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Abstract—Classical surgery is being overtaken by minimally
invasive and transcatheter procedures. As there is no direct view
or access to the affected anatomy, advanced imaging techniques
such as 3D C-arm CT and C-arm fluoroscopy are routinely used
in clinical practice for intraoperative guidance. However, due to
constraints regarding acquisition time and device configuration,
intraoperative modalities have limited soft tissue image quality
and reliable assessment of the cardiac anatomy can only be
made by injecting contrast agent, which is harmful to the
patient and requires complex acquisition protocols. We propose
a probabilistic sparse matching approach to fuse high-quality
preoperative CT images and non-gated, non-contrast intraoper-
ative C-arm CT images by utilizing robust machine learning and
numerical optimization techniques. Thus, high-quality patient-
specific models can be extracted from the preoperative CT and
mapped to the intraoperative imaging environment to guide
minimally invasive procedures. Extensive quantitative experi-
ments on 95 clinical datasets demonstrate that our model-based
fusion approach has an average execution time of 1.56 seconds,
while the accuracy of 5.48 mm between the anchor anatomy
in both images lies within expert user confidence intervals. In
direct comparison with image-to-image registration based on
an open-source state-of-the-art medical imaging library and a
recently proposed quasi-global, knowledge-driven multi-modal
fusion approach for thoracic-abdominal images, our model-based
method exhibits superior performance in terms of registration
accuracy and robustness with respect to both target anatomy
and anchor anatomy alignment errors.

Index Terms—Model-based Cardiac Image Registration, Pro-
cedure Guidance, Anatomical Overlay, Computed Tomography.

I. INTRODUCTION

Fluoroscopy guided cardiac interventions such as endovas-
cular stenting, atrial ablation, closure of atrial/ventricular sep-
tal defects and transcatheter valve repair or replacement are
becoming increasingly common [1]. Compared to conventional
open-heart surgeries, these procedures tend to be less invasive,
reduce procedural morbidity, mortality, and intervention cost,
while accelerating patient recovery. For high-risk groups or
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patients previously declared inoperable, minimally invasive
surgery is the only treatment option [2], [3]. However, without
direct access or view to the affected anatomy, advanced
imaging is required to secure a safe and effective execution of
the procedure.

Overlays of 3D anatomical structures based on preopera-
tive data can provide valuable information for interventional
navigation and guidance when displayed on live fluoroscopy.
High-quality preoperative 3D data is routinely acquired for
diagnostic and planning purposes by means of computed to-
mography, magnetic resonance imaging or echocardiography.
However, direct 3D preoperative to 2D fluoroscopy registration
[4] is difficult to solve, especially within the intraoperative
setup that makes user interaction difficult and time-consuming
processing undesirable. The authors of [5] propose the use of
preoperative CT images and extract models which are regis-
tered with intraoperative MR and echocardiography images.
Major limitations are the required optical tracking equipment
and the semi-automatic delineation of the mitral annulus
anatomy. Other methods rely on fiduciary markers to achieve
2D/3D registration. A real-time approach to fuse images from
transesophageal echocardiography (TEE) and fluoroscopy by
placing markers on the TEE probe is proposed in [6].

C-arm CT is emerging as a novel imaging modality that can
acquire 3D CT-like volumes directly in the operating room
in the same coordinate system as 2D fluoroscopy images,
which overcomes the need for 2D/3D registration. For most
procedures, the patients are at an advanced age and the added
radiation compared to fluoroscopy is not a major concern.
Instead, a safe and effective execution of the procedure is the
dominating factor [7]. Some methods work directly on the C-
arm CT images [8] to extract patient-specific models and over-
lays for procedure guidance. However, acquiring high-quality,
motion compensated and contrast-enhanced C-arm CT images
is challenging and not feasible for all patients, in particular for
patients with renal function deficiencies. Instead, much simpler
protocols would be preferred by clinicians, where non-ECG-
gated non-contrast C-arm CT volumes are acquired. Currently,
clinicians align the preoperative images and the intraoperative
C-arm CT image using manual registration tools. This process
can be automated by using registration methods.

Surveys of registration methods for alignment of 3D medical
images can be found in [9]–[13]. Multi-modal 3D/3D regis-
tration algorithms can be utilized to automate the process of
aligning preoperative scans from arbitrary imaging modalities
with the C-arm CT image. In [14]–[16], mutual information
is used to cope with intensity inconsistencies between dif-
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ferent modalities. The authors of [17] propose an atlas-based
approach to track the myocardium and ventricles from MR
data. However, these methods are computationally expensive,
and without appropriate guidance of a shape prior they are
likely to converge into local minima. To overcome the latter
limitation, the authors of [18] propose a quasi-global approach,
where, considering prior knowledge on the problem domain
(thoracic-abdominal CT and C-arm CT volumes), multiple
starting points in parameter space are selected to approximate
global optimization behavior.

We propose an extension to our previous method [19], a
novel approach to fuse 3D preoperative high-quality anatom-
ical information with live 2D intraoperative imaging using
non-contrasted 3D C-arm CT as a proxy. Robust and fully-
automatic learning-based methods are employed to extract
patient-specific models of both target and anchor anatomies
from CT. Anchor anatomies have correspondences in the
pre- and intraoperative images, while target anatomies are
not visible in the intraoperative image, but essential to the
interventional procedure. A novel sparse matching approach
is employed to align the preoperative anchor anatomies to
the intraoperative setting. Sparse matching allows for high
computational efficiency. In contrast to traditional image-to-
image registration methods where all n voxels (or a large
subset) in the images need to be sampled per iteration, our
method requires only few read operations on a probabilistic 3D
map. The voxels of interest are determined by a comparatively
small number n′ � n of sparsely distributed points on a
geometrical pericardium model. Data and model uncertainties
are learned and exploited during the matching process. Our
method is able to cope with artifacts in the intraoperative
images, partially visible anatomical structures, and does not
require contrast agent in the intraoperative image.

The intended use case of our approach is navigation in
minimally invasive surgery, including transcatheter aortic valve
implantation (TAVI), which is the focus of this study. Once
the preoperative data is fused to the intraoperative imaging
environment, high-quality preoperative anatomical overlays
can be displayed on fluoroscopy in order to facilitate safe
navigation of a catheter to the aortic valve. The final valve de-
ployment is not in the scope of this work, as the interventional
cardiologists will not rely solely on static models extracted
from preoperative data. Instead, live fluoroscopy is commonly
used. Our previous work [19] is extended as follows:

1) The scheme used to incorporate prior knowledge is
refined using a probabilistic sampling function instead of
vertex-wise prior weights, leading to improved accuracy.

