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Abstract—In this paper, we extracted appropriate image-based 
features from energy-resolved computed tomography images 
and incorporated these features in a machine learning material 
decomposition process to separate bone and contrast agent in pro-
jection domain. We performed various simulation experiments 
to investigate the performance of this new technique. Comparing 
the feature based approach to a polynomial method, the linear 
correlation of the Ultravist images to the ground truth in the noise 
and motion scenario increased from 0.49 to 0.89, the structural 
similarity index from 0.06 to 0.88 by using appropriate features 
, respectively. The results suggest that it is possible to decompose 
materials by using appropriate image-based features.

Index Terms—Material decomposition, Machine learning, Im-
age features, Projection-based

I. INTRODUCTION

Computed Tomography (CT) is a widely used X-ray imag-
ing technique as it allows the measurement of the human body
morphology in diagnostic medical imaging. The output of a
CT measurement and data reconstruction is typically a set of
images representing the X-ray attenuation characteristics of
the scanned patient. However, in practice polychromatic X-
ray sources are commonly employed for medical CT but most
of them are processed as mono-energetic CT measurements
by conventional CT detectors, which cannot take advantage of
the energy information in the X-ray beam.

Recently, energy-selective X-ray detectors are attracting
more research interests in Spectral CT development. Such
detectors split the polychromatic X-ray spectrum into several
energy bins as well as measure the X-ray attenuation of objects
in each energy bins separately. Moreover, they enable mate-
rial decompositon. Firschig et al. successfully distinguished
iodine-based contrast agent from all other materials using an
energy-selective detector [1]. Le and Molloi evaluated least
squares parameter estimation methods for material decompo-
sition with energy discriminating detectors[2]. Wang et al.
separated more than two types of materials simultaneously
by employing an energy-resolved photon-counting detector
with more than two energy windows [3]. Zimmerman and
Gilat-Schmidt investigated the use of artificial neural networks

for material decomposition and suggested the preliminary
experimental feasibility [4].

As an alternative to a linear model, any method that allows
the modelling of non-linear processes can be used to estimate
a function using machine learning [5]. On the other side,
local features, which are only small segments of the original
image, can differ very much from global features because
of changing neighborhoods. These features contain various
information and could serve as training features to build a
classifier. In this study, we extracted appropriate image-based
features from energy-resolved computed tomography images
and incorporate these features in a machine learning material
decomposition process to separate bone and contrast agent in
projection domain. We performed various simulation experi-
ments to investigate the performance of this new technique.
The results are evaluated using linear correlation and the
structural similarity index (SSIM) as quantitative metrics.

II. METHODS

The simulation studies are carried out in order to examine if
it is possible to do material decomposition in computed tomog-
raphy using imaged-based features incorporated in machine
learning approaches. All methods are implemented in Java-
based framework CONRAD [6] and will be made available as
open source software.

A. Data generation

The data for the projection images generation rely on the
simulation of x-ray images [7]. An X-ray spectrum with the
same half layer values as a commercially available C-arm
system is used. As shown in Figure 1, we simulated two
different scenarios. The motion case includes one heart cycle
and the lung motion from full exhale to full inhale; the no-
motion case simulates a 200 degree vertical rotation around
the torso (short scan). Both projection sets are centered around
the heart to set focus on the costal arch and the coronary
arteries, which should be decomposed in the results. Energy-
dependent X-ray absorption coefficients for elemental data
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and compounds such as bone were obtained from the NIST
database[8]. The coronary arteries are filled with an iodine-
based contrast medium that has a similar density as the Ultra-
vist370 contrast agent. The projection set was simulated with
620x480 pixels with a pixel size of 0.4x0.4 mm. The source-to-
patient distance 750 mm while the source-to-detector distance
1200 mm. In the case of 200 degree vertical rotation around
the torso, we had an average angular increment of 1.5 per
projection. A photon-counting energy-resolving detector with
three energy bins was used in this simulation. The energy bins
were equally spaced between 10 and 100 keV with a spectral
bandwidth of 30 keV. This means channel 1 ranged from 10 to
40 keV, channel 2 from 40 to 70 keV and channel 3 from 70
to 100 keV. The simulated cross-talk among the three energy
bins was 3 keV. The peakvoltage was set to 90 kV and the
time current product to 2.5 mAs, which is comparable to the
dose setting per projection in a clinical 3D scan. For every set
of projections noisy and noiseless images were created.

