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Abstract. A reduction of the radiation dose in computed tomography
typically leads to more noise in the acquired projections. Here filtering
methods can help to reduce the noise level and preserve the diagnos-
tic value of the low-dose images. In this work, six variants of Gaussian
and bilateral filters are applied in both projection and reconstruction
domain. Our comparison of noise reduction and image resolution shows
that 2D and 3D bilateral filtering in the projection domain can reduce
the noise level, but must be applied carefully to avoid streaking arti-
facts. By smoothing homogeneous regions while preserving sharp edges,
the 3D bilateral filter applied in the reconstruction domain yielded the
best results in terms of noise reduction and image sharpness.

1 Introduction

In cone beam computed tomography (CBCT), x-rays are used to acquire pro-
jection images of patient anatomies. A general goal in CBCT is to reduce the
radiation dose while preserving the diagnostic value of the images. However, a
low radiation dose typically leads to higher noise level in the reconstructions. In
clinical practice reconstruction filter kernels are used that incorporate low-pass
filters into the ramp filtering step during image reconstruction. This process is
similar to Gaussian filtering, as the filtering operations are by definition linear
and are therefore not able to preserve image resolution properly.

Non-linear filtering methods have been proposed that aim to keep sharpness
and resolution as constant as possible while decreasing noise in homogeneous
areas. In analytic reconstruction, adaptive weighting of the projection data can
be used prior to reconstruction to reduce noise [1,2]. A different approach is
to apply noise filtering after reconstructing the 3D object, e.g. by bilateral or
wavelet-based filtering [3,4]. Less work has been done on non-linear filtering in
the projection domain. Manduca et al. proposed to use an adaptive 2D bilateral
filter on the projection images [5]. Further, 2D [6] as well as 3D [7] anisotropic
filtering was applied in the projection domain, where the latter uses the view
angles of a circular CBCT trajectory as a third dimension.

In this work, we also investigate a 3D bilateral filter in the projection do-
main along with convolution-based and non-linear, edge-preserving noise filtering
methods on projections and reconstructions. Through comparison of all methods
we identify which domain is best suited for the individual filtering approach.
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2 Materials and Methods

2.1 Filtering Methods

In total, we evaluated six variants of 2D and 3D Gaussian and bilateral filtering.
The Gaussian filter is a simple convolution of the input image with a Gaus-
sian function used to reduce image noise and smooth edges. The filtered image
function f̂ is given by the convolution function

f̂(x, σg) =
∑
µ∈Ω

f(µ) · c(x,µ, σg)

c(x,µ, σg) =
1√

(2πσg)d
exp

(
− 1

2σ2
g

(x− µ)T(x− µ)

)
, (1)

where x is the geometric position in the image, Ω is the set that defines the neigh-
borhood of x and σg is the spherical standard deviation of the d-dimensional
Gaussian filter kernel. An advantage of Gaussian filters is that they can be ap-
plied by a fast convolution, however they are also known to blur edge information.

We also used the non-linear bilateral filter [3], which combines the smoothing
of a Gaussian with an edge-preserving component by adjusting the filter kernel
based on the local intensities of the image. The filtered image f̃ is computed by

f̃(x, σg, σp) =
1

k(x, σp)

∑
µ∈Ω

f(x) · c(x,µ, σg) · s(f(x), f(µ), σp)

s(f(x), f(µ), σp) = exp

(
− 1

2σ2
p

(f(x) − f(µ))2
)

, (2)

where σp is the standard deviation used for the photometric distance. The
kernel function is now given by c(x,µ, σg) · s(f(x), f(µ), σp), hence the normal-
ization factor k(x, σp) is formed by the sum of all kernel values. If the intensity
difference between f(x) and f(µ) becomes high, e.g. due to an edge, the weight
for f(µ) becomes low which prevents edges from being smoothed out.

In the projection domain, Gaussian (GP-2D) and bilateral filtering (BP-2D)
were applied to all 2D projection images. To further reduce noise we also applied
3D Gaussian (GP-3D) and bilateral filtering (BP-3D) on the complete stack of
projections. Note that in this case the third dimension refers to the view angle, as
we aim to incorporate information from neighboring projections. Finally, these
measurements were compared to 3D Gaussian (GV-3D) and 3D bilateral filtering
(BV-3D) applied as pure post-processing on the volume which was reconstructed
from the noisy projections.

2.2 Data and Setup

To obtain the same projection data with different noise levels, we simulated
an CBCT scan using the Forbild head phantom1. The focal length was set to

1 http://www.imp.uni-erlangen.de/forbild
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1200mm and the phantom was centered at the rotation center at a distance of
600mm to the x-ray source. The detector size was set to 640x480 pixels with
an isotropic pixel size of 1.2mm. We simulated a circular trajectory around the
z-axis, acquiring a short-scan with 248 projections and an angular increment
of 0.869◦. For noise simulation a monochromatic absorption model was used,
releasing 50 000 photons with an energy of 80keV for simulating a moderate
noise level and 30 000 photons with an energy of 50keV for an increased noise
level. As ground truth we also generated a 3D volume of the Forbild phantom
with a resolution of 1024x1024x1024 voxels and an isotropic voxel size of 0.25mm.