2) The dataset used for evaluation of our approach is
extended from 88 to 95 pairs of real clinical volumes.

3) Quantitative and qualitative evaluation is extended by
comparing to a state-of-the-art image-to-image regis-
tration technique using masked images, as well as a
recently proposed quasi-global, knowledge-driven fusion
approach for thoracic-abdominal images [18].

4) Computation time is reduced towards real-time fusion
from 2.93 s to 1.56 s per registration on an off-the-shelf
consumer computer through code optimization, and a
detailed runtime analysis is provided.
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Fig. 1. Flowchart of our 3D/3D fusion method. Blue boxes represent data,
while red boxes show processing steps and methods. Grey arrows indicate the
general workflow, and green boxes and arrows highlight various algorithms
and concepts used in specific parts of our approach.

II. METHOD

Our fully-automatic method fuses preoperative CT (moving
imageM) with intraoperative C-arm CT volumes (fixed image
F), such that a target anatomy, e.g. the aortic valve, is aligned.
The process is based on a personalized anchor anatomical
model AM of the pericardium extracted from M, and a
probability map F̃ derived from F , see Fig. 1. A set of
optimal transformation parameters θ∗ that align M with F is
sought. The parameter vector θ = (φθ, tθ)> represents a rigid
transformation in 3D space with φθ = (φx, φy, φz) denoting
the Euler angles, and tθ = (tx, ty, tz) the translation along the
axes of the coordinate system (x, y and z).

A. Pericardium Segmentation from Preoperative CT

The method proposed by Zheng et al. [20] is used to
segment the pericardium in the preoperative CT scan. It is
both efficient and robust and consists of four main steps.
First, the pose and scale of the heart are estimated using
marginal space learning (MSL) [21], [22]. Second, a mean
shape generated from a large number of annotated pericardium
meshes is aligned to the estimated pose and scale. In a third
step, the parameters are refined within the framework of
statistical shape models (SSM) [23] using a boundary detector
based on the probabilistic boosting tree (PBT) [24]. Finally,
a postprocessing step is applied in order to ensure that the
rib cage is not included in the segmentation. The patient-
specific anchor anatomy AM is extracted from M, yielding
a geometrical model representing the pericardium in the CT
scan (see Fig. 2). The model is represented by a closed
triangulated surface mesh consisting of 514 vertices and 1024
triangles, where vertices correspond to the same anatomical
locations among different patients. Since AM is independent
from intraoperative information, the model segmentation can
be performed prior to the intervention.
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Fig. 2. Slices of a contrast-enhanced CT scan of the human torso (M) over-
laid by the automatically segmented pericardium mesh AM, the intersection
of AM with the plane corresponding to the visualized slice is shown in red
color. Lower right: 3D rendering with 3D anatomical overlay (AM).

B. Probability Map Extraction from Intraoperative C-arm CT

Due to the lower imaging quality of intraoperative C-
arm CT devices compared to preoperative CT, applying the
pericardium segmentation method described in Sec. II-A to C-
arm CT images can yield unsatisfactory results. Hence, in this
work a different approach is proposed for the intraoperative
data, where a probability map F̃ = p(AF | F) is derived from
F by evaluating a discriminative classifier on each voxel. The
classifier is explicitly trained on C-arm CT images in order
to delineate pericardium boundary regions AF robustly, while
taking into account the intrinsic properties of that modality.
Due to the high complexity of the detection problem (a
single classifier for the entire pericardium boundary), a PBT
classifier with 6 tree levels of AdaBoost [24] classifiers is
used. For each AdaBoost classifier, a cascade of 40 weak
learners (hyperplanes in feature space) is trained. Based on an
extension of [25] to 3D space as described in [26], 3D Haar-
like features are used in this work. This choice is motivated
by the known computational efficiency of computing Haar-
like features (through integral images), which is exploited by
generating a large quantity of distinct features in little time
in order to achieve a high level of robustness. In this study,
a feature vector corresponding to a point (voxel) in an image
consists of 97804 distinct 3D Haar-like features centered at
that point.

In collaboration with medical experts, a database DB =
{(Vi,Pi) | i = 1 . . . nDB} of ground-truth pericardium meshes
Pi on a set of nDB = 393 interventionally acquired C-arm
CT volumes Vi was created. For training the PBT classifier,
a set of positive S+ and a set of negative S− samples is
extracted from DB. For each (V,P) ∈ DB and each vertex
in the corresponding annotation P , 27 positive samples for

S+ are generated with regard to the position of the voxel
corresponding to the given vertex and its 26 neighboring
voxels. The negative samples are based on all voxels v ∈ V
where the distance of v to all vertices in P exceeds a threshold
of three times the length of the diagonal of a voxel. To keep
memory requirements for training manageable and to balance
both classes, subsets of 7500 samples are randomly selected
for S+ and S− and eventually passed to the PBT training
routine. Figure 3 shows an example probability map overlaid
on axial volume slices.

C. Initialization Estimation
One of the major drawbacks in numerical optimization is

the need for a reliable initial estimate in the area of attraction
of the global optimum. Without this, the method is prone to
converge into a local optimum. In order to find such a stable
initialization θ0 = (φθ0

, tθ0
)>, our method recovers the offset

tθ0 between M and F . The rotational error (φθ0
= 0) is

neglected, since it is rather small between the CT and the C-
arm CT scan due to the acquisition protocols being similar as
the patients adopt similar supine positions for both scans.

Our solution is based on a concept from computer vi-
sion known as object localization, which we formulate as
a classification problem. The object is a single point, the
center of the pericardium in the C-arm CT scan, and we
aim at locating its position. Therefore, a PBT classifier with
similar settings as in Sec. II-B is trained. For each image,
positive training samples are generated for all voxels that are
within a radius of 10 mm of the centroid of the corresponding
annotation P ∈ DB. Negative samples correspond to voxels
exceeding a Euclidean distance threshold of 20 mm to the
true center. Both sets are randomly subsampled prior to the
PBT training to 4000 samples for each class in order to
achieve class balance and to reduce memory requirements.
Due to the reduced complexity as opposed to the problem
described in the previous section (in which a single position is
detected instead of an entire boundary), a PBT with 3 levels of
AdaBoost classifiers containing 20 weak learners per classifier
is sufficient.