Figure 1. Illustration of the simulated projection images. Top row: The
200 degree vertical rotation projection (left) as well as the heart cycle and
lung motion projection (right). Bottom row: two materials that need to be
decomposed, Ultravist 370 and bone.

B. Image-based Features extraction

Energy-selective photo-counting detectors yield CT projec-
tion data with multiple image channels. Therefore, the pixel
intensity values of each image channel can be used as training
features to build the classifiers [1]. This results in three features
per pixel in this study. The second approach is polynomial
combinations of the energy channels as features for learning
the classifiers, which proposed by Maass et al. [9]. Non-
linear processes are also included in the feature set. Local
image features could serve as training features, therefore we
employed the local gray level co-occurrence matrix (GLCM),
local histogram, vesselness and the ImageJ Trainable Weka
segmentation [10] to extract image features for training clas-
sifiers. All features were used for pixel-based analysis of the
images in the machine learning material decomposition pro-
cess. For GLCM and histogram feature extractions we tested
patch sizes varing from 3x3 to 9x9, 15x15, 25x25 and 35x35.

The vesselness measure is used for identification of vascular
structures in angiographic images, which could also be a useful
feature to differentiate bone and contrast agent injected into the
vessel. The ImageJ Trainable Weka segmentation includes a
huge amount of features. Therefore we narrowed the selection
of features to only six features: Hessian, Lipschitz filter, Gabor
filter, Derivatives filter, Structure filter and Entropy.

C. Classification Methods

Three general classifiers from Weka were used: linear
regression, Reduced Error Pruning Tree (REPTree) and Boot-
strap Aggregating (Bagging) using REPTrees, were used in
this study.

D. Evaluation Methods

We used two basic approaches, linear correlation and SSIM
index measurement, to determine the similarity of the images
between the ground truth and the results for evaluation. To
investigate the performance of the proposed approaches, we
compared these approaches with the methods using the energy
channels of the CT images and polynomial combinations of
the energy channels as features for material decomposition,
which have proven to be successful in prior research.

III. RESULTS

We extracted a large number of features for different
classifier learning sets, which produced a huge amount of
results. In these results, the bagging classifier shows superior
performance than the other two classifiers, therefore we only
present the results with Bagging. Figure 2, 3, 4, 5 show the
prediction results for bone and contrast agent with respective
approaches in projection domain. The mean and standard
deviation of the linear correlation and SSIM between the
prediction results from the different material decomposition
approaches and the ground truth were calculated and presented
in Table I.

IV. DISCUSSION

We applied these approaches to the raw data of the pro-
jections without any arithmetic operations or filtering. The
utilization of energy-selective channels and their polynomial
combinations as features provided adequate results in dis-
tinguishing Ultravist contrast agent and bone from all other
materials. However, the new approaches using image-based
features for material decomposition achieved varying results
depending on the utilized features and classifiers. Although
prediction results from the GLCM and vesselness features
could separate the contrast agent from the other materials, had
problems in decomposing bone from the remaining materials
persisted. The material decomposition with histogram features
was a challenging task, because the difference between the
lowest and the highest gray value was too big. A further
investigation on the parameters of the histogram could lead
to better results, but even when the histogram was built with
the local minimum and maximum value of the used patch
the results did not improve significantly. For the trainable
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Figure 2. Decomposition results of the noiseless and no-motion scenario. Top row: Predicitons for Ultravist of the short scan image. Bottom row: Predicitons
for bone of the short scan image. All predicitions result from the 90 percent bagging classifier and the noiseless images.

