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Abstract. Precise estimation of computational physiological model pa-
rameters from patient data is one of the main hurdles towards their
clinical applicability. Designing robust estimation algorithms is often a
tedious and model-specific process. We propose to use, for the first time
to our knowledge, artificial intelligence (AI) concepts to learn how to
personalize a computational model, inspired by how an expert manually
personalizes. We reformulate the parameter estimation problem in terms
of Markov decision process and reinforcement learning. In an off-line
phase, the artificial agent, called Vito, automatically learns a representa-
tive state-action-state model through data-driven exploration of the com-
putational model under consideration. In other words, Vito learns how
the model behaves under change of parameters and how to personalize it.
Vito then controls the on-line personalization by exploiting its automati-
cally derived action policy. Because the algorithm is model-independent,
personalizing a completely new model would require only adjusting some
simple parameters of the agent and defining the observations to match,
without the full knowledge of the model itself. Vito was evaluated on two
challenging problems: the inverse problem of cardiac electrophysiology
and the personalization of a lumped-parameter whole-body circulation
model. Obtained results suggested that Vito could achieve equivalent
goodness of fit than standard methods, while being more robust (up to
25% higher success rates) and with faster (up to three times) convergence
rate. Our AI approach could thus make model personalization algorithms
generalizable and self-adaptable to any patient, like a human operator.

1 Introduction

For the past decade, computational models of heart function have been explored
to improve clinical management of patients with cardiomyopathies, from strati-
fication to therapy planning [1, 2]. Yet, the high model complexity and the often
noisy and sparse clinical data still hinder their personalization; i.e. the estimation
of their parameters such that they capture the observed physiology (e.g. cardiac
motion, electrocardiogram, etc.) and can predict outcome. A wide variety of pa-
rameter estimation approaches have been explored to personalize cardiac models
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from clinical data [3, 4]. They all aim to iteratively reduce the misfit between
model output and measurements using automatic optimization algorithms (e.g.
variational or filtering approaches). Applied blindly, those techniques could eas-
ily fail on unseen data, if not supervised, due to parameter ambiguity. Therefore,
complex algorithms have been designed combining cascades of optimizers in a
very specific way to achieve the required robustness [5]. However, such methods
are not generic and their generalization to varying data quality cannot be guar-
anteed. Reversely, an experienced human can almost always succeed in manually
personalizing a model for any subject. One reason is that an expert is likely to
have an intuition of model behavior from his prior knowledge on physiology and
model design, and past personalization experience. This intuition definitely helps
to solve the personalization task more effectively, even on unseen data.

Instead, we propose to address personalization from a learning perspective,
inspired by the “human expert”. Based on neuroscience theories of animal learn-
ing, reinforcement learning (RL) encompasses a set of approaches to make a vir-
tual agent learn by interacting with the environment [6]. RL was first applied to
game or simple control tasks. However, the past few years saw tremendous break-
throughs in RL for more complex, real-world problems [7]. In [8], the authors
combine RL with deep learning to train an agent to play with 49 Atari games,
yielding better performance than an expert in the majority of them thanks to
an outstanding generalization property of the RL algorithm.

Motivated by these recent successes, we propose a novel RL-based personal-
ization approach, henceforth called Vito, with the goal of designing a framework
that can, for the first time to our knowledge, learn by itself how to estimate
model parameters from clinical data while being model-independent. First, like
an expert, Vito assimilates the behavior of the model in an off-line, one-time
only data-driven exploration phase. From this knowledge, Vito learns the opti-
mal strategy encoded by the MDP state-action-state tuples using RL [6]. The
goal of Vito is to choose an action that maximizes future rewards, and therefore
bring it to the state representing the solution of the personalization problem.
To setup the algorithm, the user just needs to define what observations need to
be matched and the agent state space discretization. Then everything is learned
automatically. The algorithm does not depend on the underlying model. Vito is
evaluated on two different tasks: the inverse problem of cardiac electrophysiology
and the personalization of a lumped-parameter model of whole-body circulation.
Obtained results suggest that Vito can achieve equivalent goodness of fit as stan-
dard optimization methods, is more robust and has faster convergence rate.