In the detection phase, the classifier is evaluated on each
voxel and the nc = 100 candidates with highest probability
are selected. The final pericardium center estimate is the
centroid of the nc candidates. Robust detections are achieved
by following the idea of auto-context [27], where a classifier
is trained on the output of another classifier. The probabilistic
information from F̃ is utilized as the input for training and
detection, instead of the intensities in F directly, since the
probability maps look similar for both contrast and non-
contrast images, because the classifier for F̃ was trained on
both types of volumes. This means that the framework is not
confused by large magnitudes in intensity gradients, which
most notably appear in contrast-enhanced images, for instance
at the boundaries of the left ventricle or the aorta, or due to
imaging artifacts caused by catheters. Thus, the method can
be used with or without contrast, constituting a major benefit
of our work.

To summarize, the input for both training and testing of
the object localizer is the probability map F̃ extracted from
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F , and the output is a pericardium center hypothesis, i.e. the
estimated position of the pericardium center in F , say cAF .
Let cAM be the center of AM. θ0 is then calculated as

θ0 = (φθ0
,−cAM + cAF )> . (1)

D. Optimization Strategy

Given a pericardium mesh AM, a probability map F̃ and
a starting point θ0, the goal is to refine θ to yield an
optimal rigid transformation θ∗, such that the anchor anatomy
(pericardium), and thus (see Sec. III-A3) also the target
anatomy (aortic valve), is aligned in both images. This process
is incorporated into a numerical quasi-Newton minimization
framework utilizing the update rule of Broyden, Fletcher,
Goldfarb and Shanno (BFGS) [28]. BFGS is known for its
high computational efficiency and good convergence behavior.
Multi-resolution optimization in a coarse-to-fine manner on
three granularity levels of F̃ is performed.

1) Objective Function: A transformation θ, which even-
tually aligns the pericardium in both images, is iteratively
refined. The optimization problem is defined as

θ∗ = argmin
θ

f(θ | AM, F̃) . (2)

The objective function f is designed to maximize the com-
bined support of all vertices of the aligned mesh AM within
the volume of the probability map F̃ extracted from the C-arm
CT image:

f(θ | AM, F̃) =

∑
p∈AM

I(θ(p), F̃) · ψ(θ(p), F̃)∑
p∈AM

I(θ(p), F̃)
. (3)

where p denotes a vertex in AM (the mesh sampling strategy
will be refined later on) and p′ = θ(p) is that vertex
transformed with respect to θ. The indicator function I(p′, F̃)
evaluates to 1, if p′ is located inside the domain of definition
of F̃ , otherwise it returns 0. ψ(p′, F̃) computes a value that
is proportional to the inverse of the probabilistic prediction
F̃(vp′) at the voxel vp′ ∈ F̃ where p′ is located:

ψ(p′, F̃) =
2

F̃(vp′) + 1
− 1 . (4)

The output of ψ is in the range [0, 1] given that F̃ is probabilis-
tic. In the rare case when the denominator in (3) evaluates to
zero, or—less restrictive—when the number of vertices within
the boundaries of the volume is below a certain threshold (less
than a quarter of all vertices), an alternative function f ′ is
called, which prevents AM and F̃ from diverging. Its return
value is proportional to the distance of the centers of F̃ (cF̃ )
and AM transformed with respect to the current estimate:

f ′(θ | AM, F̃) ∝ ‖cF̃ − θ(cAM)‖2 . (5)

Fig. 3. Slices of a non-contrast C-arm CT volume (F ) overlaid by the PBT-
based probability map (thresholded), red color indicates high probability, blue
colored and transparent regions are rather unlikely to contain the pericardium
boundary. Lower right: Tilted frontal 3D rendering of the probability map.

2) Gradient Computation: In steepest-descent based mini-
mization, the gradient ∇ of f is exploited to obtain the descent
direction in each iteration. Furthermore, the BFGS method
relies on the gradient in order to estimate an approximation of
the inverse of the Hessian. Unfortunately, f is highly complex
and therefore calculation of analytical derivatives is difficult.
Hence, the gradient ∇̃ ≈ ∇f(θ | AM, F̃) is approximated
component-wise using finite differences:

∇̃i =
f(θ + δi | AM, F̃)− f(θ | AM, F̃)

δii
, (6)

with an offset δii (the only non-zero component of δi) of half
the resolution of F̃ for translation and an equivalent angle
in degrees for rotation. Despite its asymmetric computation
scheme, the gradient estimate is sufficiently stable in this
application.

While computing the translational gradient components is
straightforward, rotation in 3D poses a major problem due
to its inherent non-linearity and co-dependencies. This issue
is addressed by utilizing a linearization of rotation matrices
R using a first order approximation R′ as proposed by Mitra et
al. [29]. With homogeneous coordinates, rigid transformation
turns into a linear problem and thus can be represented by a
matrix-vector multiplication with a matrix Mθ =

(
Rθ tθ

)
,

which concatenates rotation and translation into one matrix
and represents θ. Let Rθ be the Euler 3D rotation ma-
trix defined by φθ = (φx, φy, φz) with R−1

θ = R>θ and
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det(Rθ) = 1. Its first-order approximation [29] is given by

R′θ =

 1 −φz φy

φz 1 −φx

−φy φx 1

 ≈ Rθ . (7)

It is important to mention that R′θ ≈ Rθ only holds under
small motion, i.e. when the magnitude of φθ is close to zero.
Hence, R′θ cannot be used for large angles without intro-
ducing errors. Therefore, the rotational components of ∇̃ are
computed using a composite transformation. First, a point
p ∈ AM is transformed with respect to the current estimate
θ using the exact Euler-angle representation to generate an
intermediate point p′′. Second, p′′ is rotated according to the
minor rotation δi to yield p′ by making use of the linearization
R′θ from (7). Altogether, we get

p′ = δi(p′′) = δi(θ(p)) . (8)

p′ constitutes the first argument for the functions I and ψ
in (3) when computing the approximate rotational gradient
components of ∇̃ using (6).

