed for K = 31
frames and magnification s = 4. A comparison of
the different methods is given in Fig. 15. Please see
the improved reconstruction of endoscopic tools in
the outcome of MSR barely visible in raw data and
not accurately recovered by the SSR method. Ad-
ditionally, in case of AMSR we observed enhanced
edge reconstruction for these objects. For the asso-
ciated 3-D meshes please see Fig. 16.

Similarly to our open surgery setup, we care-
fully selected four image regions containing flat sur-
faces and four regions containing sharp edges per
dataset using nine ex-vivo datasets. The quanti-
tative measures to assess noise reduction and edge
reconstruction are reported in Tab. 2. As in our

open surgery setup, super-resolution achieved a
substantial enhancement of Qsnr compared to LR
range data, whereas the different super-resolution
approaches achieved similar results. Moreover, the
proposed multi-sensor approaches, enhanced the
edge reconstruction as quantified by Qedge. The
most accurate edge reconstruction was achieved by
the proposed AMSR algorithm, where we obtained
Qedge = 2.96± 1.66.

The runtime for SSR to obtain one super-resolved
image was ≈ 20 s. For the same setup, the MSR
approach took ≈ 220 s and the second optimization
stage to of the AMSR approach took ≈ 40 s.

7. Discussion

We evaluated our proposed framework without
(MSR) and with adaptive regularization (AMSR)
for synthetic images as well as ex-vivo data.
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(a) RGB (b) LR range (c) SSR (d) MSR (e) AMSR

Figure 15: Results obtained from a porcine liver (first row) and lung (third row) acquired with a 3-D ToF/RGB endoscope in
our ex-vivo experiments (magnification s = 4, K = 31 frames): RGB data, LR range data and the outcomes of single-sensor
(SSR), multi-sensor (MSR) as well as adaptive multi-sensor super-resolution (AMSR) are shown in the first and third row,
respectively. See the second and fourth row for visual comparison in a region of interest.

7.1. Comparison to Single-Sensor Approach
Our experimental evaluation compared our

multi-sensor framwork to super-resolution that ex-
ploits only range data. First, quantitative results
summarized in Fig. 8 indicate increased accuracy of
the proposed MSR approach compared to SSR. Op-
tical flow estimation on photometric data provides
accurate displacement fields for super-resolution,
whereas SSR is susceptible to misregistration. In
particular, improvements by our method are no-
tably for higher magnification (s = 4), where the
accuracy of motion estimation is a major limita-
tion of super-resolution performance. In addition
to accurate motion estimation, adaptive regulariza-
tion enhances edge reconstruction compared to reg-
ularization with uniform weights as shown in Fig. 5.
The benefit of this extension is demonstrated by
improved PSNR and SSIM measures summarized

in Fig. 8. In particular, improvements compared to
the MSR approach are notably for higher magni-
fication factors (s = 4). However, since this part
of our framework enhances edges and does not af-
fect flat areas, quantitative improvements in terms
of PSNR and SSIM are minor compared to the dif-
ferences between SSR and MSR. Due to a limited
sample size and correlations between the observa-
tions, differences between MSR and AMSR are not
statistically significant.

The proposed range correction scheme employed
in our framework is essential to obtain unbiased
range data in presence of general 3-D camera mo-
tion. As shown in Fig. 9, range correction becomes
crucial for sequences with higher amount of out-of-
plane motion (sequences S5 - S12), while there is
no benefit in the absence of out-of-plane motion.
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Figure 16: 3-D meshes rendered for the 3-D endoscope (left column) and the PMD CamCube (right column). First and third
row: color coded texture for LR data and super-resolved data obtained from AMSR. Blue denoting values close to the sensor
and red denoting values further away. Second and fourth row: photometric information used as overlay.

7.2. Robustness of our Framework

We also demonstrated the robustness of our
framework under challenging and more realistic
situations for image-guided surgery including de-
graded quality of photometric data as well as the
uncertainty of sensor fusion and motion estimation.

Even if our framework relies on high-resolution
photometric data, the proposed motion estimation
scheme is still accurate for decreased spatial res-
olutions. As shown in Fig. 10, the proposed MSR
approach outperforms SSR. The AMSR approach is
more sensitive due to decreased robustness of edge
detection on photometric data of low spatial resolu-

tion. Nonetheless, this is only severe for low spatial
resolutions (Scale < 0.6, 384×288 px) that are con-
siderably lower than in common hybrid RI setups
as investigated in our work.