2 Method

2.1 Markov Decision Processes for Modeling Agent Behavior

An MDP (Fig. 1) is a tuple M = (S,A, T ,R, γ), where S = {s1, . . . , s|S|} is a
set of states that describe the agent, A = {a1, . . . , a|A|} is the set of actions, T :
S×A×S → [0; 1] andR : S×A×S → R describe the probability of transitioning
from one state to another upon action at; and the immediate reward after doing
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Fig. 1. Left: Simplified MDP (3 states, 1 action). Line width signifies T . Negative
rewards are given for all transitions, except when reaching state ŝ (model personalized).
Mid: Off-line model learning from training datasets. Right: On-line personalization.

so, respectively. γ is the discount factor that controls the importance of future
versus immediate rewards [6]. The solution of an MDP is a policy π : S → A
that maximizes the discounted expected reward

∑∞
t=0 γ

tR(st, at, st+1).

2.2 Reformulation of the Model Personalization Problem into RL

Any computational model f is governed by a set of parameters X ={x1, . . . , x|X |}
and characterized by state variables, some of them, Y = {yc1, . . . , yc|Y|}, are ob-
servable and can be used to estimate X . The goal is to minimize a set of objec-
tives C =

{
c1, . . . , c|C|

}
, where ci = d(yci , y

m
i ), ymi is the measured data and d

a distance function. Personalization is mapped to an MDP as follows. First, we
define the MDP states S as |C|-dimensional vectors with components st,i = ci,
encoding a combination of objective values. Hence, a state is characterized by its
“distance” to the solution, which is patient-invariant. Continuous objective val-
ues are discretized into Ki bins, yielding Ki states per dimension i. The problem

is therefore characterized by
∏|C|

i Ki states. Next, mimicking a human operator,
Vito will learn how to change the parameters X to fulfill the objectives C. As
such, the actions A modify the parameters, and consist in either in- or decre-
menting a parameter x ∈ X by 1× or 10× a user-specified reference value ∆x.
Inspired by the Mountain Car benchmark [6], we define the reward as always
being equal to R(st, at, st+1) = −1 (i.e. punishment) except when the agent per-
forms an action that reaches the solution, i.e. when st+1 is the state representing
the smallest error ŝ. In that case, R(st, at, st+1 = ŝ) = 0. The discount factor
γ = 0.99 encourages finding a policy that favors future over immediate rewards,
as the latter could prefer finding local over global optima. Finally, the stochastic
transition function T is learned automatically from f as described below.

2.3 Transition Function as Probabilistic Model Representation

The MDP transition probabilities T encode the agent’s knowledge about the
computational model f . Like a human operator, the agent first learns how
the model “behaves” through self-guided “sensitivity analyses” (Fig. 1). First,
we collect a batch of sample transitions from model exploration episodes E =



4

{e1, . . . , e|E|}, i.e. sequences of state-action-state transitions, where each episode
contains a fixed number of m (=100 in this work) consecutive transitions. An
episode e is initiated by generating random model parameters X e

0 within physi-
ologically plausible ranges. From the output of a forward model run f(X e

0 ), we
derive the initial state se0 as described in Sec. 2.2. Next, we employ a random
exploration policy πrand that randomly selects an action ae0 = πrand(se0) (uniform
distribution) and applies ae0 to X e

0 , yielding X e
1 . From f(X e

1 ) the next state se1
is determined. We then select the next action ae1 = πrand(se1) and repeat this
process m − 1 times. Hence, each episode can be seen as a set of state-action-
state tuples: e = {(set , aet , set+1), t = 0 . . .m − 1}. Transition probabilities T are
made patient-independent by exploring the model using different patients and
combining the episodes computed on all of them in one big episode set E . Finally,
the transition probabilities T for each possible state-action-state transition are
estimated. To this end, for each action a ∈ A and state s ∈ S, we compute the
relative frequency of (s, a, s′) tuples in E among all (s, a, ·) in E , for all s′ ∈ S.

2.4 Learning How to Personalize a Model

Now that all components of M are defined, we compute a policy π that Vito
will later use to decide which action to take given any possible state of a
model personalization. To this end, value-iteration, a traditional MDP solv-
ing technique based on dynamic programming [6] is used. Value-iteration it-
eratively refines the state-value function V , which represents the expected sum
of accumulated discounted rewards for any given state in the MDP: V (s) =∑

s′∈S T (s, π(s), s′) [R(s, π(s), s′) + γV (s′)]. The algorithm is guaranteed to con-
verge to the optimal value function V ∗ for the given MDP. The optimal policy
is given by π(s) = arg maxa∈A

∑
s′ T (s, a, s′) [R(s, a, s′) + γV ∗(s′)].