3) Multiple Resolutions: To compensate for potential ini-
tial coarse misalignment, multi-resolution optimization is ex-
ploited. First, after convergence of a low-resolution optimizer
using a low-resolution probability map F̃ |coarse, a rough reg-
istration θ∗|coarse is determined. The next optimization step is
then performed using a resampled (cf. Resampler in Fig. 1),
finer representation of the probability map F̃ |fine. The opti-
mization with respect to F̃ |fine starts at θ|coarse and eventually
yields θ∗|fine. This process is repeated until a certain target
resolution F̃ |finest is reached. The resulting θ∗ = θ∗|finest
then constitutes the multi-resolution-optimal set of parameters.
Three different isotropic scales (4, 2, and 1 mm) are consid-
ered.

4) Prior Sampling: The classifier response (Sec. II-B) is
more reliable in some regions of the volumes compared to
others. For instance see Fig. 3, where the areas close to the
left ventricle and right atrium have high responses, while
classification near the spine is noisy and the right ventricle
region shows low confidence. Robustness and accuracy of
our method (Sec. III-B) could be improved significantly by
incorporating prior knowledge into the optimization procedure.
Therefore, the surface mesh of the anchor anatomy AM is
subdivided into nr small regions rj ∈ AM with

⋃
j rj = AM

and rj ∩ rk = ∅ ∀j, k : j 6= k. Each region rj is assigned
a patient-independent weight wrj yielding a weight vector
w = {wrj | rj ∈ AM}. The term w increases the influence
of those regions that are likely to be located within a high
confidence area in F̃ , whereas a region that is noisy or often
falsely classified gets penalized. This is achieved by increasing
the sampling rate of the pericardium mesh at regions rj with
high weights wrj , while reducing the sampling rate for low
wrj regions. Gradient magnitude ‖∇‖2 in the C-arm CT
images was most useful for reliability predictions. Values for
w (cf. Fig. 4) are determined based on this observation and
the C-arm CT images Vi and pericardium annotations Pi from
DB from Sec. II-B as follows. First, vertex-wise weights
w′ = {w′l} are computed for all vertices of the pericardium

Fig. 4. Visualization of an example probabilistic prior sampling of AM (white
points). Dark/red colors on the mesh depict regions of sparse sampling (small
wr), while in bright/yellow regions points are sampled more densely during
the optimization.

model described in Sec. II-A:

w′l =

nDB∑
i=1

‖∇(Vi(pil))‖2 , (9)

pil denoting the lth vertex of Pi. Second, w′ is normalized by
applying an affine transformation such that the smallest and
largest values are mapped to 0 and 1, respectively. Finally, for
each region rj , w′ is mapped to the region-wise weights wrj

by averaging over the vertex-wise weights w′l of all vertices
that are enclosed by rj . In this study, nr = 1024 regions are
used, each of them corresponding to a particular triangle 4
in the pericardium mesh. Consequently, each wrj is computed
as the mean of 3 vertex-based weights w′l determined by 4.

Let Γw be a probabilistic function that returns three-
dimensional points on the surface of a given mesh according
to the sampling probabilities defined by w. To incorporate the
prior knowledge into our framework, the objective function
f from (3) is extended to obtain:

f(θ |AM, F̃ ,Γw)=

∑
p∈Γw(AM) I(θ(p), F̃)·ψ(θ(p), F̃)∑

p∈Γw(AM) I(θ(p), F̃)
. (10)

Motivated by a tradeoff between low computational complex-
ity and high sampling density, 2 000 points are sampled on
AM, which are drawn from Γw as follows. First, an index
z corresponding to a region rz and a threshold value τ are
drawn from a discrete uniform distribution with range [1, nr]
and a continuous uniform distribution with range [0.2, 1],
respectively. The latter range is determined experimentally to
exclude regions with very low reliability. This first step is
repeated until wrz ≥ τ to increase the sampling density of
high-confidence regions. Finally, a random point on the surface
of the triangle rl is chosen using randomized barycentric
coordinates (u, v, w). Scalars u and v are drawn from con-
tinuous uniform distributions with range [0, 1] and [0, 1− u],
respectively, and w = 1 − u − v. An example probabilistic
prior sampling is illustrated in Fig. 4.

III. EXPERIMENTAL RESULTS

A. Dataset and Error Measure

1) Clinical Dataset: A set of 95 corresponding clinical CT
and C-arm CT volumes was compiled, each with an isotropic
resolution of 1 mm. About one quarter (25) of the C-arm
CT images are native, while 70 were acquired with contrast.
Medical experts created a database DBclinic of pericardium
models P̆ annotated in the C-arm CT images. For 43 studies,
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annotations R̆ and R of the aortic valve are included based on
the patient-specific C-arm CT and CT acquisition, respectively.
Furthermore, 3 landmarks (hinges of the aortic valve) were
annotated in those cases. For more information on the aortic
valve model the reader is referred to [30]. In 12 C-arm CT im-
ages (9 contrast, 3 native), a large part of the anchor anatomy
(pericardium) is not visible. For these cases the uncertainty
in the annotation is significantly increased. However, with
guidance from the corresponding CT image, the experienced
experts could still create valid pericardium models.

2) Mesh-to-Mesh Error: Since the proposed method is
based on geometrical models and the clinical dataset includes
ground-truth annotations, quantitative evaluation is possible.
The results are based on a symmetric mesh-to-mesh distance
metric ε. Its implementation utilizes the point-to-triangle dis-
tance εpt(p,4) between a point p and a triangle 4. Let X,
Y be triangulated surface meshes with nX and nY denoting
the number of vertices in X and Y, respectively. ε is defined
as:

ε(X,Y)=
1

2

∑
p∈X

min
4∈Y

εpt(p,4)

nX
+
∑
p∈Y

min
4∈X

εpt(p,4)

nY

 . (11)

Note that this distance measure might underestimate misalign-
ment tangential to the surface. However, it is a fairly natural
measure closely resembling visual assessment by experts.

