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Abstract. Fat quantification based on the multi-echo Dixon method is
gaining importance in clinical practice as it can match the accuracy of
spectroscopy but provides high spatial resolution. Accurate quantifica-
tion protocols, though, are limited to low SNR and suffer from a high
noise bias. As the clinically relevant water and fat components are esti-
mated by fitting a non-linear signal model to the data, the uncertainty is
further amplified. In this work, we first establish the low-rank property
and its locality assumptions for water-fat MRI and, consequently, pro-
pose a model-consistent but adaptive spectral denoising. A robust noise
estimation in combination with a risk-minimizing threshold adds to a
fully-automatic method. We demonstrate its capabilities on abdominal
fat quantification data from in-vivo experiments. The denoising reduces
the fit error on average by 37 % and the uncertainty of the fat fraction
by 58 % in comparison to the original data while being edge-preserving.
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1 Introduction

Tissue fat concentration is an established indicator for various disorders like
hepatic steatosis or fatty liver disease. Even though liver biopsy is invasive and
risk-involving, it is still widely used in clinical practice [1].

Recently, validated biomarkers, foremost the proton density fat fraction
(PDFF), could be obtained non-invasively by MR spectroscopy (MRS) and MRI
[2]. While the latter enables a larger coverage, it can only quantify the tissue fat
concentration accurately when confounding effects like T1 bias, R∗2 relaxation and
magnet imperfections are sufficiently mitigated [3]. As a consequence, clinical fat
quantification protocols based on MRI are limited in resolution and flip angle
as to reduce T1-bias and noise bias [4]. Also, a larger series of contrast images
(e.g. 6 echos) must be acquired to enable the estimation of iron as well and to
reduce the remaining confounding factors [5]. As this signal is used to determine
the clinically relevant biomarkers by a non-linear voxel-wise fit, further noise
amplification arises. Suppressing this noise—depending on breath-hold, resolu-
tion and flip angle parameters—by exploiting the shared information in the data
series is desirable. However, typical priors promoting similarities of intensity or
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gradient data cannot be enforced directly due to strong variations in contrast.
Yet, in multi-contrast imaging there is a spectral sparsity when the number of
modeled components is less than the acquired contrast images. Previously, this
sparsity motivated the use of singular value filtering [6] for multi-echo denoising,
assuming a low-rank (LR) signal. Advances in matrix completion [7] leveraged
LR regularization based on the nuclear norm for various applications. [8] showed
the benefit of local over global LR priors for dynamic MRI. Recently, extending
the unbiased risk estimator for singular value thresholding (SVT) enables risk-
minimizing denoising for a given noise estimate [9]. We adopt these concepts, and
first show that the LR property of multi-contrast images is well-justified for lo-
cal correlations of the signal, lending itself ideally for local processing. Then, the
noise level of the signal is robustly estimated from local estimates which feeds an
adaptive block-wise SVT. Our proposed method is validated both qualitatively
and quantitatively using in-vivo experiments.

2 Water-Fat Imaging

Water-fat separation and quantification is based on the known difference of spec-
tral properties between hydrogen nuclei bound in water and fat. An exact de-
termination requires multiple echos for estimating and correcting the phase evo-
lution Φ ∈ CN×E incorporating R∗2 relaxation, field inhomogeneities, gradient
delays and eddy currents. The relation between the spectral components of water
and fat and the e-th echo image w,f ,xe ∈ CN at time te is modeled as,

xe(j) = (w(j) + ctef(j)) eiΦ(j,e), j = 1 . . . N, e = 1 . . . E, (1)

for the j-th out of N voxels and E contrast images. A pre-calibrated multi-peak
fat spectrum is given by cte ∈ C while the phase effects are modeled with eiΦ(j,e).

Biomarker Estimation. The clinically relevant signals of water, fat and R∗2—
an indicator for increased iron deposits—are determined voxel-wise by a non-
linear fit of either the complex- or absolute-valued contrast images [10]. Then,
the fat fraction (PDFF), an important biomarker, is simply f(j)/(w(j) +f(j)).

