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Abstract—Today, an angiographic C-arm CT system is stan-
dard in most interventional laboratories and 3-D imaging in
the interventional suite has become common. Due to the longer
acquisition time of a C-arm system, of up to several seconds,
intra-scan patient motion is a problem. In this paper, a fully
automatic motion estimation and compensation framework uti-
lizing fiducial markers is presented to mitigate head motion
during neuroradiology interventions. Involuntary head movement
of the patient should be an easier problem to solve than motions
such as cardiac and respiratory motion, but to date no practical
solution has been integrated into a clinical C-arm CT system. Our
framework consists of three major steps: marker detection with
incorporated outlier removal, motion estimation and correction,
and marker removal. The marker detection is based on an initial
estimate of the marker position extracted from the motion-
blurred filtered backprojection (FDK) reconstruction and on
the fast radial symmetry transformed (FRST) 2-D projection
images. The motion is estimated by the alignment of the forward
projected 3-D initial marker positions to the actual detected 2-D
marker positions. Here, a rigid motion model is used assuming
no deformable transformation of the head. The head motion is
then corrected in the filtered backprojection step. Finally, the
detected markers can be removed in the 2-D projection images
by simple interpolation. The framework was evaluated on three
skull phantom datasets with and without induced motion during
the scan, as well as on one clinical C-arm CT dataset. All
3-D reconstructions show a large improvement in image quality
compared to the non-corrected 3-D reconstructions.

I. INTRODUCTION

A. Purpose of this Work

Angiographic C-arm systems are the standard modality
used during interventional procedures. Physicians can use
2-D fluoroscopic images from these systems for guidance
and navigational support. In addition, newer systems permit
cone-beam CT (CBCT), or the automated computation of 3-D
volumes from rotational acquisitions [1]. CBCT acquisitions
collect numerous high-resolution 2-D images over pre-defined
angular range. However, the time necessary to acquire a
sufficient number of 2-D images for 3-D reconstruction can
be up to 20 seconds and is rarely below 5 seconds. At this
time scale, involuntary motion such as cardiac, respiratory, and
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patient motion is unavoidable and can cause severe artifacts
in the 3-D images. These artifacts can obscure important
information and substantially decrease the clinical utility of
the CBCT images. For example, in brain perfusion imaging
using an interventional CBCT system [2], involuntary head
motion degrades the quality of the resulting perfusion maps.
Hence, in this paper a fully automatic, fiducial marker-based
motion correction framework suitable for interventional neu-
roradiological applications is presented.

B. State-of-the-Art

In interventional imaging, motion estimation and compen-
sation is an open, wide ranging, and complex problem. Most
motion correction approaches are highly dependent on the
motion pattern (rigid vs. deformable motion), the application
(neuroradilogy vs. cardiology), and specific geometric acqui-
sition parameters (short vs. a full scan). Numerous iterative
motion correction algorithms have been developed [3], that
compare the forward-projected image to the original 2-D
projection image according to a given similarity measure.
In general, iterative methods provide a higher signal-to-noise
ratio, but have higher computational costs.

Recently, several papers have been published employing
data consistency conditions for motion estimation [4], [5], [6],
[7]. Up to now, these techniques have not been applied to
clinical data acquired with a C-arm system due to the limited
scan range of about 200◦ and the cone-beam geometry. Hence,
our framework uses fiducial markers to estimate the motion.
Fiducial marker-based methods are advantageous because they
do not rely on any trajectory assumptions and they do not
require additional radiation or a prior CT scan. The idea of
motion correction using fiducial marker detection has been
already widely used in medical imaging [8], [9], [10], although
to date the approach has not been implemented on a real
clinical C-arm CT system. Therefore, we present a fully
automatic motion estimation and compensation framework for
CBCT head scans using fiducial markers.