3) Correlation Between Anatomies: A good correlation
between the pose of anchor and target anatomy is crucial to the
applicability of our method in clinical practice. In this section,
a technical justification for this assumption is provided based
on the following experiment. For each dataset in DB with
annotated AV landmarks, the optimal rigid registration be-
tween those landmarks in corresponding images is estimated
[31]. This transformation, which is solely based on the AV,
yields an average mesh-to-mesh error of 4.76 mm measured at
the pericardium. Although this error seems large, it is very
likely that it is mostly related to differences in the shape
of the pericardium, since the distance is computed between
the automatically segmented mesh on the one hand, and the
manually annotated mesh on the other hand, both introducing
biases and uncertainties. The error due to the differences
in shape can be approximated by aligning both pericardium
meshes using the vertices as landmarks, yielding an error of
4.23 mm, which is only slightly (0.53 mm) lower than the error
measured using the AV-based transformation. Hence, good
correlation between the pose of anchor and target anatomy
can be assumed.

B. Evaluation on Clinical Data

Our probabilistic sparse matching approach, which is based
on the novel prior sampling strategy as described in Sec. II-D
on DBclinic is evaluated and compared against our previously
published vertex-based sparse matching method [19] with
prior weights both enabled and disabled. The rows in Table
I show the anchor anatomy alignment error (AAE) statistics,
i.e. error statistics resulting from a comparison of the optimally
transformed segmented pericardium θ∗(AM) and the ground-
truth annotation in the C-arm CT volume P̆. Table II shows

the target anatomy errors (TAE), i.e. a comparison of the
transformed CT-based aortic valve θ∗(R) and its C-arm CT
based annotation R̆. From left to right, the columns contain the
name of the analyzed method, followed by error measurements
in mm, starting with the mean error and standard deviation,
the 50th (median), 80th and 90th percentiles of the errors, as
well as the maximum and minimum error. The two right-most
columns show the ratio of fail-cases (a measure of robustness),
where a registration accuracy with an AAE (Table I) or TAE
(Table II) greater or equal than 2 cm is considered a fail-case,
and an adjusted mean, where all fail-cases are excluded.

Probabilistic sparse matching achieves a mean AAE of
5.48± 1.82 mm measured between the anchor anatomy (peri-
cardium). As described in Sec. II-D, 2 000 points are randomly
sampled on the pericardium mesh. The performance in terms
of robustness and accuracy is superior compared to using
only 514 points (same number as in our previous approach
[19]). However, further improvements by using 3 000, 5 000 or
10 000 points are only marginal on DBclinic. On the 12 cases
with partially visible pericardium in the C-arm CT image, the
AAE increases to 7.12± 1.63 mm versus 5.25± 1.72 mm for
the remaining 83 cases. This discrepancy can be explained by
the gain in uncertainty when annotating the pericardium with
missing data, since errors in the annotation can have quite large
effects on the quantitative errors computed using (11). Hence,
the increase in AAE is not necessarily related to inaccuracies
in the registration. Between the 70 contrasted and the 25 non-
contrasted volumes, no significant discrepancy was observed
with AAEs of 5.33± 1.69 mm and 5.91± 2.09 mm, respec-
tively. Furthermore, with a mean TAE of 4.67± 1.94 mm, the
target anatomy (aortic valve) is aligned very well. No fail-cases
are observed for both anchor and target anatomy.

Using the objective function (3) with no prior informa-
tion, as implemented in our previously proposed vertex-based
method [19] without patient-independent weighting, the mean
errors increase significantly by more than 30% in terms of both
AAE and TAE. One reason is that more outliers are generated,
which leads to a fail-case that has a strong influence on the
aggregated errors. When we apply the vertex-based method
with vertex-wise prior weights as described in [19], the mean
errors decrease by almost 1 mm AAE and also slightly with
respect to TAE. However, compared to the 5.60± 1.81 mm
AAE reported in [19], the aggregated error including the
newly added datasets notably increased and even an outlier
is observed. By discarding vertices with low weights < 0.2 in
[19], similar as in the current approach where regions with
weight w < 0.2 are not sampled, the mean error of the
vertex-based method on DBclinic slightly decreases by 0.22 mm
(AAE). Yet, the performance of probabilistic sampling could
not be reached as other improvements are important factors,
too. For instance, the vertices of the pericardium (Sec. II-A)
are not uniformly distributed on the mesh, e.g. the sampling
density significantly decreases from apex to septum. This can
become an issue in [19] as the fixed sampling pattern solely
defined by the fixed mesh topology is used, what can lead to
some regions having high influence on the objective function
value, although the weights of the vertices in the regions might
be low, and vice versa. With our improved sampling strategy,
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TABLE I
AAE STATISTICS [MM] ε(θ∗(AM), P̆) AFTER REGISTRATION (#STUDIES=95)

Method Mean SD Median 80% 90% Max Min Fail-cases Adjusted Mean
Probabilistic Sparse Matching 5.48 1.82 5.22 7.26 7.88 10.40 1.93 0% 5.48

Vertex-based Sparse Matching [19] 6.27 3.33 5.43 7.81 8.61 26.18 2.61 1.1% 5.89
Vertex-based Sparse Matching (no Prior) 7.20 3.79 6.63 8.85 10.36 33.47 2.11 1.1% 6.92

Quasi-global Search 13.06 12.79 5.86 24.38 34.17 57.56 2.33 25.3% 6.41
Quasi-global Search (masked) 13.69 19.82 7.03 16.40 37.56 139.74 2.11 15.8% 6.89
ITK Registration Framework 15.13 14.95 7.77 25.42 35.70 76.65 2.50 25.3% 7.98

ITK Registration Framework (masked) 20.29 22.84 7.64 36.80 56.12 89.10 2.44 32.6% 7.12

TABLE II
TAE STATISTICS [MM] ε(θ∗(R), R̆) AFTER REGISTRATION (#STUDIES=43)

Method Mean SD Median 80% 90% Max Min Fail-cases Adjusted Mean
Probabilistic Sparse Matching 4.67 1.94 4.22 6.54 7.29 8.83 1.24 0% 4.67

Vertex-based Sparse Matching [19] 5.91 5.54 5.02 6.94 7.57 39.01 2.61 2.3% 5.12
Vertex-based Sparse Matching (no Prior) 6.14 3.54 5.56 8.47 9.44 22.35 1.18 2.3% 5.76

Quasi-global Search 21.76 22.32 8.49 49.05 60.36 77.67 1.43 37.2% 6.45
Quasi-global Search (masked) 13.72 19.73 5.25 18.29 37.50 79.80 1.02 18.6% 5.51
ITK Registration Framework 21.23 25.77 7.87 33.34 61.07 94.67 1.28 37.2% 5.52

ITK Registration Framework (masked) 21.81 26.15 9.59 42.31 64.16 96.20 1.08 37.2% 6.02

this problem is mitigated by sampling a larger number of
points at randomized locations on the mesh surface, while
still taking into account the prior knowledge on the regional
confidence of the classifier. Due to the involved randomness,
our sampling approach also shares some of the advantages
of jittered sampling [32], which is known to improve the
smoothness of the objective function, leading to better accu-
racy and robustness of the overall approach. To conclude, the
prior knowledge improves the fusion performance significantly
and probabilistic sampling further increases robustness and
accuracy as opposed to vertex-based sampling. Figure 5(a-d)
depicts representative qualitative fusion results from various
datasets ∈ DBclinic.

