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Abstract. In this paper, we present a novel projection-based novel noise
reduction method for photon counting energy resolving detectors in Spec-
tral Computed Tomography (CT) imaging. In order to denoise the pro-
jection data, a guidance image from all energy channels is computed,
which employs a variant of the joint bilateral filter to denoise each en-
ergy bin individually. The method is evaluated by a simulation study
of cone beam CT data. We achieve a reduction of noise in individual
channels by 80% while at the same time preserving edges and structures
well in the results, which indicate that the methods are applicable to
clinical practice.

1 Introduction

Polychromatic X-ray sources are commonly employed for medical Computed

Tomography (CT). However, most of them are processed as mono-energetic CT

measurements by conventional CT detectors which can not take advantage of the

energy information in the X-ray beam. In recent years, development of Spectral

Computed Tomography (SCT), which plays a vital role in Quantitative Com-

puted Tomography (QCT) [1], has been accelerated by many technologies in both

hardware and software. For QCT-reconstruction, spectral input data requires

multiple measurements with different spectral characteristics of each projection

bin. SCT facilitates the quantitative measurement of material properties. It

has broad potential for applications in the preclinical and the clinical field, al-

lowing for visualization of bone and plaque, measurement of blood volume, or

quantification of contrast agent concentrations.

Unfortunately, by splitting the acquired photons into different energy bins,

each energy channel suffers from a low signal-to-noise ratio leading to noisy

projection images, especially in the low energy portion of the energy spectum.

Therefore an appropriate noise reduction method is required to obtain reliable
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image quality in clinical applications. Iterative reconstruction methods have

shown superior advantages in noise reduction, but suffer from high complexity,

which is a shortcoming in practical applications, especially in interventional med-

ical image processing cases. It is worth mentioning that the noise from photon-

counting energy-resolving detectors can be modeled by using Poisson statistics

accurately and easily, which is a great advantage in projection based denoising

processing. In light of this, besides post-processing approaches on reconstructed

images, filtering in pre-processing on projection data is also presented by sev-

eral studies, such as using noise adaptive filter kernels [2, 3] and edge preserving

filters [4, 5].

In this paper, we present a novel contribution to bring this new technol-

ogy closer to clinical practice: improved noise reduction using non-linear tech-

niques in fluoroscopic imaging. Below we give a short review of X-ray absorption

physics, then describe our denoising approach. Subsequently, simulated results

are presented.

2 Materials and methods

2.1 Polychromatic X-ray absorption

Traditional X-ray detectors measure the integral of the incident X-ray spectrum

at each pixel

I =

E∑
i=1

NiLie
−

∑M
j=1 μij lj (1)

where E denotes the number of considered energy levels, Ni the number of

emitted photons at energy level Li, M the number of considered materials, μij

the energy and material dependent X-ray absorption, and lj the path length in

the respective material j. In this measurement, each photon is weighted with its

energy, which results in a weighted sum of Poisson distributed random variables.

Photon-counting detectors are able to detect each photon individually. Thus,

the integral from (1) simplifies to

Fig. 1. Binning of a X-ray spectrum into 3 bins.



Denoising Photon-Counting Detectors 139

I =

E∑
i=1

Nie
−

∑M
j=1 μij lj (2)

In the energy-resolving case, we get more than a single measurement per pixel

(Fig. 1). We differentiate the photons into b = 1 . . . B different energy channels

or bins

Ib =

leb∑
i=lsb

Nie
−

∑M
j=1 μij lj (3)

where lsb and leb are the respective start and end indices of the considered en-

ergies in bin b. The energy-selective channels suffer from more noise than the

measurements over the complete spectrum, because number of photons corre-

sponding to each bin is is reduced from I0 =
∑E−1

i=0 Ni to I0b =
∑leb

i=lsb
Ni and

the signal-to-noise ratio in the Poisson process in proportional to

√
I0 and

√
I0b ,

respectively.

2.2 Noise reduction with joint bilateral filtering

To obtain an image with distinct structures and reduced noise, we add the pho-

tons of all energy-selective projection images Ib to recover the projection image

I covering the full energy spectrum

I =

B∑
b=1

Ib (4)

Note that this procedure is optimal in terms of weighting of the noise variances.

We use I as a guidance image for a joint bilateral filter (JBF) [6] to compute

energy-selective projection images I ′b with reduced noise but preserved structures

I ′b(x, y) =
1

c(x, y)

∑
i,j

gs(x, i, y, j)gI(x, i, y, j)Ib(x, y) (5)

c(x, y) =
∑
i,j

gs(x, i, y, j)gI(x, i, y, j) (6)

gs(x, i, y, j) = e−
(x−i)2+(y−j)2

2σs (7)

gI(x, i, y, j) = e
−

(I(x,y)−I(i,j))2

2σI (8)

where gs(x, i, y, j) is the spatial kernel controlled by σs and gI(x, i, y, j) is the

range kernel controlled by σI and the guidance image I.
The range kernel is configured such that a certain contrast difference D is

preserved
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D = I1 − I2 (9)

In case of a monochromatic angiography image, D can be defined using

I1 = I0e−μbglbg
and I2 = I0e−(μbglbg)−(μvlv)

. The X-ray absorption μbg
and

the path length lbg correspond to the anatomic background, while μv
and lv de-

fine absorption and path length corresponding to a contrast agent filled vessel.

Insertion into (9) yields

D = I1 − I2 = I0e−μbglbg − I0e−(μbglbg)−(μvlv)
= I1(1− e−μvlv

) = I1z (10)

where the parameter z is only dependent on the vessel size and material. Note

that z can be conveniently computed as z = 1 − I2
I1
. This leads to a contour

adaptive definition of the bilateral filter with σI = Ī(x, y) · z, where Ī(x, y) is

the mean value of the guidance image in a local neighborhood.

Fig. 2. Line integral images with and without noise (top row) and after restoration
using JBF filtering (bottom row).
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2.3 Experimental setup

We simulated a set of fluoroscopic images using an append buffer based rendering

procedure [7] using XCAT [8]. An X-ray spectrum with the same half layer values

as a commercially available C-arm system is used. Projection size was simulated

with 620×480 pixels with a pixel size of 0.6×0.6mm. The peak-voltage was set to

90 kV. We applied a time current product of 2.5mAs, which is comparable to the

dose setting per projection in a clinical 3D scan. The projection was centered

around the heart to focus on the coronary arteries, which were filled with an

iodine-based contrast medium (comparable to Ultravist 370). Energy-dependent

X-ray absorption coefficients for elemental data and compounds such as bone

were obtained from the NIST database [9]. All methods were implemented in

the CONRAD framework [10] and will be made available as open source software.

3 Results

Fig. 2 displays the simulated images of the first energy channel with and without

noise. The relative root mean square error (rRMSE) that is normalized with

the maximal intensity in the noise-free image is reduced from 2.89% to 0.59%.

Note that the rRMSE was only evaluated at pixels that did not suffer from

photon starvation (excessive white noise) in the noisy image, while all pixels

were considered for the JBF denoised images.

4 Discussion

We presented a novel approach for noise reduction of energy-resolved projection

images. The idea of a contour-aware joint bilateral filtering to energy-resolving

detectors is applied in this study, which could reduce noise but well preserve

edges and structures. As shown in the result, denoising with JBF and contour-

aware JBF is very successful, which could reduce noise by 80% while at the same

time preserving edges and structures well. We will apply this method to realistic

data in the future work and explore potential clinical applications.
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