II. METHODS AND MATERIALS

A. 2-D Fiducial Marker Detection

As the first step, the fiducial markers attached to the patients
head need to be detected in the individual 2-D projection
images. Here, an automatic marker detection, presented by
Berger et al. [11] is used. Berger et al. detected fiducial
markers in a weight-bearing C-arm CT scan of a left knee.
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First, the images are pre-processed with a morphological
top-hat filter [12] in order to remove objects larger than the
markers followed by a Sobel filter to enhance the remaining
edges. Next, the fast radial symmetry transform (FRST) [13]
is applied to the pre-processed 2-D images to detect the initial
marker positions. The blurred FRST 2-D candidate points are
backprojected to get a distinct outcome for each 3-D marker
position. A binarisation step is performed using the maximum
entropy method [14]. A 3-D connected component analysis
is applied to identify the centroids of the marker positions in
3-D. With the help of the pre-calibrated projection matrices,
Pj ∈ R3×4 for each projection image j ∈ {1, . . . , N}, with N
the number of projection images, the 3-D reference markers
can be forward projected onto each projection image yielding
the 2-D reference points r′i,j , for each marker i ∈ {1, . . . , B},
with B denoting the number of markers. As a next step, a set of
2-D candidate points mi,j are extracted from the initial FRST
images, using a heuristically determined threshold and a 2-D
connected-components analysis. These candidate points are
then assigned to the closest 2-D reference points, essentially
solving the correspondence problem. The 3-D marker positions
can be updated by the newly assigned candidate points and the
whole detection can be performed iteratively.

B. Outlier Removal
The detection of candidate points in the 2-D FRST pro-

cessed projection images can lead to wrong marker positions,
if for example, a marker in 2-D is overlayed by a high
contrasted structure like a vessel. Therefore, 2-D outliers are
removed before the motion estimation step. In order to detect
the outlier, the 3-D motion trajectory of each marker (c.f.
Figure 1a) is projected on the uz- and the vz-plane (c.f. Figure
1b), with u denoting the axis for the width and v the axis
for the height of each projection image, and z the number of
projections. For each 2-D marker trajectory a cubic smoothing
spline is fitted to the original 2-D curve. If the distance of the
original marker position to the new marker position is larger
than a certain threshold, the point is considered an outlier. In
Figure 1b, the 2-D original and smoothed motion trajectory
of one marker on a skull phantom is illustrated. For motion
estimation, the original motion trajectory is used.

C. 2-D/3-D Rigid Motion Estimation
For the estimation of the intra-scan motion based on the

detected marker positions, the approach evaluated by Choi et
al. [15], [16] in order to estimate knee motion during a weight-
bearing C-arm scan is adapted. The algorithm estimates a 3-D
rigid transformation for each projection image j, by fitting
the forward projection of the 3-D reference marker position to
the actual 2-D detected candidate points. The six degrees of
freedom of each transformation matrix Mj ∈ R4×4, with

Mj = Tj(tx,j , ty,j , tz,j) ·Rz(γj) ·Rx(αj) ·Ry(βj), (1)

where Tj ∈ R4×4 is the translation and R ∈ R4×4 are the
rotation matrices. In this paper, the unknown parameters are
estimated by an interior-point optimizer [17], until the step
size is smaller than 1e-3, with the given objective function:

argmin
tx,j ,ty,j ,tz,j ,γj ,αj ,βj

N∑
j=1

B∑
i=1

||r′i,j −mi,j ||22. (2)
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(a) Motion trajectory in 3-D.
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(b) Projection of 3-D motion trajectory onto the vz-plane. Original
trajectory denoted with (+) in red and the fitted and smoothed
cubic spline (*) in green.

Figure 1: 3-D and projected 2-D motion trajectory of marker
#3 of a skull phantom with translational motion along the
rotation axis.

In order to perform a motion-compensated reconstruction, each
Mj rigid transformation matrix can be used to compute a new
calibration matrix P new

j ,

P new
j = Pj ·Mj , (3)

with Pj denoting the pre-calibrated projection matrix for
projection image j.

III. EXPERIMENTS

A. Head Phantom
The presented framework was evaluated using a skull phan-

tom with contrasted vessels in the right hemisphere (see Figure
2a). The skull phantom was scanned using an Artis zeego sys-
tem (Siemens AG, Healthcare Sector, Forchheim, Germany).
An interventional CBCT head scan acquisition protocol was
used, with the following scanning parameters: the scan time
was 5 s acquiring 248 images at 60 f/s, and with an angular
increment of 0.8◦ during one C-arm sweep. The isotropic



Table I: The minimal, maximal, mean and standard deviation,
and median number of markers detected on the three head
phantom scans.

Dataset Min Max Mean ± Std Median
No motion 4 7 6.60 ± 0.64 7
Translation 5 7 6.39 ± 0.65 6

Rotation 5 7 6.60 ± 0.60 7
4.67 ± 0.58 7 6.53 ± 0.63

pixel resolution was 0.616 mm/pixel (0.40 mm at isocenter)
and the detector size 480 × 620 pixels. A dose of 0.36µGy/f at
the detector was applied. Image reconstruction was performed
with a sharp reconstruction kernel on an image volume of
(25.6 cm)3 distributed on a 2563 voxel grid. Three different
scans with different induced motion patterns were performed,
(1) without any motion, (2) with translational motion (±1 cm)
along, and (3) with rotational motion (±10◦) around the
rotation axis of the C-arm. Seven 7 X-SPOT® radiopaque
pellets from Beekley MedicalTM with 1.5 mm diameter, widely
used in neuroradiology, were attached to the head phantom
ensuring that the markers would not overlap on any individual
projection images during the C-arm rotation.