The FDK method was used for reconstruction [8]. We applied a Ram-Lak
filter without window function to ensure that the resolution is not influenced by
the ramp-filtering step. Noise filtering on the projections was conducted at the
beginning, filtering on the reconstruction was done at the end of the pipeline.

To quantify the noise level, we calculated the standard deviation σsd inside
a box shaped homogeneous region with a side length of 16mm. The central
section of the box is depicted in Fig. 1. For measuring the residual resolution
of the filtered images, we computed the modulation transfer function (MTF).
Therefore, the mean of 150 line profiles was taken along the inner edge of the scull
bone as shown in Fig. 1 to minimize the influence of streak and noise artifacts.
Then the MTF is calculated by the Fourier transform of the derivative of the
mean line profile. The achieved resolution was determined by the frequency that
corresponds to a ten percent residual of the magnitude spectrum’s maximum. In
order to evaluate the filtering methods’ performance w.r.t. their parameters, we
used a grid search approach where the upper and lower bounds of the parameter
range have been adjusted heuristically.

3 Results

In Fig. 1 and Fig. 2, the reconstructions are shown for the 80keV and the 50keV
datasets, respectively. The residual noise σsd was fixed as denoted in Table 1.
In both datasets, the BV-3D produces the best results with the highest resolu-
tion. The BP-2D gives the sharpest results of the projection domain approaches,
closely followed by BP-3D. All Gaussian methods show a reduced sharpness com-
pared to bilateral filtering. However, the BP-3D and the BP-2D reveal increased
streaking artifacts especially in the 50keV dataset. Fig. 3 and Fig. 4 compare the
achieved MTF values w.r.t. the measured noise level σsd. A high σp degenerates
the bilateral filter to a Gaussian filter as depicted in Fig. 3a. In Fig. 3b, we can

Table 1. Resolution measured at 10% MTF for a fixed noise level σsd. Given an
isotropic voxel size of 0.25mm, the theoretical maximum is given by 10 lp/cm.

10% MTF in lp/cm GP-2D GP-3D BP-2D BP-3D GV-3D BV-3D

80keV dataset (σsd = 0.01) 4.81 4.96 5.88 5.60 4.46 6.79

50keV dataset (σsd = 0.07) 5.01 5.08 6.11 5.95 4.81 7.34
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(a) Ground Truth (b) GP-2D (c) GP-3D (d) GV-3D

(e) Unfiltered (f) BP-2D (g) BP-3D (h) BV-3D

Fig. 1. Filtering methods with σsd = 0.01 on the 80keV dataset. The box in (a) depicts
a section of the homogeneous region where σsd was calculated. The colored lines indicate
the line profiles used for the MTF. Visualization window set to [0.10, 0.52] cm2/g.

see that the Gaussian methods perform similarly well, yet, the projection based
methods show a slightly higher MTF value. Fig. 4 displays the MTF results for
bilateral filtering methods.

By decreasing σp, results yield a higher resolution until a turning point, at
which resolution as well as noise reduction do not vary anymore. Quantitative
MTF measurements support the visual impressions and are given in Table 1.

4 Discussion

In this work, we compared Gaussian and bilateral filtering methods in projection
and reconstruction domain. From Fig. 3b we can see that the projection-based
Gaussian methods slightly exceed the GV-3D methods in terms of resolution,
which can be due to the high-pass effect of the subsequent ramp filtering step.
Nevertheless, BP-2D and BP-3D appear sharper than GP-2D and GP-3D. How-
ever, BP-3D reveals streak artifacts especially at sharp structures (cf. Fig. 1 and
Fig. 2), which might be caused by incorporating non-correct information of the
neighboring projections. BP-2D is also affected by less dominant streak artifacts,
whereas BV-3D showed good noise suppression while preserving sharp edges.

In the 50keV dataset all images reveal streaking artifacts caused by the high
amount of noise. In case of BP-2D and BP-3D the smooth areas in homogeneous
regions without streaks indicate that the photometric kernel was not wide enough
to capture high-noise peaks in the projection domain. While all projection-based
filters yield blurred edges, 3D filtering on the reconstructions preserves structure
well but also shows slightly increased streaking compared to the GV-3D method.
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(a) Ground Truth (b) GP-2D (c) GP-3D (d) GV-3D

(e) Unfiltered (f) BP-2D (g) BP-3D (h) BV-3D

Fig. 2. Filtering methods with σsd = 0.07 on the 50keV dataset. Visualization window
set to [0.20, 0.80] cm2/g.
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(a) Gaussian vs. bilateral filtering
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Fig. 3. Comparison of resolution and noise level of Gaussian and bilateral filtering on
the 80keV dataset.

Fig. 4 compares several variants of bilateral filtering with different photomet-
ric distances. Some methods achieve a greater MTF than the unfiltered image
which seems incorrect. This can be explained as we use a measure that is only
suited for linear methods on non-linear methods.

We have seen that bilateral filtering in the reconstruction domain gives
promising results. Also projection-based filtering has shown its ability to pre-
serve edges, however these methods should be applied carefully to avoid irreg-
ular streaking artifacts. For future work, we plan to combine 2D and 3D noise
filtering in projection and reconstruction domain. Further, we plan to confirm
our results by using a model-observer evaluation pipeline.
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Fig. 4. Bilateral filtering with different σp on projections and reconstructions.
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