2.5 On-line Model Personalization

Once trained, Vito personalizes the computational model as follows. Starting
from a default parameter set (e.g. normal values), Vito decides from the learned
optimal policy π the first action to take, and walks through state-action-state
sequences, guided by π, to personalize the computational model f . As observed
in previous RL works [7], Vito could start oscillating between states. Since π is
deterministic, oscillations can be automatically detected and Vito restarts the
personalization from a randomly-selected state (attained by randomly sampling
the model parameters). The personalization terminates when either Vito reaches
the optimum ŝ, or when a maximum number of iterations N=100 is reached.

3 Experiments and Results

Two experiments were conducted to evaluate Vito: personalization of a cardiac
electrophysiology (EP) model from ECG-derived parameters and personalization
of a lumped whole-body circulation (WBC) model from volume and pressure
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Fig. 2. EP simulation pipeline illustrated on a typical case (see text for details). The
rightmost plot shows a personalization result provided by Vito against the ground-
truth. As one can see, Vito was able to perfectly match the observed QRS signal.

measurements. For both experiments, the same set of 28 consecutive patients
with no severe cardiac arrhythmias (QRS duration ≤ 120 ms) was used. For
each patient, the bi-ventricular anatomy was segmented (Fig. 2) and tracked
from short-axis MRI stacks using shape-constraints, learned motion models and
diffeomorphic registration [5], from which ventricular volume curves were de-
rived. At end-diastole, a tetrahedral anatomical model including myofibers was
estimated and a torso atlas affinely registered to the patient based on MRI scout
images [9]. We then randomly selected eight cases to determine Vito’s hyper-
parameters. More precisely, various state space discretization settings (K and
the bin sizes) were manually tested, and the set yielding the best personalization
was selected. It should be noted that this procedure could be easily automatized.
Once the hyper-parameters were set, Vito was evaluated on the remaining 20
cases using a leave-one-out strategy: the off-line estimation of the transition
probabilities T was carried out excluding the patient that was being personal-
ized during the on-line phase. For fair comparison, just like Vito, the parameter
estimation algorithms of reference terminated once all convergence criteria were
met, and the maximum number of forward model runs was set to 100.

3.1 Personalization of Cardiac Electrophysiology Model

Forward Model Description: The depolarization time at each node of the
tetrahedral anatomical model was computed using a shortest-path graph-based
algorithm [10] (Fig. 2). Tissue anisotropy was modeled by modifying the edge
costs to take into account fiber orientation. A time-varying voltage map was then
derived according to the depolarization time: at a given time t, mesh nodes whose
depolarization time was higher than t were assigned a trans-membrane potential
of −70 mV, 30 mV otherwise. The time-varying potentials were then propagated
to a torso model and QRS duration (QRSd) and electrical axis (EA) were com-
puted [11]. The model was controlled by the conduction velocities (in m/s) of
myocardial tissue, left and right Purkinje network (XEP = {vMyo, vLV, vRV}),
the latter two domains modeled as fast endocardial conducting tissue. The goal
of EP personalization was to estimate XEP from the measured QRSd and EA.
Accounting for uncertainty in the measurements, the model was considered per-
sonalized if QRSd and EA misfits were below 5 ms and 10◦ respectively.
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States and Actions: During hyper-parameters selection, large variations in the
number of states (9 to 121) were tested. Yet, the observed variability in personal-
ization outcomes was relatively low (standard deviation of≈1 ms and 4◦ for mean
QRSd and EA errors, respectively), suggesting that Vito’s performance could be
robust w.r.t. state discretization settings. The best results on eight datasets were
obtained with |S|=49 (K=7), with bin borders at {±45,±15,±5}ms for QRSd
and {±60,±30,±10} degrees for EA. Reference increment values (Sec. 2.2) to
build the action set of size |A|=12 were set to ∆x=5 m/s for all three x ∈ XEP.
Evaluation: |E|=100 exploration episodes were generated per patient. Vito’s
personalization results were compared to BOBYQA, a standard, gradient-free
optimization method where the objective function is the sum of absolute QRSd
and EA errors. Vito achieved mean errors of 3.0±2.0 ms and 9.0±10.5◦. The
average goodness of fit yielded by BOBYQA was slightly better in terms of
QRSd (1.4±2.6 ms) and slightly worse in terms of EA (9.9±14.7◦). It required
less forward model evaluations until convergence (31±7 versus 37±33 for Vito),
however, this came at the cost of poor robustness: the personalization criteria
could not be met in 7/20 cases. In comparison, Vito produced 70% less fail-cases.
Despite the inherent ambiguity of states (several conduction velocity combina-
tions could yield the same state), Vito was still able to personalize 18/20 cases.