B. Clinical Data

One patient dataset was acquired on an Artis zee biplane
system (Siemens AG, Healthcare Sector, Forchheim, Ger-
many), using only one detector plane. The same scanning
parameters as for the skull phantom, described in Section
III-A were applied. Only three tantalum beads with a diameter
of 1 mm were attached to the patient’s head, again to avoid
overlapping in different 2-D projection images.

IV. RESULTS AND DISCUSSION

A. Marker Detection and Outlier Removal

1) Head Phantom: For the skull phantom with the induced
motion patterns, the stability of the marker detection was
evaluated. Table I shows the minimal and maximal number
of markers, as well as the mean and median number, detected
over all N = 248 projection images. Even in the static dataset,
some projections had as few as 4 markers detected due to
overlap of the others with contrast-filled vessels and rounded
vessel bifurcations that can mislead the detection process. On
average for all three phantom scans, 6.53 ± 0.63 markers from
a total of 7 markers were detected over the whole scan.

Table II shows the effect of the outlier removal on the accu-
racy of the marker detection process. The error ε denotes the
deviation between the forward projected 3-D reference points
and the 2-D detected candidate points in the FRST images.
The deviation εtrans denotes the error after the transformation
of the 3-D reference points according to the motion estimation
process and the 2-D detected candidate points in the FRST
images. On average, applying motion correction with outlier
removal results in a ≈93 % reduction in the marker distances
relative to the uncorrected data, if motion was present in the
scan. All outliers are successfully detected, except four outliers
at the beginning of the scan with the induced translational
motion.

Table II: The mean error ε defines the error between the
forward projected 3-D reference points and the detected 2-D
candidate points on the FRST images and the mean error
εtrans between the transformed forward projected 3-D reference
points.

No Outlier Detection
Dataset ε εtrans % improvement

No motion 0.50± 0.31 0.41± 0.39 18 %
Translation 12.16± 5.79 1.43 ± 1.52 88 %

Rotation 11.96± 8.55 0.49 ± 0.42 96 %
Outlier Detection

Dataset ε εtrans % improvement
No motion 0.48 ± 0.19 0.37 ± 0.12 23 %
Translation 12.09 ± 5.73 1.20 ± 0.73 90 %

Rotation 11.94 ± 8.56 0.45 ± 0.11 96 %

2) Clinical Data: In the clinical dataset, a minimum of one
marker and a maximum of all three markers were detected in
the 2-D projection images. On average, 2.81 ± 0.41 markers
were detected over the whole acquisition. No outliers were
detected in the dataset.

B. Visual Inspection

1) Head Phantom: Figure 2b shows a representative slice
of the 3-D reconstruction of the skull phantom without any
induced motion for reference. The 3-D reconstruction of the
phantom with translational motion, but no motion correction
is illustrated in Figure 2c and the corresponding reconstruction
with motion correction is shown in Figure 2d. The skull bone
can be successfully reconstructed after the motion correction
step. The same can be seen for the phantom with the induced
rotational motion (Figure 2e and 2f).

2) Clinical Data: The clinical dataset shows only small
motion artifacts in the standard FDK reconstruction (Figure
3a), primarily around the sphenoid bone and the occipital bone
(marked by the arrows). These artifacts are reduced by the
motion correction, as shown in Figure 3b.

V. CONCLUSION

In this paper, we presented a fully automatic motion
estimation and compensation framework for neuroradiological
data using a C-arm CT system utilizing fiducial markers. The
resulting image quality is considerably improved compared
to standard FDK reconstructions with no motion correction.
The results on the skull phantom as well as on the clinical
patient dataset are promising and encourage to implement our
framework in a clinical environment.

Disclaimer: The concepts and information presented in this paper are based
on research and are not commercially available.
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(a) Posterior 2-D projection of the
skull phantom with attached
markers.

(b) without motion

(c) with translational motion with-
out motion correction

(d) with translational motion with
motion correction and marker
removal

(e) with rotational motion without
motion correction

(f) with rotational motion with mo-
tion correction and marker re-
moval

Figure 2: Skull phantom (a) and axial slices 13 mm from the
central slice of the 3-D reconstructions without (b) and with
different motion patterns (c,d) and the corresponding motion
corrected reconstructions (e,f) (W 1800 HU C 366 HU).
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