Results shown in Fig. 11 also demonstrate robust-
ness of our framework in presence of specular re-
flections, which is a common issue in image-guided
surgery. In case of more severe disturbances, e. g.
smoke or highly dynamic scenes with non-rigid de-
formations, our approach may be susceptible to
misregistration in individual frames. However, an
appropriate outlier detection (Zhao and Sawhney,
2002; Köhler et al., 2014) may extend the proposed
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motion estimation scheme. Please note that our
method is also able to recover from failure due to
the underlying sliding window processing.

In terms of sensor fusion uncertainty, MSR is ro-
bust with respect to misalignments between range
and photometric data as shown in Fig. 12. Simi-
larly to related guided upsampling techniques (Kopf
et al., 2007; He et al., 2010), AMSR is more sen-
sitive since discontinuities in both modalities are
no longer aligned. However, this only appears for
severe misalignments that are avoided by accurate
system calibration (Haase et al., 2013a).

An explicit evaluation of the uncertainty of esti-
mated photometric displacements demonstrates the
robustness of our framework in terms of motion esti-
mation. As shown in Fig. 13, MSR and AMSR out-
performs the SSR approach even for displacements
fields affected by severe errors. This is essential for
practical applications, where optical flow displace-
ments in texture-less regions are unreliable.

7.3. Application to Image-Guided Surgery

We investigated our framework for minimally in-
vasive and open surgery on ex-vivo data. Here,
one additional issue is the presence of systematic,
hardware dependent errors (Kolb et al., 2010) af-
fecting LR range data. For SSR working solely
on range data, this means an additional handicap
especially for motion estimation. Our framework
is more robust since motion estimation performed
on high-quality photometric data is insensitive to
these errors. In terms of 3-D endoscopy, this is visi-
ble by the improved reconstruction of endoscopic
tools as shown in Fig. 15, which are barely visi-
ble in raw data and not accurately reconstructed
by SSR. In particular, the most accurate recon-
struction of edges in range data was obtained by
AMSR utilizing adaptive regularization. For our
stereo vision setup, we utilize a range sensor of
higher spatial resolution. The proposed MSR and
AMSR approaches substantially improve surface re-
construction as demonstrated in Fig. 14, while SSR
suffers from blurred edges due to misregistrations.
In this setup, the benefit gained by AMSR com-
pared to MSR is smaller since surfaces are typically
more smooth and thus edges cannot be exploited
by adaptive regularization. Nevertheless, benefits
in terms of edge reconstruction compared to SSR
are noticeable.

The blind SNR estimate Qsnr provides a quanti-
tative measure to assess noise reduction compared

to LR range data. The improved Qsnr measure indi-
cates an substantially enhanced surface reconstruc-
tion by means of super-resolution. This appears for
3-D endoscopy as well as for open surgery system,
while in both setups the proposed AMSR method
achieves the best results. Similarly, edge recon-
struction can be quantitatively assessed by Qedge.
This measure demonstrates that our multi-sensor
framework outperforms SSR, which is affected by
blurring caused by inaccurate motion estimation.
Considering all datasets used in our experiments,
the most accurate edge reconstruction is achieved
by the AMSR approach due to the underlying adap-
tive regularization scheme. This is an essential
property to facilitate an automatic segmentation or
registration based on super-resolved range data.

In terms of runtime, our experimental implemen-
tation does not enable real-time super-resolution
limiting its application. However, recently it has
been shown that the core of this framework includ-
ing non-linear optimization can be considerably ac-
celerated using the graphics processing unit (GPU)
to enable real-time applications (Wetzl et al., 2013).

8. Conclusion and Future Work

This paper presents a multi-sensor super-
resolution framework for hybrid imaging to super-
resolve LR data by exploiting additional guidance
images. In our work, this concept is applied in RI
to enhance range images guided by complementary
photometric data. We utilize sensor fusion to tackle
motion estimation and regularization as essential is-
sues towards robust super-resolution. The proposed
method is applicable for hybrid 3-D endoscopy and
image guidance in open surgery to overcome the
poor resolution of range sensors as major limitation
for clinical applications. Our multi-sensor approach
achieves substantial image quality improvement in
terms of spatial resolution as well as SNR and out-
performs conventional single-sensor methods.

Future work will focus on the evaluation of our
method for various image analysis tasks in image-
guided surgery. In order to facilitate real-time ap-
plications, future work has to consider an accelera-
tion of our approach, e. g. by means of GPU pro-
cessing. Another issue often ignored in related work
on range super-resolution is the modeling of system-
atic, sensor-specific errors. Here, the integration of
correction schemes proposed e. g. by Lindner et al.
(2010) or Reynolds et al. (2011) might further im-
prove our super-resolution framework.
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