C. On the Effect of Prior Knowledge

To further explain the importance of our prior sampling
strategy, the objective function with standard vertex-based
sampling and no prior weights is compared against the objec-
tive function from (10) with prior sampling for one example
dataset. The plots in the top row of Fig. 6 are generated
as follows: After performing a full registration with (blue
curves) and without (red dashed curves) prior sampling, the
pericardium AM is translated along orthogonal directions
(columns of the plot represent the x-, y- and z-axis). At
equidistant sampling intervals of length 1 mm within the range
from -50 mm to 50 mm around the estimated optimal point, the
objective functions are then evaluated given the manually mis-
aligned AM and F̃ . To facilitate visual comparison, an affine
transformation is applied to the curves such that the minimum
and maximum values are mapped to 0 and 1, respectively.
The latter is performed for both strategies individually using
the data from all three plots. The plots in the bottom row show
the AAE between the manually misaligned AM (as described
above) and the fixed C-arm CT annotation AF .

Compared to vertex-based sampling, prior sampling reduces
the influence of noise, allows for smoother energy functions
and exhibits better correlation with the AAE, the error metric

used to evaluate the registration. Throughout DBclinic, this
results in increased robustness and alignment with higher
accuracy. Although the global optimum in terms of AAE could
not be reached in this particular case using prior sampling (see
for instance the plot in the center bottom row of Fig. 6, where
the AAE slightly decreases until tx ≈ -6 mm), the registration
accuracy increased by almost 2 mm compared to vertex-based
sampling. Moreover, the plots in the left column reveal that
the vertex-based sampling method misses a (local) minimum
of the AAE curve at ≈ −14 mm in the x direction. In fact,
this AAE minimum is rather close to a local maximum of the
marginalized objective function at ≈ −16 mm in x-direction.
This local maximum is partially related to noisy regions in the
probability map F̃ . Probabilistic sampling reduces the influ-
ence of such regions, similar to filtering techniques, and thus
produces nicely monotonic and smooth objective functions
with large convex areas. We observed similar behavior for
other datasets and also for changes in rotation.

D. Comparison to State-of-the-Art Fusion

Our model-to-image registration is quantitatively compared
to two state-of-the-art image-to-image registration approaches.
Intuitively, one might expect that the registration results will
improve when the optimizer focuses on the anchor anatomy
(pericardium) only as opposed to using the entire image.
Therefore, an option to mask a region of interest (ROI)
in the preoperative CT image (denoted as ”Name-of-Method
(masked)” in Table I and II) was implemented. The mask im-
age is created by (i) automatic segmentation of the pericardium
as described in Sec. II-A, (ii) converting the pericardium mesh
into a binary image of the same size, spacing and pose as the
CT image, where voxels inside the mesh are set to enabled
and all the other voxels are set to disabled, and (iii) dilating
the binary image (increasing the size of the ROI) utilizing a
spherical structuring element with a radius of 5 mm. Step (iii)
ensures that the entire heart as well as a small area around it
is included in the ROI. In our experiments, this last step led
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(a) Study A: Contrast CT and C-arm CT. Blue: mapped aortic valve from CT scan. AAE = 1.93 mm, TAE = 1.24 mm.

(b) Study B: Contrast CT and C-arm CT. Green: ground-truth C-arm CT pericardium annotation, blue: fused CT pericardium. AAE = 4.07 mm.

(c) Study C: Non-contrast CT and C-arm CT. Coloring as in Fig. 5(b). AAE = 4.94 mm.

(d) Study D: Contrast CT and non-contrast C-arm CT. Coloring as in Fig. 5(b). AAE = 6.11 mm.

(e) Study E: Contrast CT and C-arm CT. Left: Quasi-global search, AAE = 40.17 mm. Right: Quasi-global search (masked), AAE = 5.24 mm.

Fig. 5. (a-d) Representative qualitative results from several automatically registered datasets. Yellow: intraoperative C-arm CT, gray: aligned high-quality
preoperative CT overlay, others: anatomical models automatically extracted (from CT scan) or annotated (based on C-arm CT), mapped into the joint
coordinate system. The left image in the row (d) illustrates that especially in non-contrasted C-arm CT images, there are uncertainties involved in annotating
the pericardium. It is not clear whether the fused or the annotated pericardium fits better. Non-ideal annotations usually increase the measured quantitative
error. (e) Comparison method (Quasi-global Search) without and with pericardium masking. In this case, masking improves the result significantly.

to significant improvements in robustness, since the bordering
area between the pericardium and the lungs provides crucial
information that can improve the outcome of the similarity
metrics (large gradient magnitudes and homogeneous regions).

1) ITK Registration Framework: The first method utilizes
the Insight Segmentation and Registration Toolkit (ITK), an

open source medical imaging library [33]. Since intensities in
the CT image and the C-arm CT image do not necessarily
correlate (Sec. I), the similarity metric is based on mutual
information [34]. All voxels in the image and 50 bins for
the histogram as proposed by Mattes et al. [34] are used.
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Fig. 6. Top row: Objective functions for one dataset marginalized over the x, y and z direction (left, middle and right). The red (dashed) curves were
generated using vertex-based sampling, while the more sophisticated objective function leveraging prior knowledge by performing a probabilistic prior
sampling of AM was used to create the blue (solid) curves. Bottom row: Plots of corresponding (to the plots above) anchor anatomy alignment error (AAE).
Plots in the same column share the same axis. For more information we refer the reader to Sec. III-C.