3.2 Personalization of Whole-Body Circulation Model

Forward Model Description: The WBC model to personalize (Fig. 3) con-
tained a heart model (left ventricle (LV) and atrium, right ventricle (RV) and
atrium, valves), the systemic circulation (arteries, capillaries, veins) and the
pulmonary circulation (arteries, capillaries, veins) [12]. Time-varying elastance
models were used for all four chambers of the heart. The valves were modeled
through a resistance and an inertance. A three-element Windkessel model was
used for the systemic and pulmonary arterial circulation, while a two-element
Windkessel model was used for the systemic and pulmonary venous circulation.
The inputs of the model were the MRI-derived end-diastolic (ED) and end-
systolic (ES) LV volumes, the heart rate and the systolic, diastolic, and average
aortic pressures, as measured during catheterization. In this experiment, Vito
learned how to personalize the systemic circulation to match five objectives: ED
and ES LV volumes and the systolic, diastolic and average aortic pressures. To
that end, we asked Vito to estimate five parameters XWBC: the initial LV volume,
LV maximum elastance, LV dead volume, total arterial resistance and arterial
compliance. To account for measurement noise, a personalization was considered
successful if the final misfit was below ≈10% of average measured values in our
population: 10 mmHg for pressure-, and 20 mL for volume-based objectives.
States and Actions: Like for EP, Vito appeared to be robust with respect
to tested discretization settings, as quantified by the standard deviations of the
mean errors after personalization (on average < 2.3 mmHg (or mL) for the five
objectives). The best results were achieved with |S|=675 (K=3 for pressures and
K=5 for volumes), with bin borders at {±10}mmHg and {±40,±20}mL. Based
on the physiological ranges of parameter values, the reference increment values to
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Fig. 3. Left: Whole-body lumped-parameter closed loop model of the cardiovascular
system. P , Q, R, E, C and L represent pressures, flow, resistance, elastance, compliance
and inertance, respectively. Right: Personalization objectives and results.

build the action set of size |A|=20 were set to∆x={6 mL, 10−2 mmHg/mL, 4 mL,
8 g cm−4 s−1, 1.5·107cm4 s2 g−1} for the five parameters in XWBC (see above).
Evaluation: As one patient had no pressure data, evaluation was performed on
the remaining 19 cases, for which |E|=300 exploration episodes each were gener-
ated. Vito was compared to a standard optimization using the dogleg trust-region
method [12]. Average errors over all pressure-based and all volume-based objec-
tives after personalization were equivalent: 5±5 mmHg and 9±7 mL for Vito, and
5±5 mmHg and 9±6 mL for the comparison method. Vito was however more ro-
bust (2 versus 3 failed cases), and at the same time converged three times faster
(16±30 versus 48±30 forward model runs), despite the large complexity of the
model. Furthermore, preliminary experiments on ten randomly selected sets of
initial parameter values suggested that Vito is robust w.r.t. initializations.

4 Discussion and Conclusion

This paper presented a novel personalization approach, Vito, based, for the first
time, on AI concepts. We successfully applied it to two challenging personaliza-
tion tasks in cardiac computational modeling. Inspired by the human approach,
Vito first learns the underlying characteristics of the model under consideration
using a data-driven approach. This knowledge is then utilized for automatically
building a model-specific MDP. Vito is generic in the sense that beyond minimal
user input (parameter ranges and authorized updates, discretization bins), it is
able to learn by itself how to personalize a model. Setting up Vito thus does not
require strong model knowledge. We showed that Vito can be faster and more ro-
bust than standard personalization methods, the same we would have expected
from a human operator. As such, Vito could become a unified framework for
personalization of any physiological model, potentially eliminating the need for
an expert operator with in-depth knowledge to design complex optimization
procedures. Important challenges still remain, like the definition of states and
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their discretization. In this work we rely on manually defined bins, which could
be seen as ordinal evaluation of the goodness of fit (e.g. “good”, “satisfactory”
and “bad” states). However, advanced approaches for continuous RL with value
function approximators [6] could be integrated to fully circumvent discretization
issues. At the same time, such methods could improve Vito’s scalability towards
higher-dimensional estimation tasks. Experience replay [8] or similar techniques
could be employed to increase training data efficiency, which becomes important
when computationally expensive models are considered. In the future, a thor-
ough evaluation of convergence properties for both training and personalization
will be carried out. Beyond these challenges, Vito showed promising performance
and versatility, making it a first step towards an automated, self-taught model
personalization agent.
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