Low-Rank Property. Signal models based on chemical shift encoding often
share the property that they yield series of images which are superpositions of
only a limited number of spectral components. For the explicit case of water-fat
imaging, the signal variation of a multi-echo series is a combination of water and
fat images. Thus, for a series of more than two contrasts there will be a spectral
sparsity. To identify this, we rewrite (1) and consider the series of contrasts as

x1(j)
x2(j)

...
xE(j)


︸ ︷︷ ︸
x(j)

=


eiΦ(j,1) 0 · · · 0

0 eiΦ(j,2) · · · 0
...

...
. . .

...
0 0 · · · eiΦ(j,E)


︸ ︷︷ ︸

DΦ(j)

·


1 ct1
1 ct2
...

...
1 ctE


︸ ︷︷ ︸

A

·
[
w(j)
f(j)

]
︸ ︷︷ ︸
ρ(j)

, (2)
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with the chemical shift composition A and diagonal matrix DΦ combining re-
laxation and other phase effects while ρ holds the signal of water and fat.

LetX ∈ CN×E denote the signal matrix containing all N voxels and E echos.
In order to exploit the spectral sparsity, we correlate small local image regions
with NP elements of all E contrasts in a so called Casorati matrix (NP × E),

BP (X) =

 (DΦ(p1)Aρ(p1))T

...
(DΦ(pNP )Aρ(pNP ))T

 , (3)

where BP : CN×E → CNP×E , (E � NP � N) denotes the reshape operator
and pi ∈ {1 . . . N} is the i-th voxel from the set of voxel indices P . Besides
being computationally tractable, small image regions are beneficial as we become
independent of the phase error map Φ which is expected to be rather smooth and,
thus, can be assumed to be locally constant [2]. Under this assumption, the rank
of this matrix is at most 2 and is in general restricted by the number of modeled
spectral components: rank(BP (X)) ≤ dim(ρ). The singular value distribution of
sufficiently small image patches confirms this assumption in practice (see Fig. 1).

Fig. 1: Low-rank property of multi-echo MRI: Local image patches extracted from all
echos yields matrices with low rank for sufficiently small patches. Note the different
tissues underlying each patch and their corresponding singular value distribution.

3 Proposed Method

As we have just established, the Casorati formulation for multi-contrast water-
fat MRI has a maximum rank of 2 in theory and, thus, lends itself for low-rank
denoising. To this end, we find a robust estimate for the noise in the whole image
domain and incorporate it into a block-wise low-rank denoising such that the
optimal regularization is data-driven. Finally, a weighted averaging of the results
from overlapping blocks further improves the robustness of the algorithm. We
will refer to this algorithm as Robust Locally Low-Rank (RLLR) denosing.
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3.1 Robust Noise Estimation

An accurate noise estimation is vital, as over- or under-estimation can render
the subsequent denoising useless, especially in low SNR applications. We assume

the acquired data X̂ to be affected by complex white noise W iid∼ NC(0, σ2
ε ) and

propose to combine local noise estimates from block-wise processing to a robust
estimate. W.l.o.g., the set of blocks Ω tiles the spatial domain in quadratic blocks
of length k as to implement a sliding window. Then we define the estimator as

σ̂ε =
median(σE(BP (X̂)) | P ∈ Ωn)

median(σE(M i) | i = 1 . . . NM )
, (4)

where σE(·) denotes the smallest singular value of its argument and Ωn ⊆ Ω is
a subset with every n-th block. Assuming that the lowest singular value is domi-
nated by noise for low-rank matrices, we obtain the noise standard deviation by
normalizing the median to that of random matrices sampled from the unit nor-
mal distribution NC(0, 1). For the stability of the median, NM random matrices
are generated. This needs to be computed only once per block configuration.