Optimal transformation parameters θ∗ITK are obtained by a
multi-resolution optimizer for rigid versor transformations.
The scales for the components of the versor were adjusted
according to [33]. Maximum and minimum step lengths are
customized adaptively for each resolution, the maximum num-
ber of iterations is set to 200, and the procedure is initialized
using the method presented in Sec. II-C of this paper. Although
intermediate results from our proposed method are used for
initialization, which adds bias to the ITK method, it makes
comparison more fair as opposed to simple strategies like
aligning the centroid of both volumes, because they are
unlikely to produce good initializations for datasets where the
heart is not centered in both volumes. Results obtained running
this framework on DBclinic are presented in the last two rows
of Table I (anchor anatomy) and Table II (target anatomy). The
method fails for approximately 25% of the studies. However,
since this framework is not specifically designed to align the
pericardia and no preprocessing is performed, the large number
is understandable. Many of the failures occur for images with
significant differences in the size of the field of view between
the CT and the C-arm CT acquisition. The mean error of
15.13 mm yielded by this framework is substantially larger
than the error of our method, with a mean of 5.48 mm on the
same datasets. A rigid registration is computed in 8.3± 7.1
minutes on average. Please note that no optimizations with
respect to runtime were implemented.

To increase the focus on aligning the pericardia, the ex-
periment are repeated using an image mask derived from
the CT pericardium mesh as described above. Indeed, for
some images, the alignment can be improved significantly. For
instance, for one dataset the AAE is reduced from 13.23 mm to
3.56 mm when utilizing the mask image. However, the number
of cases where the results get worse due to the masking prevail.

2) Quasi-global Search: The second method is a quasi-
global knowledge-driven registration approach for thoracic-

abdominal CT and C-arm CT images designed for image-
guided interventions [18]. Given an intraoperative C-arm CT
image, in the first step, three surrogate 2D images, so-called
Anatomy Targeted Projections (ATP), are created. An ATP
is a maximum-intensity-like 2D projection, which focuses
on a specific anatomy or tissue type (e.g. bone, soft tissue,
etc.). This is achieved by projecting the intensity of the voxel
with the maximum likelihood of belonging to the targeted
tissue type along each projection ray. The use of 2D ATPs
instead of the 3D volume can reduce computational costs
significantly and thus allows for a large number of similar-
ity metric evaluations within a reasonable time frame. The
authors chose an adaption of normalized mutual information
(NMI) as similarity metric. Second, multiple starting points
in registration parameters space are chosen to approximate
a global search, motivated by the assumption that most CT
volumes have a larger field of view compared to C-arm CT
images. In a third step, the globally optimal candidate is
selected by analyzing similarity values and gradients at all
starting points. Last, a local multi-resolution optimization is
performed, yielding an optimal set of rigid transformation
parameters. The authors claim that their method is fast and
robust with low target registration and maximum registration
errors on 20 datasets.

Quantitative results (Tables I and II) show that on average,
the AAE of the quasi-global search is more than twice as
large as the AAE of our method, and the TAE increases
from 4.67 mm to 21.76 mm. This indicates that finding a
solution to the problem of aligning the pericardium in such
heterogeneous images (varying field of view, contrast and non-
contrast images, etc.) from different modalities is hard and
working with image intensities directly might not be sufficient.
However, while our learning-based method works particularly
well for the application described in this paper, it is not well
suited for general-purpose registration without major efforts
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Fig. 7. Inter-user variability compared to our method. The edges of the boxes
indicate 25th and 75th percentiles of the expert errors (AAE).

in terms of training data acquisition and manual annotation.
In contrast, the quasi-global search is not specialized for a
particular application, it is rather an approach designed for
handling various registration tasks from a larger problem do-
main. The observations regarding the quasi-global search when
using the pericardium mask are similar to the ITK registration
framework when using the mask. On the one hand, there are
datasets, where the alignment improves significantly (for an
example see Fig. 5(e)). On the other hand, in many cases per-
formance decreases. Besides, masking can lead to individual
excessive errors as high as 139.74 mm (see Table I), whereas
the maximum error of the standard quasi-global search is
below 60 mm. Although a smaller number of fail-cases is
observed, the details discussed above lead to a slightly higher
mean AAE of 13.69 mm for the method with pericardium
masking, compared to 13.06 mm without masking. Surpris-
ingly, the TAE (see Table II) in the 43 datasets where annota-
tions of the aortic valve are available decreases from 21.76 mm
without masking to 13.72 mm with masking. This is due to the
images in this specific subset working better with pericardium
masking (AAE = 11.17± 11.25 mm) compared to the method
without masking (AAE = 16.35± 13.26 mm). Incorporating
our advanced PBT-based initialization (Sec. II-C) into the algo-
rithm by Zhang et al. without masking yields mean quantitative
errors of 12.61± 12.15 mm AAE and 20.28± 21.36 mm TAE,
which correspond to only a marginal improvement over the
version without custom initialization. The same holds when
using image masks, yielding 12.10± 17.84 mm AAE and
12.63± 18.95 mm TAE. These results suggest that intensity-
driven methods are prone to be inaccurate and unstable for
such heterogeneous images, and that they are likely to diverge
from a good initialization. Furthermore, on our testing machine
(see Sec. III-F), the mean runtime until a rigid registration is
computed is 2.48± 1.0 s.

E. Inter-user Variability Study

Ascribing a rational meaning to quantitative results is chal-
lenging. In most cases, the true performance of a system would
not only be measured in absolute terms but rather relative
to the manual performance of experts. Thus, our method
is compared to the individual performances of a group of

nuser = 10 technical experts, who work on such clinical data on
a daily basis. The users were asked to align ndata = 10 pairs
of volumes (a subset of DBclinic, see Sec. III-A1) manually.
An intuitive, custom software tool that allows for adjusting
rigid transformations in a convenient manner was provided.
The progress is visualized in real-time using 2D MPR planes
and simultaneous 3D rendering of the two volumes in colored
semi-opaque mode. In order to register two images manually,
only mouse and keyboard are required. The latter is used to
toggle between two modes via simple keystrokes. The user
either drags the moving volume along an axis (translation
mode) or rotates it around an axis (rotation mode). In both
cases, the axis is defined by the active (mouse focus) MPR
plane.

