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Abstract. Computation of perfusion parameters by deconvolution from
contrast-enhanced time-resolved CT or MR perfusion data sets is an
ill-conditioned problem. Thus, adequate regularization and determina-
tion of corresponding regularization parameters is required. We present
a novel method for Tikhonov regularization for perfusion imaging to lo-
cally adapt parameters to the SNR level by using a regression function.
In an numerical evaluation our simple approach provided similar or even
superior results compared to methods applying computationally more
demanding L-curve analysis.

1 Introduction

Perfusion imaging techniques are widely used for diagnosis of cerebrovascular
disease such as acute stroke as well as in the diagnostic work-up and therapy
monitoring of brain tumors. Perfusion imaging is usually performed by contrast-
enhanced time-resolved CT or MR imaging [1]. Recently, first results on inter-
ventional perfusion imaging using flat detector CT have been presented [2,3].
Perfusion parameters, such as the cerebral blood flow (CBF), can be computed
by deconvolution techniques. In practice, the deconvolution process is performed
by inversion of an ill-conditioned linear equation system (LES). To obtain a
meaningful solution from the ill-conditioned inversion, Tikhonov regularization
is commonly applied [1]. A crucial problem in regularization is how to choose the
right parameter to control the trade-off between the regularization penalty and
the data fit. In perfusion imaging, a fixed parameter independent of the contrast
signal strength is usually used [1]. Salehi Ravesh et al. [4] showed that using
an adaptive regularization parameter, which is tuned to the local signal-to-noise
ratio (SNR), can improve MR lung perfusion measurements. The parameters are
tuned locally by a modified version of the L-curve criterion (LCC) [5]. The LCC
is a popular tool to find an appropriate parameter for Tikhonov regularization.

However, using L-curve analysis for determining adaptive regularization pa-
rameters causes a considerable amount of computational overhead. In this work,
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we present a novel technique to adapt the regularization parameter locally to
the SNR in a computationally efficient way by regression and show its potential
benefits in a numerical brain perfusion phantom study.

2 Materials & Methods

2.1 Perfusion Parameter Computation using Tikhonov

Regularization

The indicator-dilution theory describes how CBF and other related perfusion
parameters can be recovered from the acquired time series of contrast agent
enhanced volumes. For a comprehensive introduction, please refer to the review
paper by Fieselmann et al. [1]. In this work, we restrict the description to the de-
convolution problem, which needs to be solved by algebraic methods. We assume
that the contrast agent attenuation is sampled at ti, i = 1 . . . N time points with
a sampling distance ∆t. Let matrix A ∈ R

N×N
[0,∞) denote a convolution with the

arterial input function (AIF), vector c ∈ R
N
[0,∞) a time-contrast-concentration

curve (TCC) inside a tissue voxel, and vector r ∈ R
N
[0,∞) the corresponding resid-

ual function from which the essential perfusion parameters can be computed
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For example, CBF can be computed from r using the relationship CBF =
max r (t) /ρT, where ρT denotes the tissue density. The residual function r can
be recovered by solving the deconvolution problem

Ar = c. (2)

However, the convolution matrix A is generally ill-conditioned [1]. Thus, slight
errors in c (e.g., due to noise) result in large errors in r and solving LES 2 directly
will result in physiologically not meaningful residual functions with strong oscil-
lations and high energy. To obtain an improved solution, Tikhonov regularization
can be applied, which penalizes solutions with a larger semi-norm ‖Lr‖

2
2

rλ = argmin
r

‖Ar− c‖
2
2 + λ2 ‖Lr‖

2
2 . (3)

The matrix L ∈ R
N×N typically describes a discrete approximation to some

derivative operator. In standard Tikhonov regularization, as conducted in this
work, L corresponds to the identity matrix L = I (i.e., solutions with lower
energy are preferred). The strength of regularization is controlled by the pa-
rameter λ ∈ R[0,∞). The quadratic optimization problem 3 can be solved using
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singular value decomposition (SVD) [5], which decomposes A into the orthonor-
mal left singular vectors ui, the orthonormal right singular vectors vi, and the
non-negative singular values σi

A =
N
∑

i=1

uiσiv
T
i with σ1 ≥ σ2 ≥ . . . ≥ σN ≥ 0. (4)

The regularized solution rλ can be recovered using the SVD of A [5]

rλ =

N
∑

i=1

fi (λ)
uT
i c

σi
vi with fi =

σ2
i

σ2
i + λ2

. (5)