3.2 Adaptive Block-Wise SVT

We seek to remove the noise W in the acquired signal X̂ to obtain the pure
signal X = X̂ −W by processing the image domain in small partitions Ω.
For blocks of locally correlated regions, the low rank property can be exploited.
Rank optimization, however, is known to be NP-hard; a feasible alternative is
needed. Instead of imposing hard constraints, e.g., rank-r approximation which
sets all but r singular values to zero, we prefer to minimize the sum of singular
values—known as the nuclear norm—for two reasons: 1) it is more robust in
the sense that it will not fail when the exact rank property is violated or the
modeled spectrum is enlarged and 2) as the tightest convex relaxation of the
rank optimization, it can be solved efficiently [7]. Accordingly, the nuclear norm
optimization for individual patches P in an unconstrained formulation reads

min
1

2
‖BP (X̂)− BP (X)‖2F + λ‖BP (X)‖∗ , λ ≥ 0, (5)

which is the proximal operator of the nuclear norm ‖ · ‖∗, for which the fol-
lowing closed-form solution based on the singular value decomposition exists:
SVT(BP (X̂), λ) = U diag((σ − λ)+)V T ; (t)+ is evaluated per component as
max(t, 0), which performs soft-thresholding on the singular values such that val-
ues smaller than the threshold become zero while larger ones are drawn towards
zero. Then, a denoised signal for the whole image can be obtained by applying
SVT to each block and averaging the contribution per voxel [9]. Similarly, we
define the weighted and block-adaptive denoising with individual thresholds λP ,

X = W ◦
∑
P∈Ω
B†P (r−1

p SVT(BP (X̂), λP )), W =
∑
P∈Ω

(B†P (rPJP )) (6)
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where B†P is the adjoint Casorati transform; W is the normalization matrix due
to overlapping as well as weighted patches and JP is NP × E matrix of ones.
Sparser, less noisy patches are promoted due to a reciprocal rank-weighting
rP = max(1, ‖σP ‖0) while an overlap of patches ensures data consistency [11].

The singular value threshold is critical and should be chosen robustly based
on the global noise level. A noise-dependent, though fixed threshold might not be
adequate for all variations in the data, i.e. the actual singular value distribution,
so a block-dependent threshold may be preferred. Consequently, we make use of
the SURE formulation derived by Candès et al. that yields the risk involved in
SVT with a certain λ solely based on the data and its noise variance [9]. We pro-
pose to use adaptive risk-minimizing thresholds λP = argminλ SURE(BP (X̂), λ,
σ̂2
ε ) for every image block which can either be found via grid search or approxi-

mately as this function is piece-wise smooth.

4 Experiments and Results

We performed various experiments to evaluate the noise reduction of contrast
images from water-fat MRI and the effects on the subsequent non-linear estima-
tion of the clinically relevant biomarker PDFF and R∗2. In addition, we quantified
the fit error—introduced by the voxel-wise fitting—as further measure:

Rfit(j) =

∑
e (x̂e(j)− xe(j))2∑

e x̂e(j)
2

. (7)

Method Parameters. Throughout this study we used quadratic image patches
of length k = 5, i.e. Casorati matrices of size 25(NP )× 6(E) as sliding windows
with stride δB = 1 for all partitions of the 3-D data. Every 10-th patch was
used for noise estimation. Note, the method does not require parameter tuning
and is generally applicable as long as sparsity assumptions hold, i.e. NP � E.
The patch length could be chosen resolution dependent (∼ 1 cm), but a larger
support will increase spatial smoothing while a smaller support lacks statistics
and invalidates NP � E. On standard hardware (4-core), the C++ prototype
implementation runs in under a minute for the data used here.
In-vivo Data. We used data from abdominal MRI examinations of 3 volun-
teers on a 3 T MR system (MAGNETOM Skyra, Siemens Healthcare, Erlangen,
Germany). A prototype 3-D gradient multi-echo acquisition (VIBE) with PAT
acceleration 4 was used in combination with the prototype of a multi-step mag-
nitude fitting technique [10]. Parameters included TR = 16.6 ms, TEs = 1.06,
2.20, 3.69, 6.15, 9.84, 14.76 ms with flip angle = 2◦ and FoV of 420 × 346 ×
60 mm3 and matrix 160 × 132 × 60.

Fig. 2 shows an exemplary contrast image of a 6-echo liver examination (row
1). Comparing the original and the denoised image indicates that a constant
noise bias was removed while preserving edge sharpness (left to right), which is
confirmed by the difference image and by a rise in SNR1 from 10.3 to 12.6.