Let θji be the manually estimated transformation param-
eters of the ith user for the jth pair of volumes. The fit
to the ground-truth C-arm CT annotation P̆j is compared,
i.e. the error ε(P̆j ,θji(Pj)) between the manually annotated
fixed C-arm CT pericardium and the moving CT pericardium
transformed with respect to the user’s manual transformation is
computed. Results are shown in Fig. 7. Our automated method
exhibits lower errors than the median user in 80% of all cases
and shows high robustness with no outliers. There exists only
one pair of volumes where the automatic fusion is inferior
to more than 75% of the users. Moreover, the users’ manual
fusion time per data pair ranges from two to five minutes,
while our method takes less than two seconds on average
(see Sec. III-F), which means a speedup of up to 99%. To
conclude, with no fail-case and reliable performance, our fully-
automatic approach outperforms manual registration in terms
of robustness, accuracy and runtime.

F. Runtime Performance

Our method is designed to be used interventionally, resulting
in a need for low computational costs associated with the
registration. A runtime analysis was conducted on an off-the-
shelf consumer laptop with an Intel R© Core

TM
i7-3720QM CPU

@ 2.60 GHz with 4 physical cores and 8 GB of main memory.
Our prototype is implemented in C++ utilizing OpenMP [35]
for efficient parallel programming.

The average runtime for the entire process of estimating
rigid transformation parameters θ∗ measured on DBclinic is
1.562± 0.286 seconds. The speed-up compared to the pre-
viously reported runtime of 2.9± 0.4 s [19] for the vertex-
based method is mainly due to code optimizations. Most
of these improvements also benefit the previous method:
the runtime of [19] is reduced to 1.702± 0.279 seconds,
however, the performance of the current method could not be
reached, partially due to [19] requiring about 20% more cost
function evaluations. While registration within a few seconds
as opposed to several minutes (unoptimized ITK method) is
important, reducing speed from 2.9 s to 1.6 s is desirable, but
not crucial to the procedure. Below, the runtime behavior of
the four major components of the registration framework is
discussed briefly. For a detailed overview see Fig. 8.

The runtime for the automatic model segmentation
(Sec. II-A) from the preoperative CT volume by Zheng et



TO APPEAR IN IEEE TRANSACTIONS ON MEDICAL IMAGING 11

Optimization
EE0.258E±E0.042EsPericardium

Segmentation
EE0.451E±E0.254Es

ProbabilityEMap
Extraction
EE0.837E±E0.088Es

Initialization
Estimation
EE0.015E±E0.003Es

Combined
  1.562 ± 0.286 s

Fig. 8. Relative / absolute runtime of the four major framework components.

al. [20] does not rely on intraoperative data and thus it can be
performed offline, prior to the intervention. It scales linearly
with the number of voxels in the volume, ranging from 0.181 s
for a scan consisting of 206×206×103 voxels to 1.70 s for a
volume with 497×497×278 voxels. On average over all CT
volumes ∈ DBclinic, the mean runtime is 0.451± 0.254 s.

The cost for generating a probability map (Sec. II-B) is
strongly correlated with the size and resolution of the C-arm
CT volume, since the classifier has to be evaluated on each
voxel. This is done in parallel on the CPU. Please note that
this is a task that can be outsourced to the graphics processing
unit (GPU), potentially resulting in a massive gain in perfor-
mance. For a typically sized volume of 240×240×180 mm3,
probability map generation takes approximately 0.81, 1.94,
5.73 or 39.9 seconds for resolutions of 4, 3, 2 and 1 mm,
respectively. In our standard approach, the 4 mm classifier is
utilized, i.e. on average, probability map generation accounts
for 0.837± 0.088 seconds of the overall runtime.

The use of statistical object localization to estimate the
initialization θ0 for the optimizer (Sec. II-C) adds very little
to the complexity. The maximum runtime is 24 milliseconds.

The last component is the iterative optimization (Sec. II-D)
with an average runtime of 0.258± 0.042 s, which is mainly
influenced by the number of objective function evaluations and
by the cost for resampling the probability map (multiple reso-
lutions). The latter needs to be done twice (4 mm→2 mm and
4 mm→1 mm resolution), consuming approximately 0.141 s.
The evaluation of f and the approximate gradient computation
∇̃ is combined in one function g. Averaged over DBclinic, g
was called 144.7± 22.1 times (accumulated over all granu-
larity levels). Independent of the current resolution, the mean
runtime of one call is 0.81 milliseconds. Thus, the average cost
of successive calls to g for one registration is 0.117 s. Since
the computational complexity of g scales linearly with the
number of sampling points, the moderate increase from 514
[19] to 2 000 points has no significant impact on the runtime.

IV. CONCLUSIONS

In this paper, a fast and fully-automatic method to fuse
preoperative CT and intraoperative 3D C-arm CT data is
presented. A novel sparse matching approach is employed to
align the preoperative anchor anatomy to the intraoperative
setting. Data and model uncertainties are learned and exploited
for the matching process. Quantitative and qualitative evalu-
ation demonstrate a fast and accurate mapping of the anchor
and target anatomy to the intraoperative modality. In direct

comparison with a state-of-the-art registration framework and
a recently proposed quasi-global, knowledge-driven fusion
approach, our method outperforms both significantly in terms
of robustness and accuracy regarding the targeted application
on a database of 95 clinical CT and C-arm CT volumes.
Furthermore, an inter-user variability study with ten users
confirms that the accuracy of our method lies within the
confidence interval of the expert group. While computation
times of our method (1.6 s) and the quasi-global approach
(2.5 s) are comparable, the ITK registration framework is sig-
nificantly slower, typically consuming five to ten minutes per
registration, which is similar to manual alignment performed
by experts.

The main limitation of our approach to be applicable in
other domains like liver or lung fusion for instance, or with
data from other modalities, is the need for a significant
number of training datasets from a broad spectrum of potential
scanners and acquisition protocols. Furthermore, an anchor
anatomy needs to be defined, and annotated manually in each
image in order to train a classifier to create reliable prob-
ability maps. In our application, a large database of manual
annotations of the pericardium was necessary. It contains non-
gated contrast and non-contrast images acquired from different
detectors (size and resolution), various fields of view and
hundreds of distinct patient geometries.

To conclude, comprehensive patient-specific models can be
estimated from high-contrast CT and fused into the imaging
environment of operating rooms to facilitate guidance in
minimally-invasive cardiac surgery, while meeting interven-
tionally necessary constraints such as low computation time,
high accuracy and robustness against noisy data, only partially
visible models and imaging artifacts.
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