2.2 Adaptive Regularization with the L-curve Criterion

The L-curve is a convenient way to display information about solutions computed
via Tikhonov regularization [5]. It is a log-log plot of the norm of a regularized
solution η (λ) versus the norm of the corresponding residual norm ρ (λ) (Fig.
1a). The quantities of η (λ) and ρ (λ) can be efficiently computed via the SVD
of A [5]

η (λ) = ‖rλ‖
2
2 =

N
∑

i=1

(

fi (λ)
uT
i c

σi

)2

(6)

ρ (λ) = ‖Arλ − c‖
2
2 =

N
∑

i=1

(

(1− fi (λ))u
T
i c

)2
(7)

The L-curve criterion (LCC) states that the best trade-off between η and ρ is
reached by a λ lying on the characteristic corner of the L-curve. A corresponding
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Fig. 1. (a) L-curve with λ selected at maximum curvature; (b) mean signal amplitude c̄
and corresponding λ values determined using modified L-curve criterion (MLCC) (blue
crosses) and corresponding regression functions using linear and exponential models;
(c) top: plot of spatial distribution of λ determined with MLCC, bottom: corresponding
mean signal amplitude.
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λ can be found by identifying the maximum curvature κ (λ) of the L-curve, where
κ (λ) is given as [5]

κ (λ) = 2
ηρ

η′
λ2η′ρ+ 2ληρ+ λ4ηη′

(λ2η2 + ρ2)
3/2

with η′ (λ) =

N
∑

i=1

(1− fi)
2
fiu

T
i c. (8)

Salehi Ravesh et al. [4] discussed that the straightforward application of the LCC
to MR lung perfusion data is not feasible. In many cases, κ (λ) showed multiple
maxima or no local maximum at all. In these cases, the λ chosen by the LCC
were too small leading to noisy results. Therefore a modified LCC (MLCC) was
introduced implying two additional criteria: if multiple maxima are present in
κ (λ), the maximum with the largest λ is chosen and if no local maximum is
present, λ is set to a minimally allowed value λmin = 0.1 · σ1.

2.3 Adaptive Regularization with SNR Regression

The LCC based methods require to sample κ (λ) in a sufficient density. In prac-
tice, typically 50 evaluations of Equations 6, 7 and 8 are required to determine
the parameter for computing the residual function for one tissue voxel. This
causes a considerable amount of computational overhead. Figure 1c shows the
average amplitude of the TCCs over time c̄ = 1

N

∑N
i=1 c (ti), which is propor-

tional to the average SNR, compared to the adaptive λ values determined using
the MLCC. As expected, higher λ value were assigned to regions with low SNR
and vice versa. This suggests to use simple regression functions to adapt the λ
values to the SNR. In this work, we apply a linear regression model (SNR-LIN),
as well as exponential models with one (SNR-EXP) and two (SNR-EXP2) basis
functions

λSNR-LIN = ac̄+ b, λSNR-EXP = a exp (b · c̄) , (9)

λSNR-EXP2 = a exp (b · c̄) + l exp (m · c̄) .

The regression parameters were computed using the fit function of the MAT-
LAB curve fitting toolbox. Figure 1b shows examples for fitting the regression
functions.

2.4 Evaluation Methods

For evaluation of the discussed methods, a volumetric time series of TCCs was
simulated with a realistic numerical brain perfusion phantom [6]. The time series
consisted of 3 slices with 256×256 voxels and 44 temporal samples with sampling
distance ∆t = 1 s. Accordingly, white Gaussian noise with standard deviation
σn = 20HU was added and finally the TIPS method [7] was applied for noise
reduction before perfusion parameter computation. The convolution matrix A

was computed from the simulated ground truth AIF to avoid any influence from
the AIF selection to the parameter computation. For quantitative evaluation,
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Table 1. Estimated regression parameters according to the models in Equation 9 using
different subsets of data.