1 SNR is averaged over 3 smooth liver ROIs as, ∅(∅(|x|)/σ(|x|)).
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The impact of the denoising on the biomarkers and the fit error which are ob-
tained through fitting the echo series to the non-linear signal model are compared
in row 2 & 3 of Fig. 2. PDFF, R∗2 and Rfit are shown left-to-right. The PDFF us-
ing the original data shows highly varying noise, possibly amplified through the
fitting and the fraction calculation (SNR=3.1). The noise bias on the R∗2 map is
less severe but still prominent (SNR=6.0). The fit error map indicates larger er-
rors in the central FoV, which supports that a low SNR decreases the accuracy of
the parameter estimation. The denoising, in consequence, strongly stabilizes the
PDFF calculation as the fat concentration in the liver is far more homogeneous

Fig. 2: Row 1: Third contrast image of a 6-echo liver fat examination with low SNR.
Original (SNR=10.3), denoised (SNR=12.6) and their difference image (20× scaled)
are shown from left to right. A strong noise bias could be removed while details are
enhanced, e.g., blood vessels in the liver.
Row 2 & 3: Impact of the denoising on the biomarker estimation: PDFF, R∗2 and
associated fit error (left to right) using original and denoised data (bottom). Noise
levels are considerably lower in PDFF (SNR=9.4, before 3.1) and R∗2 (SNR=8.4, before
6.0) maps and fit error is reduced using denoised data.
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(a) 0.5 σ̂ε (b) 2 σ̂ε (c) Rank-2 approximation

Fig. 3: Noise adaptive technique: automatically obtained noise estimate σ̂ε was altered
to demonstrate under-/over regularization for inaccurate estimates (a), (b). A Rank-2
approximation yields blurred edges while our method is edge-preserving (see Fig. 2).
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Fig. 4: Mean and standard deviation (SD) of the PDFF, R∗2 and the fit error Rfit for
two liver ROIs of three volunteers. The SD is reduced consistently for all biomarkers,
and the mean of the fit error. On average, the denoising reduced the fit error by 37 %
and eliminated uncertainty (SD) of the PDFF by 58 % and that of R∗2 by 24 %.

(SNR=9.4). A milder smoothing is seen for R∗2, though edges, e.g. blood vessels,
are preserved (SNR=8.4). The fit error shows a notable decrease in regions with
low signal strength, i.e. the liver and spleen. Fig. 3 demonstrates the sensitivity
of the method to the noise level based on the PDFF map. When the automat-
ically obtained noise estimate is altered, or inaccurately estimated, the method
either fails to remove noise or blurs over edges. Similarly, a rank-2 approximation
overshoots and removes detail. By contrast, our automatic threshold seems both
edge-preserving and adaptive.

Fig. 4 shows our quantitative findings as the mean and standard deviation
(SD) of the estimated biomarkers and the fit error using the original and the
denoised data. For three subjects, average ROI measurements were taken from
homogeneous areas of the liver for two slices, belonging to the upper and lower
part of the liver. Altogether, the denoising reduced the fit error by 37 % and
eliminated uncertainty (SD) of the PDFF by 58 % and that of R∗2 by 24 %.
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5 Conclusion

A robust denoising algorithm for contrast-sparse MRI data has been proposed.
The inherent low-rank property of locally correlated multi-contrast data is pro-
moted with the nuclear norm in a model-consistent way. The algorithm is also
automatic as the noise level is derived from local estimates of the whole image
such that a risk-minimizing threshold can be used for a patch-based denoising.

We demonstrated the potential of the method on low SNR fat quantification
data. Here, the contrast image series could be greatly improved while an even
stronger effect is observed when this data is used for further processing, such
as the fat fraction biomarker estimation. This has direct benefits as acquisition
protocols with higher spatial resolution and/or lower flip angles become possible.

The integration into existing workflows is straightforward and attractive due
to a low runtime and no need for parameter-tuning. Furthermore, the proposed
method requires only spectrally sparse data as input and is, thus, widely appli-
cable to instances of dynamic MRI, spectroscopy, and hyperspectral imaging.
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