Figure 3. Decomposition results of the noise and no-motion scenario. Top row: Predicitons for Ultravist of the short scan image. Bottom row: Predicitons
for bone of the short scan image. All predicitions result from the 90 percent bagging classifier and the noise images.

Image Material Channel Polynomial Weka
r SSIM r SSIM r SSIM

Heart and breathing motion
Bone noiseless 0.99 (0.00) 0.99 (0.00) 0.99 (0.00) 0.99 (0.00) 0.98 (0.00) 0.98 (0.00)

noise 0.94 (0.00) 0.94 (0.00) 0.92 (0.00) 0.92 (0.00) 0.98 (0.00) 0.98 (0.00)

Ultravist noiseless 0.79 (0.03) 0.32 (0.02) 0.82 (0.02) 0.41 (0.02) 0.89 (0.02) 0.87 (0.03)
noise 0.49 (0.05) 0.06 (0.01) 0.49 (0.05) 0.06 (0.01) 0.89 (0.02) 0.88 (0.02)

Short scan(no motion)
Bone noiseless 0.99 (0.00) 0.99 (0.00) 0.99 (0.00) 0.99 (0.00) 0.98 (0.01) 0.97 (0.01)

noise 0.95 (0.00) 0.95 (0.00) 0.95 (0.00) 0.95 (0.00) 0.95 (0.01) 0.95 (0.02)

Ultravist noiseless 0.71 (0.02) 0.21 (0.01) 0.75 (0.03) 0.29 (0.03) 0.82 (0.11) 0.47 (0.12)
noise 0.35 (0.02) 0.03 (0.00) 0.35 (0.22) 0.03 (0.00) 0.55 (0.10) 0.40 (0.08)

Table I
MEAN AND STANDARD DEVIATION (IN BRACKETS) OF THE LINEAR CORRELATION R AND SSIM FOR THE PREDICTION WITH THE 90 PERCENT BAGGING

CLASSIFIER.

Weka segmentation, the decomposition results were very good,
which means comparable or in some cases (i.e. the noise
and motion scenario) even better than the results from the
polynomial combination of the energy selective channels. The
reason why the trainable Weka segmentation features worked
better than the other proposed features was that a set of
selected image features is used. Compared with the classic
decomposing methods (i.e. energy channel and polynomial
combinations), the trainable Weka segmentation features are
robust against noise .

However, the results in this study are only based on simu-
lations. Furthermore, the extraction of the training data for the
classifiers is strongly dependent on the ground truth image. If

we test this new image-based feature material decomposition
approach with real data, the region for the ground truth
information must be chosen wisely, otherwise the material
decomposition results would vary a lot. We will study these
challenges further in the future.

V. CONCLUSION

We investigated the performance, applicability, appropriate-
ness of image-based feature material decomposition at projec-
tion domain for computer tomography. Comparing the feature
based approach to a polynomial method, the linear correlation
of the Ultravist images to the ground truth in the noise and
motion scenario increased from 0.49 to 4 0.89, the SSIM from
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Figure 4. Decomposition results of the noiseless and motion scenario. Top row: Predicitons for Ultravist of the heart cycle and lung motion image. Bottom
row: Predicitons for bone of the heart cycle and lung motion image. All predicitions result from the 90 percent bagging classifier and the noiseless images.

Figure 5. Decomposition results of the noise and motion scenario. Top row: Predicitons for Ultravist of the heart cycle and lung motion image. Bottom row:
Predicitons for bone of the heart cycle and lung motion image. All predicitions result from the 90 percent bagging classifier and the noise images.

0.06 to 0.88 by using appropriate features , respectively. The
simulations experiments show that an appropriate image-based
feature material decomposition process such as the trainable
Weka segmentation features could lead to pleasing results and
should encourage further investigations.
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