Method (Parameters) Slice 1 Slice 2 Slice 3 All slices

SNR-LIN (a, b) (−0.30, 0.31) (−0.31, 0.31) (−0.31, 0.32) (−0.31, 0.31)

SNR-EXP (a, b) (0.39,−0.19) (0.40,−0.20) (0.41,−0.20) (0.40,−0.20)

SNR-EXP2 (a, b, (0.50,−0.37, (0.50,−0.37, (0.51,−0.36, (0.50,−0.37,

l,m) 0.04, 0.14) 0.03, 0.16) 0.03, 0.17) 0.03, 0.16)

Lin’s concordance correlation (CC) [8] between the computed values and the
ground truth values in all tissue voxels was determined. In contrast to linear
correlation the CC is sensitive to a shift and scaling in the estimates.

3 Results

Figure 2 shows CBF maps calculated with different methods and correspond-
ing CC results. Table 1 shows the variation of the regression parameters using
different subsets of the data.

4 Discussion

The CBF map in Figure 2 which was created using a high global regularization
parameter λ = 0.3 results in a smooth map but severely underestimated CBF

Ground truth λglobal = 0.3 λglobal = 0.15 LCC LCC

CC = 0.52 CC = 0.75 CC = 0.79 Outlier
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Fig. 2. CBF maps computed using Tikhonov regularization with global and adaptive
parameter settings and the corresponding CC to the ground truth. Units: ml/100 g/min.
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values. If a smaller λ = 0.15 is used, the CBF values are less underestimated but
the map gets noisy and the areas with reduced perfusion values are not as well
separated. The adaptive methods can achieve maps with limited noise and lim-
ited underestimation at the same time. LCC produces some few outliers, which
can be avoided using the MLCC. The regression based methods show similarly
improved results as the LCC methods, with the SNR-EXP2 method showing the
overall best CC value. A limitation of this work is that the regression functions
were fitted with the same data as they were applied to in the evaluation. How-
ever, Table 1 shows that the parameters only vary slightly for different subsets
of the data. This suggests that the parameters are stable over different data sets,
but needs to be evaluated closely in future research.

In summary, the results suggest that using simple regression functions to lo-
cally adapt the λ parameter to the SNR can provide similar or even improved
results compared to the computationally more expensive LCC based methods.
From a clinical perspective, this approach could potentially provide quantita-
tively improved perfusion maps with less noise in a fast computation time.

Acknowledgments: The authors gratefully acknowledge funding of the Medi-
cal Valley, Erlangen, Germany, diagnostic imaging network, sub-project BD 16,
grant nr. 13EX1212G.

References

1. Fieselmann A, Kowarschik M, Ganguly A, Hornegger J, Fahrig R. Deconvolution-
Based CT and MR Brain Perfusion Measurement: Theoretical Model Revisited and
Practical Implementation Details; 2011. Article ID 467563, 20 pages. Int J Biomed
Imaging.

2. Manhart M, Kowarschik M, Fieselmann A, Deuerling-Zheng Y, Royalty K, Maier
AK, et al. Dynamic Iterative Reconstruction for Interventional 4-D C-Arm CT
Perfusion Imaging. IEEE Trans Med Imaging. 2013 July;32(7):1336–1348.

3. Manhart M, Aichert A, Struffert T, Deuerling-Zheng Y, Kowarschik M, Maier AK,
et al. Denoising and Artefact Reduction in Dynamic Flat Detector CT Perfusion
Imaging using High Speed Acquisition: First Experimental and Clinical Results.
Phys Med Biol. 2014 August;59(16):4505–4524.

4. Salehi Ravesh M, Brix G, Laun F, Kuder T, Puderbach M, Ley-Zaporozhan J,
et al. Quantification of pulmonary microcirculation by dynamic contrast-enhanced
magnetic resonance imaging: Comparison of four regularization methods. Magn
Reson Med. 2013;69(1):188–199.

5. Hansen PC. The L-curve and its use in the numerical treatment of inverse problems.
IMM, Department of Mathematical Modelling, Technical University of Denmark;
1999.

6. Riordan AJ, Prokop M, Viergever MA, Dankbaar JW, Smit EJ, de Jong HWAM.
Validation of CT brain perfusion methods using a realistic dynamic head phantom.
Med Phys. 2011;38(6):3212–3221.

7. Mendrik AM, Vonken E, van Ginneken B, de Jong HW, Riordan A, van Seeters T,
et al. TIPS bilateral noise reduction in 4D CT perfusion scans produces high-quality
cerebral blood flow maps. Phys Med Biol. 2011;56(13):3857–3872.

8. Lin LIK. A concordance correlation coefficient to evaluate reproducibility. Biomet-
rics. 1989;45(1):255–268.


